(3.235.25.169) 您好!臺灣時間:2021/04/20 18:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林德義
研究生(外文):De-Yi Lin
論文名稱:撓性吊重機之動態建模與控制
論文名稱(外文):Dynamic Modeling and Control of a Flexible Overhead Crane
指導教授:郭中豐郭中豐引用關係
指導教授(外文):Chung-Feng Jeffrey Kuo
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:高分子工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:68
中文關鍵詞:電腦模擬動態建模撓性吊重機控制根軌跡
外文關鍵詞:Computer simulationDynamic modelingFlexible overhead cranesControlRoot locus
相關次數:
  • 被引用被引用:1
  • 點閱點閱:333
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:21
  • 收藏至我的研究室書目清單書目收藏:0
本論文探討撓性吊重機之動態建模與控制。首先,以漢米頓原理(Hamilton’s principle)得到系統線性動態方程式及邊界條件,經拉普拉斯轉換(Laplace transform)求出系統開迴路(Open-loop)轉移函數,並利用IMSL套裝軟體求得極點與零點,結果顯示極點與零點分佈(Pole-zero pattern)互相交錯(Interlace)於虛軸上。另再根據根軌跡法(Root locus method)分析和設計出四組控制器:直接速度回饋控制器、比例微分(PD)控制器、相位領先補償器和流環(Washout circuit)控制器。然後利用假設模態法(Assume-mode method)據以模擬所設計之控制系統;結果顯示所設計之控制器均可將無限多個閉迴路系統無限多個之極點移至複數平面之左半平面上;四組控制器均能將系統之無限多個模態穩定,且以上控制器之設計皆具實用性與強健性。
This thesis addresses the dynamic modeling and control of a flexible overhead crane. First, the equations of motion and the associated boundary conditions of a flexible overhead crane are derived from Hamilton’s principle. Then, the open loop transfer function is obtained from the actuator and sensor’s locations, and the IMSL subroutine is used to find all the poles and zeros of the corresponding open loop system. It is shown that if the actuator and sensor is collocated, the poles and zeros of transfer function will interlace on the imaginary axis. The augmented root-locus method is used to design the controllers for the closed loop system. The assumed-mode method is applied to simulate the corresponding mathematical model of the flexible crane. It can be shown that the direct velocity feedback, PD controller scheme, lead compensator scheme, and washout circuit controller can successfully control the flexible overhead cranes. All controllers can move all the poles of the corresponding closed loop system further into the left half-plane. The designed controllers are all robust and easy to implement for the corresponding closed loop systems
摘要……………………………………………………………………..Ⅰ
Abstract………………………………………………………………….Ⅱ
目錄……………………………………………………………………..Ⅲ
圖索引…………………………………………………………………..Ⅵ
表索引…………………………………………………………………..Ⅷ
第1章 緒論……………………………………………………………..1
1.1 前言……………………………………………………………..1
1.2 研究動機與目的……………………………………………….1
1.3 文獻回顧………………………………………………………..2
1.3.1動態數學模式推導及分析…………………………………..2
1.3.2撓性吊重機文獻回顧………………………………………..3
1.4 本文研究步驟…………………………………………………..4
第2章 撓性吊重機之數學模式推導…………………………………..5
2.1 撓性吊重機模型之建立………………………………………..5
2.2 撓性吊重機動態方程式之推導………………………………..7
2.3 特徵值及特徵函數……………………………………………..8
2.4 撓性吊重機轉移函數……….…………….……...…….…….17
2.4.1開路轉移函數………………………………………………17
2.4.2轉移函數極點與零點精確值………………………………18
2.4.3撓性吊重機模組加總法…………………………….……...20
2.4.4電腦模擬模態數…..………………………………………..22
第3章 控制器設計……………………………………………………25
3.1 控制方法分析…………………………………………………25
3.1.1理論推導…………………………………………………...25
3.2 系統穩定性分析……………………………………………....28
3.3 比例微分控制器……………………………………………....30
3.4 速度回饋補償…………………………………………………33
3.5 相位領先補償器……………………………………………....35
3.6 流環(washout circuit) 控制器……………………………….40
第4章 模擬結果與討論………………………………………………42
4.1 系統工作性能指標……………………………………………43
4.2 系統控制器模擬結果(N=2)…………………….…………….44
4.2.1比例微分控制器性能指標……………………………….44
4.2.2速度回饋性能指標……………………………………….45
4.2.3流環(washout circuit)控制器性能指標………….....…...46
4.2.4相位領先補償器性能指標……………….………………47
4.3 系統控制器模擬結果(N=6)……………………………….….47
4.3.1比例微分控制器性能指標……….……………………….48
4.3.2速度回饋性能指標………………………………………..49
4.3.3流環(washout circuit)控制器性能指標……..……….......50
4.3.4相位領先補償器性能指標………………………………..50
4.4 系統控制器模擬結果(N=8)………………….…...………….51
4.4.1比例微分控制器性能指標………………………………..52
4.4.2速度回饋性能指標………………………………………..52
4.4.3流環(washout circuit)控制器性能指標……...……..…....53
4.4.4相位領先補償器性能指標………………………………..54
4.5 模擬系統位置控制………………………….…………….….55
4.5.1 PD控制器控制模擬結果………………………….……..56
4.5.2速度回饋控制模擬結果………………………………….57
4.5.3流環(washout circuit)控制器模擬結果………………...58
4.5.4 相位領先控制器模擬結果……….………………..….....59
第5章 結論與未來研究方向……………….………………………....61
參考文獻………………………………………………………………..62
附錄A M矩陣各元素值……………………………………………....65
附錄 B K矩陣各元素值………………………………………………67
[1] 劉清益,工廠吊車之非線性抗擺動控制,國立臺灣大學機械工程研究所碩士論文,2003。
[2] L. Meirovitch, “Analytical methods in vibrations,” Macmillan, New York, 1967.
[3] S. B. Choi, B. S. Thompson and M. V. Gandhi, “Modeling and Control of A Graphite-Epoxy Composite Arm”, IEEE International Conference on Robotics and Automation, Vol. 2, pp. 1450-1455,1990.
[4] H. Kanoh and H. G. Lee, “Vibration Control of One-Link Flexible Arm”,24th IEEE CDC, Ft. Lauderdale, Florida, pp. 1172-1177,1985.
[5] P. B. Usoro, S. S. Mahil, and R. Nadir, “A Finite Element/Lagrange Approach to Modeling Lightweight Flexible Manipulators”, ASME Journal of Dynamic Systems, Measurement, and Control, Vol. 108, pp. 198-205, 1986.
[6] G. G. Hastings and W. J. Book, “Verification of A Linear Dynamic
Model for Flexible Robotic Manipulators”, IEEE International Conference on Robotics and Automation, pp. 1024-1029, 1986.
[7] W. L. Nelson, “End-Point Sensing and Load-Adaptive Control of a Flexible Robot Arm”, IEEE Proceeding of 24th Conference on Decision and Control, pp. 1410-1415, 1985.
[8] S. S. Ge, T. H. Lee and G. Zhu, “ Tip Tracking Control of a Flexible Manipulator Using PD Type Controller”, IEEE International Conference on Control Applications, pp. 309-313, 1996.
[9] K. A. F. Moustafa, and A. M. Ebeid, 1988, “Nonlinear Modeling and Control of Overhead Crane Load Sway,” ASME J. Dynamic Systems, Measurement, and Control, Vol. 110, pp. 266-271.
[10] T. Burg, D. Dawson, C. Rahn, and W. Rhodes, “Nonlinear Control of an Overhead Crane via the Saturating Control Approach of Teel,” Proc. 1996 IEEE Int. Conf. On Robotics and Automation, pp. 3155-3160.
[11] Joshi, S., and Rahn, C.D., 1995, “Position Control of a Flexible Cable Ganty Crane: Theory and Experiment,” Proc. Amer. Contr. Conf., pp.2820-2824.
[12] 丘仁中,旋轉撓性圓盤之振動控制,國立臺灣工業技術學院纖維及高分子工程技術研究所碩士論文,1997。
[13] L. Meirovitch, “Dynamics and Control of Structures”, John Wiley and Sons, (1990).
[14] 王柏村,振動學,全華科技圖書股份有限公司 印行,2002。
[15] H. Alli and T. Singh, “Passive Control of Overhead Cranes”, Journal of Vibration and Control, 5: pp. 443-459, 1999.
[16] L. Meirovitch, “Dynamics and Control of Structures”, John Wiley and Sons, NY, 1992.
[17] 曾豪,全方位動力學,鼎茂圖書出版有限公司 印行,2001。
[18] 胡振國,高等工程數學(上),全華科技圖書股份有限公司 印行,1998。
[19] IMSL Library Edition, International Mathematical and Statistical Libraries, Houston, TX (1982).
[20] 黃俊銘,數值方法-使用MATLAB程式語言,全華科技圖書股份有限公司 印行,2003。
[21] W. Zhu, “Dynamical analysis and optimal control of a flexible robot arm”, M.S. Thesis, Department of Mechanical Engineering, ASU, U.S.A. (1988).
[22] C. F. J. Kuo and C. J. Lee, “Neural Network Control of a Rotating Elastic Manipulator”, Computer and Applications 42, pp. 1009-1023. 2001.
[23] C. -F. J. Kuo and S. -C. Lin, “Discretization and computer simulation of a rotating Euler-Bernoulli beam”, Mathematics and Computers in Simulation 52, pp. 121-135. 2000.
[24] G. D. Martin, 1978, “On the Control of Flexible Mechanical System,” Ph.D. dissertation, Department of Aeronautics and Astronautics, Stanford University, Stanford, CA, SUDARR 511.
[25] B. Wie, 1981, “On the Modeling and Control of Flexible Space Structures,” Proc, of VPI and SU/AIAA Symposium on the Dynamics and Control of Large Flexible Spacecraft, June 15-17,Blackburg, VA, pp.153-174.
[26] B. Wie, 1981, “On the Modeling and Control of Flexible Space Structures,” Ph.D. dissertation, Stanford University, SUDARR 525.
[27] G. Franklin, J. Powell and A. Emani-Naeini, “Feedback Control of Dynamic System, Addison-Wesley”, New York, (1991).
[28] 李宜達,控制系統設計與模擬,全華科技圖書股份有限公司 印行,2001。
[29] 李宜達,動態模擬與繪圖使用Matlab/Simulink,全華科技圖書股份有限公司 印行,1998。
[30] 趙清風,控制工程初階使用Matlab Simulink,全華科技圖書股份有限公司 印行,2001。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔