(3.238.250.105) 您好!臺灣時間:2021/04/18 20:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃琮暉
研究生(外文):Tsung-Hui Huang
論文名稱:微波濾波器結合光子能隙與步階式阻抗共振器建立在多層結構之研究
論文名稱(外文):Study of Planar Microwave Filters Using Photonic Band-Gap and Stepped Impedance Resonator Based On Multilayer Structure
指導教授:陳武男陳武男引用關係翁敏航翁敏航引用關係
指導教授(外文):Wu-Nan ChenMin-Hung Weng
學位類別:碩士
校院名稱:樹德科技大學
系所名稱:電腦與通訊研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:93
中文關鍵詞:微波濾波器光子能隙多層結構低溫共燒陶瓷高介電常數基板
外文關鍵詞:MicrowaveFilterPhotonic Band-gapMultilayer StructureLTCChigh dielectric
相關次數:
  • 被引用被引用:0
  • 點閱點閱:107
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
近幾年來由於無線通訊的快速發展,使通訊元件的研發獲得很大的商機,不論是產業界或學術界,均投下了相當多的人力以及物力。在現實生活上,輕薄短小的設計已成為一種追求的趨勢。
本文以整體通訊模組的微小化為前提,構思討論微波濾波器微小化的技術。本文提出將濾波器建構在多層結構以及高介電常數的基板使得整體面積的微小化。並以步階式阻抗(Stepped impedance resonator, SIR)以及光子能隙結構(Photonic band-gap, PBG)設計濾波器,使的濾波器使的濾波器更為微小。
The fast development in the wireless communication of cause, make the research and development of the communication component obtain very great business opportunity in recent years. No matter industry or academia, have thrown in quite a
lot of manpower and material resources. In life in reality, have already become the trends of a kind of pursuit in light and thin and short and small design.
This thesis is with turning a prerequisite minimum of module of the whole communication, conceive and discuss the minimum technology that melts of the microwave filter. It is constructed that this thesis proposes building the microwave filter to make the melting minimum of whole area in the substrate of multilayer
structure and high dielectric constant. And with the stepped mpedance resonator and photonic band-gap structural design microwave filter, the microwave filter that makes is more minimum.
Contents
Page
Abstract(中文)----------------------------------------------I
Abstract(英文)----------------------------------------------Ii
Acknowledgement---------------------------------------------Iii
Contents----------------------------------------------------Iv
List of Fig.------------------------------------------------V
Chapter 1 General Introduction------------------------------1
1-1 Basic Theory of Microwave Filte-------------------------1
1-2 The Properties of Microstrip Lines----------------------5
1-2-1 Microstrip Structure------------------------------5
1-2-2 Waves in Microstrip-------------------------------5
1-2-3 Quasi-TEM Approximation---------------------------5
1-2-4 Effective Dielectric Constant and Characteristic Impedance---------------------------------------------------6
1-2-5 Guided Wavelength, Propagation Constant, Phase Velocity, and Electrical Length-----------------------------6
1-2-6 Dispersion in Microstrip--------------------------7
1-2-7 Microstrip Losses---------------------------------8
1-3 Background Review and Patent Analysis
1-3-1 Review of multilayer background-------------------10
1-3-2 Review of photonic bandgap (PBG) background-------11
1-3-3 Patent analysis of PBG----------------------------12
Chapter 2 Stepped Impedance Resonator (SIR) filter with Tapped-line I/O----------------------------------------------------23
2-1 Stepped impedance resonator filter based on single planar structure---------------------------------------------------24
2-2 Design of the SIR bandpass filter-----------------------25
2-3 Simulation and measurement------------------------------27
Chapter 3 The Microwave Filter with Multilayer Structure and High Dielectric Substrate-----------------------------------32
3-1 Parallel-Coupled Filter With Multilayer Structure-------34
3-2 Hair-Pin Filter With Multilayer Structure---------------36
3-3 Stepped Impedance Resonator Filter With Multilayer Structure --------------------------------------------------40
3-4 Stepped Impedance Resonator Filter Based on LTCC (Ferro’S A6s) With Multilayer Structure------------------------------44
3-5 Hair-Pin Filter Based On High Dielectric Constant Substrate
(Ba2ti9o20)-------------------------------------------------47
Chapter 4 The Microwave Filter with Photonic Bandgap Structure for Apply Spurious Suppression------------------------------68
4-1 The Theory of Photonic Bandgap--------------------------68
4-2 Two Dimensional Photonic Bandgap Structure for Microstrip Circuits On Silicon Substrate ------------------------------70
4-3 Parallel-Coupled Filter with Photonic Bandgap to Apply Spurious Suppression ---------------------------------------74
Chapter 5 Conclusion----------------------------------------85
References--------------------------------------------------88
[1] D. M. Pozar, Microwave Engineering, Second Edition. John Wiley & Sons, Inc., 1998.
[2] G. L. Matthaei, L. Young, E. M. T. Jone, Microwave Filters, Impedance-Maching Networks and Coupling Strustures, New York, McGraw Hill, 1964.
[3] J. S. Hong and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, John Wiley & Sons, Inc., 2001.
[4] Edwards T. C. and Lancaster M. J., Foundations of Interconnect and Microstrip Design. Reading, John Wiley and Sons, 2000.
[5] S. B. Cohn, Parallel coupled transmission-line-resonator filters, IRE Trans. Microwave Theory Tech., vol. MTT-6 (1958), 223-231.
[6] E. G. Cristal and S. Frankel, Hairpin-line and hybrid hairpin-line/half-wave parallel-coupled-line filters, IEEE Trans. Microwave Theory Tech., vol. MTT-20 (1972), 719-728.
[7] H. K. Yoon, Y. J. Yoon, J. H. Park and S. Y. Lee, Hairpin-line/half-wave parallel-coupled-line narrowband bandpass filters using high temperature superconducting thin films, IEEE Trans. Superconductivity, vol. 9 (1999), 3901 —3904.
[8] I. V. Korotash, V. F. Tarasov, M. Skoryk and M. Lorenz,. Design and investigation of microwave bandpass filters for L- and R-frequency bands based on high-temperature superconducting films, Physics and Engineering of Millimeter and Sub-Millimeter Waves, 2001. The Fourth International Kharkov Symposium on, vol. 1 (2001), 389 —391.
[9] M. Makimoto and S. Yamashita, Bandpass Filters Using Parallel Coupled StripLine Stepped Impedance Resonators, IEEE Trans. Microwave Theory Tech., vol. MTT-28 (1980), 1413-1417.
[10] J. S. Wong, Microstrip Tapped-Line Filter Design, IEEE Trans. Microwave Theory Tech., Vol. MTT- 27 (1979), 24-50.
[11] M. mastsuo, H. Yabuki, and M. Makimoto, The design of a half-wavelength resonator BPF with attenuation poles at desired frequencies, in IEEE MTT-S Int. Microwave Symp. Dig. (2000), 1181-1184.
[12] K. Wada and I. Awai, Heuristic models of half-wavelength resonator bandpass filter with attenuation poles, Electron. Lett., vol. 35 (1999), 401-402.
[13] H. C. Chang, C. C. Yeh, W. C. Ku and K. C. Tao, ”A multilayer bandpass filter integrated into RF module board, “in IEEE MTT-S Int. Microwave symp. Dig., vol. 2, pp. 619-622, Jun. 1996.
[14] S.Uysal and L.see, “ku-band double-sided suspended substrate microstrip coupled-line bandpass filter,” Electronics Letters, Vol.35 pp. 1088-1090, 24 Jun. 1999.
[15] O. Fordham, T. Ming-Ju, “Electromagentic Synthesis of Overlap-gap-Coupled Microstrip Filters,” in IEEE MTT-S Int. Microwave Symp. Dig., vol. 3, pp. 1199-12, May. 1995.
[16] C. Cho and K. C. Gupta, “Design of end-coupled band-pass filters in multilayer microstrip configurations,” in 1992 IEEE MTT-S Int. Microwave Symp. Dig., vol. 2, 711-714, 1992
[17] C. Cho and K. C. Gupta, “Design methodology for multilayer coupled line filters”, in 1997 IEEE MTT-S Int. Microwave Symp. Dig., Vol 2, pp. 785-788, 1997.
[18] E. G. Cristal, “Tapped-line coupled transmission lines with applications to interdigital and combline filters,” IEEE Trans. Microwave theory and Tech, vol. MTT-23, 1007-1012, 1975
[19] J. S. Wang, “Microstrip tapped-line filter design,” IEEE Trans. Microwave theory and Tech., vol MTT-27, pp. 44-50, 1979.
[20] C. M. Tsai, S. Y. Lee, and C. C. Tasi, “Hairpin filters with tunable transmission zeros”, in IEEE MTT-S Int. Microwave Sym. Dig., Vol 3, pp. 2175-2178, 2001.
[21] A. Sutono, D. Heo, Y. J. Chen and J. Laskar, “High-Q LTCC-based passive library for wireless system-on-package (SOP) module development,” IEEE Trans. Microwave Theory Tech. vol. MTT-49, pp.1715-1724, 2001
[22] J. K. Plourde, D. F. Linn, H. M. O’Bryan and J. Thomson, “Ba2Ti9O20 as a Microwave Dielectric Resonator,” J. Amer. Ceram. Soc. 58, 418-420,1975
[23] S. B. Cohn, “Parallel coupled transmission-line-resonator filters,” IRE Trans. Microwave Theory., vol. MTT-6, pp. 223-231, Apr. 1958.
[24] S. Denis, C. Person, S. Toutain, B.Theron, and S. Vigneron, “Parallel coupled microstrip filter with phase difference compensation,” Electronics Letters, Vol.31, pp. 1927-1928, Oct. 1995.
[25] G. L. Matthaei, L. Young, E.M.T. Jone, Microwave Filters, Impedance-Maching Networks and Coupling Strustures, New York, McGraw Hill, 1964.
[26] R. Levy, R. V. Snyder and G. Matthaei, “Design of microwave filters,” IEEE Trans. Microwave theory and Tech., vol. MTT-50, pp.783 -793, 2002.
[27] E. G. Cristal and S. Frankel, “Hairpin-line and hybrid hairpin-line/half-wave parallel-coupled-line filters,” IEEE Trans. Microwave Theory Tech., vol MTT-20, pp.719-728, 1972.
[28] U. H. Gysel, “New Theory and design for hairpin-line filter,” IEEE Trans. Microwave theory and Tech., vol. MTT-22, pp.523-531, 1974
[29] M. Makimoto and S. Yamashita, “Bandpass Filters Using Parallel Coupled StripLine Stepped Impedance Resonators,” IEEE Trans. Microwave Theory Tech., vol MTT-28, pp.1413-1417, 1980.
[30] J. T. Kuo and E. Shih, “Microstrip stepped impedance resonator band pass filter with an extended optimal rejection bandwidth,” IEEE Trans. Microwave Theory Tech. vol. MTT-51, pp.1554-1559, 2003
[31] M. H. Weng, T. H. Huang, J. G. Chang, C. Y. Huang and B. T. Dai, “Miniaturized multilayer hairpin band pass filter with tunable transmission zeros,” Microwave Opt. Tech. Lett. Vol.41, pp.53-55, 2004
[32] G. L. Matthaei, “Narrow-Band, Fixed-Tuned, and Tunable Bandpass Filters with Zig-Zag Hairpin-Comb Resonators,” IEEE Trans. Microwave theory and Tech.. vol. 51, pp.1214-1219, 2003
[33] H. K. Yoon, Y. J. Yoon, J. H. Park and S. Y. Lee, “Hairpin-line/ Half-wave Parallel-coupled-line Narrowband Bandpass Filters Using High Temperature Superconducting Thin Films,” IEEE Trans. Appl. Supercond. pp.3901-3904, 1999
[34] B. W. Hakki and P. D. Coleman, “A Dielectric Resonator Method of Measuring Inductive Capacities in the Millimeter Range,” IEEE Trans. Microwave theory and Tech., vol. MTT-8, pp.402-410, 1960
[35] W. E. Courtney, “Analysis and Evaluation of a Method of Measuring the Complex Permittivity and Permeability Microwave Insulators,” IEEE Trans. Microwave theory and Tech. vol. MTT-18, pp. 476-485, 1970
[36] A. Scherer, T. Doll, E. Yablonovitch, H. O. Everitt, and J. A. Higgins, Introduction to electromagnetic crystal structures, design, synthesis, and applications, Journal of Lightwave Technology (1999), 1928-1929.
[37] E. Yablonovitch, Inhibited spontaneous emission in solid-state physics and electronics, Phys Rev Lett 58 (1987), 2059-2074.
[38] R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Photonic bound states in periodic dielectric materials,” Phys. Rev. B, Condens. Matter, vol. 44, pp. 13772-13774, Dec. 1991.
[39] F. R. Yang, K. P. Ma, Y. Qian, and T.itoh, A Uniplanar Compact Photonic-Bandgap (UC-PBG) Structure and Its Applications for Microwave Circuits, IEEE Trans, Microwave Theory and Tech, MTT-47 (1999), 1509-1514.
[40] R. Qiang, Y. Wang, and D. Chen, A Novel Microstrip Bandpass Filter with Two cascaded PBG Structure, 1996 IEEE MTT-2 Int. Microwave symp. Dig. 619-622.
[41] R. Ian, P. M. Melinda, and P. Keith Kelly, Photonic Bandgap Structures Used as Filters in Microstrip Circuit, IEEE Microwave and Guided Wave Lett 8 (1998), 336-338.
[42] T. J. Ellis and G. M. Rebeiz, MM-wave tapered slot antennas on micromashined photonic bandgap dielectrics, IEEE MTT-S Int. Microwave Symp. Dig., June 1996, pp. 1157-1160.
[43] V. Radisic, Y. Qian, R. Coccioli, and T. Itoh, “Novel 2-D photonic bandgap structure for microstrip lines,” IEEE Microwave Guided Wave Lett., vol. 8, pp. 69-71, Feb. 1998.
[44] D. M. Pozar, Microwave Engineering, Second Edition. John Wiley & Sons, Inc., 1998.
[45] T. Kim and C. Seo, “A Novel Photonic Bandgap Structure for Low-pass Filter of
Wide Stopband,“ IEEE Microwave and Guided Wave Letters, vol. 10, No. 1, pp. 13-15, January. 1999
[46] F. R. Yang, Y. Qian, R. Coccioli, and T, Itoh, “Analysis and Application of Photonic Bandgap (PBG) Structures for Microwave Circuit,“ Electromagnetics, 19:241-254, 1999
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔