(3.227.235.183) 您好!臺灣時間:2021/04/13 20:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:鄧至均
研究生(外文):Chih-Chun Teng
論文名稱:聚氯乙烯與聚乙烯摻混微奈米粒子之研究
論文名稱(外文):Studies of Poly (vinyl chloride) and Polyethylene Blended with Micro/Nano Particles
指導教授:陳澄河陳澄河引用關係
指導教授(外文):Cheng-Ho Chen
學位類別:碩士
校院名稱:南台科技大學
系所名稱:化學工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:115
中文關鍵詞:奈米複合材料聚氯乙烯高密度聚乙烯黏土碳酸鈣
外文關鍵詞:nanocompositespoly (vinyl chloride)high density polyethyleneclaycalcium carbonate
相關次數:
  • 被引用被引用:2
  • 點閱點閱:227
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文分為三部分,第一部份為硬質聚氯乙烯摻混黏土之研究;第二部分為硬質聚氯乙烯摻混微奈米碳酸鈣之研究;第三部分為高密度聚乙烯摻混微奈米碳酸鈣之研究。
在硬質聚氯乙烯摻混黏土之研究,經XRD、TEM證實利用熔融插層法成功製備出奈米複合材料。熔融性質分析中,有機黏土含量增加使得熔融時間增長、熔融溫度升高和熔融扭力下降,而摻混純化黏土系統則反之。熱性質分析,摻混黏土使Tg上升,而熱穩定性稍微下降。機械性質分析,發現添加兩種黏土使降伏強度及應變提升,呈現強而韌的性質。摻混純化黏土系統的楊氏模數呈現上升,而有機黏土系統受塑化及部分裂解影響,使楊氏模數下降。
硬質聚氯乙烯摻混微奈米碳酸鈣之研究,熔融性質分析中,微奈米碳酸鈣含量增加使裝料扭力下降、裝料溫度下降、熔融時間增加、熔融扭力下降與熔融門檻增加。而奈米碳酸鈣所造成的影響力大於微米碳酸鈣。熱性質分析中,摻混微米碳酸鈣使熱裂解起始溫度下降。奈米碳酸鈣系統最適化含量在10phr,熱裂解起始溫度及玻璃轉移溫度皆提升,顯示具有良好的熱性質。添加碳酸鈣經SEM分析發現當複材受應力影響,會產生小孔洞來吸收應力,可遲緩破裂機制。顯示奈米複合材料性能佳、質量輕之特性。
高密度聚乙烯摻混微奈米碳酸鈣之研究,以HDPE粉末與顆粒型態、微奈米碳酸鈣和不同比例含量條件進行批次實驗,探討熔融性質和熱性質。熔融性質中HDPE粉末型態因蓬鬆關係產生較低的裝料扭力與較長熔融時間。添加奈米級碳酸鈣使裝料扭力高於添加微米碳酸鈣,分散效果也使添加奈米級碳酸鈣的熔融時間較添加微米碳酸鈣短。TGA熱分析結果顯示添加碳酸鈣使熱穩定提升,以添加奈米碳酸鈣最明顯。DSC非恆溫結晶分析發現結晶溫度受碳酸鈣添加而使結晶溫度朝高溫區移動,表示提高結晶速率,而結晶度則呈現下降,添加少量奈米碳酸鈣下降趨勢較不明顯,但含量至20phr下降幅度劇增。熔點則因添加碳酸鈣造成的結晶度下降而下降。
This study contains three sections. The first section is study of rigid poly (vinyl chloride) compounds blending with clay. The second section is study of rigid poly (vinyl chloride) compounds blending with micro/nano-CaCO3. The third section is study of high density polyethylene blending with micro/nano-CaCO3.
In the first section, PVC/clay nanocomposites were successfully prepared by a Haake torque rheomix and examined by XRD and TEM. The fusion properties showed that the fusion time and the fusion temperature were increased, but the fusion torque was decreased, with the content of organic clay was increased. The opposite effect was occurred when the untreated clay was used. From the thermal results, the glass transition temperature of nanocomposite was increased and the thermal stability was decreased. From the mechanical property analyses, it showed that the clay improved the yield strength and elongation of two kinds of PVC/clay nanocomposites. The Young’s modulus of PVC/untreated-clay nanocomposite was increased. On the other hand, the organic clay had the opposite effects due to the organic chemical between the silicate layers and resulted in the Young’s modulus decreasing.
In the second section, the fusion properties showed that the loading torque, the loading temperature, and the fusion torque were decreased with the content of calcium carbonate was increased. But the fusion time and fusion percolation threshold were increased with the content of calcium carbonate was increased. The effect of the nano-CaCO3 was more significant than that of the micro-CaCO3. From the thermal properties, Tg and thermal stability of PVC/CaCO3 nanocomposites were increased with the content of nano-CaCO3. The 10phr nano-CaCO3 had the best result. On the other hand, the micro-CaCO3 caused the opposite results. The SEM morphology results showed that CaCO3 were dispersed in the composite and resulted in voids. The PVC/nano-CaCO3 nanocomposites exhibited lightweight and good properties.
In the third section, the variation is different kind of CaCO3, the content of CaCO3, and powder or pellet type HDPE. The fusion properties showed that the lower loading torque and the higher fusion time resulting from the HDPE powder. The HDPE/nano-CaCO3 nanocomposites displayed the higher loading torque and the shorter fusion time than those of the HDPE/micro-CaCO3 composites. From the TGA results, it showed the thermal stability of HDPE/nano- or micro- CaCO3 composites were improved, especially for the nano-CaCO3. From the DSC non-isothermal crystallization analysis, the crystallization temperature of HDPE was increased with the content of CaCO3 was increased. It implied the crystallization rate of HDPE was increased. The crystallinity of HDPE was decreased with the content of CaCO3 was increased. The melting point of HDPE was decreased due to its crystallinity was decreased.
目 錄
博碩士論文授權書
論文口試委員審定書
中文摘要--------------------------------------------------Ⅰ
英文摘要--------------------------------------------------Ⅲ
誌謝------------------------------------------------------Ⅴ
目錄------------------------------------------------------Ⅵ
表目錄----------------------------------------------------Ⅸ
圖目錄----------------------------------------------------Ⅹ
第一章 緒論-----------------------------------------------01
1.1前言---------------------------------------------------01
1.2蒙脫土之特性與改質-------------------------------------02
1.3黏土在高分子分散情形-----------------------------------06
1.4碳酸鈣之性質-------------------------------------------07
第二章 硬質聚氯乙烯摻混黏土之研究-------------------------10
2.1文獻回顧-----------------------------------------------10
2.1.1 烯烴類高分子/蒙脫土奈米複合材料相關文獻-------------10
2.1.2 聚氯乙烯/蒙脫土奈米複合材料相關文獻-----------------13
2.2研究動機-----------------------------------------------15
2.3實驗---------------------------------------------------16
2.3.1實驗藥品---------------------------------------------16
2.3.2實驗儀器---------------------------------------------17
2.3.3實驗流程---------------------------------------------18
2.3.4實驗步驟---------------------------------------------19
2.4結果與討論---------------------------------------------21
2.4.1熔融性質分析-----------------------------------------21
2.4.2 X光繞射分析(XRD)------------------------------------23
2.4.3熱重分析(TGA)----------------------------------------24
2.4.4熱示差掃描分析(DSC)----------------------------------26
2.4.5拉伸試驗分析-----------------------------------------26
2.4.6耐熱變形溫度測試-------------------------------------28
2.4.7比重測試---------------------------------------------29
2.4.8表面型態分析(SEM)----------------------------------29
2.4.9界面型態分析(TEM)------------------------------------30
2.5結論---------------------------------------------------31
第三章 硬質聚氯乙烯摻混微奈米碳酸鈣之研究-----------------52
3.1文獻回顧-----------------------------------------------52
3.1.1聚乙烯摻混微奈米碳酸鈣相關文獻-----------------------52
3.1.2聚丙烯摻混微奈米碳酸鈣相關文獻-----------------------53
3.1.3聚氯乙烯摻混微奈米碳酸鈣相關文獻---------------------54
3.2研究動機-----------------------------------------------56
3.3實驗---------------------------------------------------57
3.3.1實驗藥品---------------------------------------------57
3.3.2實驗儀器---------------------------------------------57
3.3.3實驗流程---------------------------------------------58
3.3.4實驗步驟---------------------------------------------59
3.4結果與討論---------------------------------------------60
3.4.1熔融性質分析-----------------------------------------60
3.4.2熱性質測試(TGA)--------------------------------------61
3.4.3熱示差掃描分析(DSC)----------------------------------62
3.4.4比重測試---------------------------------------------62
3.4.5表面型態分析(SEM)------------------------------------63
3.5結論---------------------------------------------------64
第四章 高密度聚乙烯摻混微奈米碳酸鈣之研究-----------------76
4.1研究動機-----------------------------------------------76
4.2實驗---------------------------------------------------77
4.2.1實驗藥品---------------------------------------------77
4.2.2實驗儀器---------------------------------------------77
4.3實驗流程-----------------------------------------------78
4.4實驗步驟-----------------------------------------------79
4.5結果與討論---------------------------------------------80
4.5.1熔融性質分析-----------------------------------------80
4.5.2熱重分析(TGA)----------------------------------------81
4.5.3熱示差掃描分析(DSC)----------------------------------82
4.5.4表面型態分析(SEM)------------------------------------85
4.6結論---------------------------------------------------86
第五章 總結----------------------------------------------104
參考文獻-------------------------------------------------106
作者簡介-------------------------------------------------115
表 目 錄
表2-1 硬質PVC複合材料所含黏土量與樣品代號說明-----------32
表2-2 硬質PVC複合材料的相關熔融性質---------------------32
表2-3 硬質PVC複合材料的TGA分析數據----------------------33
表2-4 硬質PVC摻混黏土複合材料之拉伸性質-----------------33
表2-5 硬質PVC添加黏土複合材料之耐熱變形性質-------------34
表3-1 奈米碳酸鈣/微米碳酸鈣相關資料表-------------------65
表3-2 硬質PVC複合材料所含填充劑的量與樣品代號說明-------65
表3-3 硬質PVC複合材料添加奈米碳酸鈣的相關熔融性質-------66
表3-4 硬質PVC摻混微奈米碳酸鈣之第一熱裂解起始溫度-------66
表3-5 硬質聚氯乙烯添加微奈米碳酸鈣之比重測試------------66
表4-1 HDPE/CaCO3複合材料實驗設計與樣品代號說明----------87
表4-2 HDPE/CaCO3複合材料相關熔融性質--------------------88
表4-3 HDPE/CaCO3複合材料熱性質分析表--------------------88
圖 目 錄
圖1-1 蒙脫土結構圖-----------------------------------------5
圖1-2 (a)單個矽氧四面體、(b)矽氧四面體晶片(俯視圖)---------5
圖1-3 (a)單個鋁氧八面體、(b)鋁氧八面體晶片(俯視圖)---------6
圖1-4 (a)傳統複合材料,(b)插層型奈米複合材料,(c)剝離型奈米複合材料-------------------------------------------------------7
圖2-1 硬質PVC熔融性質之定義說明---------------------------34
圖2-2 添加不同含量純化黏土於硬質PVC的熔融性質分析圖-------35
圖2-3 添加不同含量有機黏土於硬質PVC的熔融性質分析圖-------35
圖2-4 黏土的含量對硬質PVC熔融時間之影響-------------------36
圖2-5 純化黏土與改質黏土之TGA分析圖-----------------------36
圖2-6 有機改質劑於硬質PVC熔融性質之影響-------------------37
圖2-7 黏土的含量對硬質PVC熔融溫度之影響-------------------37
圖2-8 黏土的含量對硬質PVC熔融扭力之影響-------------------38
圖2-9 硬質PVC摻混純化黏土複合材料之XRD分析圖--------------38
圖2-10 改質黏土之XRD圖------------------------------------39
圖2-11 硬質PVC摻混改質黏土複合材料之XRD-------------------39
圖2-12 硬質PVC複合材料TGA熱分析曲線圖---------------------40
圖2-13 PVC裂解機制----------------------------------------40
圖2-14 黏土的用量對硬質PVC熱裂解起始溫度之影響------------41
圖2-15 純化黏土用量對硬質PVC玻璃轉移溫度Tg之影響----------41
圖2-16 改質黏土用量對硬質PVC玻璃轉移溫度Tg之影響----------42
圖2-17 硬質PVC摻混3phr純化黏土複材之應力-應變曲線定義圖---42
圖2-18 硬質PVC摻混黏土複合材料對楊氏模數之影響------------43
圖2-19 硬質PVC摻混黏土複合材料對0.2%降伏強度之影響--------43
圖2-20 硬質PVC摻混黏土複合材料對最大負荷點之影響----------44
圖2-21 硬質PVC摻混黏土複合材料對延伸率之影響--------------44
圖2-22 硬質PVC摻混純化黏土對耐熱變形溫度之影響------------45
圖2-23 硬質PVC摻混改質黏土對耐熱變形溫度之影響------------45
圖2-24 添加純化黏土與改質黏土於硬質PVC之比重試驗----------46
圖2-25 硬質PVC摻混純化黏土複合材料SEM截面圖---------------46
圖2-26 硬質PVC摻混有機黏土奈米複合材料SEM截面圖-----------47
圖2-27 硬質PVC摻混純化黏土複合材料SEM拉伸斷面圖-----------48
圖2-28 硬質PVC摻混有機黏土奈米複合材料SEM拉伸斷面圖-------49
圖2-29 硬質PVC摻混純化黏土與有機黏土之TEM圖---------------51
圖3-1 添加不同含量奈米碳酸鈣的熔融性質分析圖--------------67
圖3-2添加不同含量微米碳酸鈣的熔融性質分析圖---------------67
圖3-3 微奈米碳酸鈣用量對硬質PVC裝料扭力之影響-------------68
圖3-4 微奈米碳酸鈣用量對硬質PVC裝料溫度之影響-------------68
圖3-5 微奈米碳酸鈣用量對硬質PVC熔融時間之影響-------------69
圖3-6 微奈米碳酸鈣用量對硬質PVC熔融溫度之影響-------------69
圖3-7 微奈米碳酸鈣用量對硬質PVC熔融扭力之影響-------------70
圖3-8 微奈米碳酸鈣用量對硬質PVC熔融門檻之影響-------------70
圖3-9 純微奈米碳酸鈣之TGA分析曲線圖-----------------------71
圖3-10 不同含量的微奈米碳酸鈣對硬質PVC第一熱裂解起始溫度之影響-----------------------------------------------------------71
圖3-11 不同含量的奈米碳酸鈣對硬質PVC複合材料Tg之影響------72
圖3-12 不同含量的微米碳酸鈣對硬質PVC複合材料Tg之影響------72
圖3-13 添加微奈米碳酸鈣於硬質PVC之比重試驗----------------73
圖3-14 硬質PVC摻混奈米碳酸鈣複合材料之SEM分析-------------74
圖3-15 硬質PVC摻混微米碳酸鈣複合材料之SEM分析-------------75
圖4-1 高密度聚乙烯熔融性質之定義說明----------------------89
圖4-2 添加不同含量奈米碳酸鈣於HDPE粉末之熔融性質分析圖----89
圖4-3 添加不同含量微米碳酸鈣於HDPE粉末之熔融性質分析圖----90
圖4-4 添加不同含量微米碳酸鈣於HDPE顆粒之熔融性質分析圖----90
圖4-5 HDPE型態及不同碳酸鈣含量對複合材料裝料扭力之影響----91
圖4-6 HDPE型態及不同碳酸鈣含量對複合材料熔融時間之影響----91
圖4-7 HDPE型態及不同碳酸鈣含量對複合材料熔融溫度之影響----92
圖4-8 不同碳酸鈣含量及種類對複合材料裝料扭力之影響--------92
圖4-9 不同碳酸鈣含量及種類對複合材料熔融時間影響----------93
圖4-10 HDPE/CaCO3奈米複合材料熱裂解曲線圖-----------------93
圖4-11 HDPE型態及不同碳酸鈣含量對複合材料熱性質影響-------94
圖4-12 不同碳酸鈣含量及種類對複合材料熱性質影響-----------94
圖4-13 純HDPE之不同冷卻速率之結晶溫度分析圖---------------95
圖4-14 純HDPE之DSC圖--------------------------------------95
圖4-15 HDPE粉末摻混奈米碳酸鈣之結晶溫度趨勢圖-------------96
圖4-16 HDPE粉末摻混微米碳酸鈣之結晶溫度趨勢圖-------------96
圖4-17 HDPE顆粒摻混微米碳酸鈣之結晶溫度趨勢圖-------------97
圖4-18 HDPE粉末摻混奈米碳酸鈣之結晶度趨勢圖---------------97
圖4-19 HDPE粉末摻混微米碳酸鈣之結晶度趨勢圖---------------98
圖4-20 HDPE顆粒摻混微米碳酸鈣之結晶度趨勢圖---------------98
圖4-21 HDPE粉末摻混奈米碳酸鈣之熔點趨勢圖-----------------99
圖4-22 HDPE粉末摻混微米碳酸鈣之熔點趨勢圖-----------------99
圖4-23 HDPE顆粒摻混微米碳酸鈣之熔點趨勢圖----------------100
圖4-24 塑料顆粒、粉末及不同微米碳酸鈣含量對表面型態之影響101
圖4-25 奈米碳酸鈣對表面型態之影響------------------------102
王國慶, 崔英德, “輕質碳酸鈣生產工藝” 化學工業出版社 1999
柯揚船 “聚合物-無機納米複合材料” 化學工業出版社 2002
張玉龍, 李長德, “納米技術與納米塑料” 中國輕工業出版社 2002
Albano, C., González, J., Ichazo, M., Rosales, C., Navarro, C.Urbina de; Parra, C., “Mechanical and morphological behavior of polyolefin blends in the presence of CaCO3”, Composite Structures 48, 49-58 (2000).
Alexandre, Michael, Dubois, Philippe, “Polymer-layered silicate nanocomposites: preparation, Properties ans uses of a new class of materials”, Materials Science and Engineering 28, 1-63 (2000).
Alexandre, Michaël, Dubois, Philippe, Sun, Tao, Garces, Juan M.; Jérôme, Robert, “Polyethylene-layered silicate nanocomposites prepared by the polymerization-filling technique: synthesis and mechanical properties”, Polymer 43, 2123-2132 (2002).
Akovali, Güneri, Atalay, Arzu, “Comparison of Crystallinities of High Density Polyethylene Determined by Different Techniques”, Polymer Testing 16, 165-171 (1997).
Becker, Ole, Varley, Russell, Simon, George, “Morphology, thermal relaxations and mechanical properties of layered silicate nanocomposites based upon high-functionality epoxy resins”, Polymer 43, 4365-4373 (2002).
Baker, A.M.E., Windle, A.H., “The effects of branching and fibre drawing on the crystal structure of polyethylene”, Polymer 42, 651-665 (2001).
Bartczak, Z., Argon, A.S., Cohen, R.E., Weinberg, M., “Toughness mechanism in semi-crystalline polymer blends:Ⅱ.High-density polyethylene toughened with calcium carbonate filler particles”, Polymer 40, 2347-2365 (1999).
Bockhorn, H., Hornung, A., Hornung, U., Jakobströer; Kraus, M., “Dehydrochlorination of plastic mixtures”, Journal of Analytical and Applied Pyrolysis 49, 97-106 (1999)
Carmona, Jesús Gracía, Morales, Jaime Gómez, Sáinz, Julio Fraile, Loste, Eva, Clmente, Rafael Rodríguez, “The mechanism of precipitation of chian-like calcite”, Journal of Crystal Growth 262, 479-489 (2004)
Chan, Chi-Ming, Wu, Jingshen, Li, Jian-Xiong, Cheung, Ying-Kit, “Polypropylene/calcium carbonate nanocomposites”, Polymer 43, 2981-2992 (2002)
Chang, Jin-Hae, Kim, Sung Jong, Joo, Yong Lak, Im, Seungsoon, “Poly(ethylene terephthalate) nanocomposites by in situ interlayer polymerization: the therm0-mechanical properties and morphology of the hybrid fibers”, Polymer 45, 919-926 (2004).
Chen, K.T., Tien, Y.I., Wei K.H., “Synthesis and characterization of novel segmented polyurethane/clay nanocomposites”, Polymer 41, 1345-1353 (2000).
Chen, Ning, Wan, Chaoying, Zhang, Yong, Zhang, Yinxi, “Effect of nano-CaCO3 on mechanical properties of PVC and PVC/Blendex blend”, Polymer Testing 23, 169-174 (2004).
Chiang, Wen-Yen, Chiang, Yung-Shin, “Effect of titanate coupling agent on electromagnetic interference shielding effectiveness and mechanical properties of PC-ABS-NCF composite”, Journal of Applied Polymer Science 46, 673-681 (1992).
Delozier, D.M., Orwoll, R.A., Cahoon, J.F., Johnston, N.J., Smith Jr, J.G., Connell., J.W., “Preparation and characterization of polyimide/organoclay nanocomposites”, Polymer 43, 813-822 (2002).
Di Lorenzo, M. L., Errico, M. E., Avella, M., “Thermal and morphological characterization of poly(ethylene terephthalate)/calcium carbonate nanocomposites”, Journal of Materials Science 2351-2358 (2002).
Dramis, F., Materazzi, M., Cilla, G., “Influence of Climatic Changes on Freshwater Travetine Deposition: A New Hypothesis”, Phys. Chem. Earth(A) Vol.24, No.10, 893-897 (1999).
Du, Jianxin, Wang, Dongyan, Wilkie, Charles A., Wang, Jianqi, “An XPS investigation of thermal degradation and charring on poly(vinyl chloride)-clay nanocomposites”, Polymer Degradation and Stability 79, 319-324 (2003).
Effler, Lawrence J., Berard, Mark T., “Enhanced Impact Modifier for Rigid PVC Formulations”, Journal of Vinyl & Additive Technology Vol.9, No.1, 19-25 (2003).
Fornes T.D., Pual D.R., “Modeling properties of nylon 6/clay nanocomposites using composite theories” Polymer 44, 4993-5013 (2003).
Fukushima, Yoshaki, “X-ray diffraction study of aqueous montmorillonite emulsions”, Clays and Clay Minerals Vol. 32, 320-326 (1984).
García-López, D., Picazo, O., Merino, J.C., Pastor, J.M., “Polypropylene-clay nanocomposites:effect of compatibilizing agents on clay dispersion”, European Polymer Journal 39, 945-950 (2003).
García-López, D., Merino, J.C., Pastor, J.M., “Influence of the CaCO3 Nanoparticles on the Molecular Orientation of the Polypylene Matrix”, Journal of Applied Polymer Science 88, 947-952 (2003).Gopakumar, T.G., Lee, J.A., Kontopoulou, M., Parent, J.S., “Influence of clay exfoliation on the physical properties of montmorillonite/polyethylene composites”, Polymer 43, 5483-5491 (2002).
Hale, W.R., Dohrer, K.K., Tant, M.R., Sand, I.D., “A diffusion model for water vapor transmission through microporous polyethylene/CaCO3 films”, Colloids and Surfacces A: Physicochemical and Engineering Aspects 187-188, 483-491 (2001).
He, Ji-Dong, Cheung, Man Ken, Yang, Ming-Shu, Qi Zongneng, “Thermal Stability and Crystallization Kinetics of Isotactic Polypropylene/Organomontmorillonite Nanocompoistes”, Journal of Applied Polymer Science Vol.89, 3404-3415 (2003).
Hollande, Stéphanie, Laurent, Jean-Louis, “Study of discolouring change in PVC, plasticizers and plasticized PVC films”, Polymer Degradation and Stability 55, 141-145 (1997).
Hsueh, Huai-Bin, Chen, Chun-Yung, “Preparation and properties of LDH/epoxy nanocomposites”, Polymer 44, 5275-5283 (2003).
Hsueh, Huai-Bin, Chen, Chun-Yung, “Preparation and properties of LDH/Polyimide nanocomposites”, Polymer 44, 1151-1161 (2003).
Husnah, Lin, Chang-Kwei, “Chlorine demand and bacteria of the salinity shrimp pond sediment treated with different chlorine doses”, Aquacultural Engineering 25, 165-174 (2001).
Isik, Isil, Yilzamer, Ulku, Bayram, Goknur, “Impact modified epoxy/montmorillonite nanocomposites: synthesis and characterization”, Polymer 44, 6371-6377 (2003).
Kaempfer, Dirk, Thomann, Ralf, Mülhaupt, Rolf, “Melt compounding of syndiotactic polypropylene nanocomposites containing organophilic layered silicates and in situ formed core/shell nanoparticles”, Polymer 43, 2909-2916 (2002).
Karaborni, S., Smit, B., W. Heidug, Urai, J., Oort, E. Van., “The Swelling of Clays: Molecular Simulations of the Hydration of Montmorillonite”, Science 271, 1102-1104 (1996).
Kong, Y., Hay, J. N., “The measurement of the crystallinity of polymer by DSC”, Polymer 43, 3873-3878 (2002).
Kong, Y., Hay, J. N., “The enthalpy of fusion and degree of crystallinity of polymers as measured by DSC”, European Polymer Journal 39, 1721-1727 (2003).
Kornmann, X., Lindberg, H., Berglund, L.A., “Synthesis of epoxy—clay nanocomposites: influence of the nature of the clay on structure”, Polymer 42, 1303-1310 (2001).
Kwon, Sangmin, Kim, Kwang J., Kundu, Patit P., Kim, Tae J., Lee, Young K., Lee, Byung H., Choe, Soonja, “Tensile property and interfacial dewetting in the calcite filled HDPE, LDPE, and LLDPE composites”, Polymer 43, 6901-6909 (2002).
Lan, Tie, Pinnavaia, Thomas J., “Clay-Reinforced Epoxy Nanocomposites”, Chemistry of Materials Vol 6, 2216-2219 (1994).
LeBaron, Peter C., Wang, Zhen, Pinnavaia Thomas J., “Polymer-layered silicate nanocomposites: an overiew”, Applied Clay Science 15, 11-29 (1999).
Li, Bin “A study of thermal degradation and decomposition of rigid poly(vinyl chloride) with metal oxides using thermogravimetry and cone calorimerty”, Polymer and Degradation Stability 68, 197-204 (2000).
Li, Jian, Zhou, Chixing, Gang, Wang, “Study on nonisothermal crystallization of maleic anhydride grafted polypropylene/montmorillonite nanocomposite”, Polymer Testing 22, 217-223 (2003).
Liu, T. X., Liu, Z. N., Ma, K. X., Shen, L., Zeng, K. Y., He, C. B., “Morphology, thermal and mechanical behavior of polyamide 6/layered-silicate nanocomposites”, Composites Science and Technology 63, 331-337 (2003).
Liu, Xiaohui, Wu, Qiuju, “PP/nanocomposites prepared by grafting-melt intercalation”, Polymer 42, 10013-10019 (2001).
Luo, Jyi-Jiin, Daniel, lsaac M., “Characterization and modeling of mechanical behavior of polymer/clay nanocomposites”, Composites Science and Technology 63, 1607-1616 (2003).
Manias, E., Touny, A., Wu, L., Strawhecker, K., Lu, B.; Chung, T. C., “Polypropylene/Montmorillonite Nanocomposites. Review of the Synthetic Routes and Materials Properties”, Chemistry of Materials Vol. 13, 3516-3523 (2001).
Murray, Haydn H., “Traditional and new applications for kaolin, smectite, and palygorskite: a general overview”, Applied Clay Science 17, 207-221 (2000)
McNeill, Ian C., Memeta, Livia, Cole, William J., “A study of the products of PVC thermal degradation”, Polymer Degradation and Stability 49, 181-191 (1995).
McNeill, Ian C., Mohammed, Musarrat H., “Thermal analysis and degradation mechanisms of blends of low density polyethylene, poly(ethyl acrylate) and ethylene ethyl acrylate copolymer with calcium carbonate”, Polymer Degradation and Stability 49, 263-273 (1995).
Nam, Pham Hoai, Maiti, Pralay, Okamoto, Masami, Kotaka, Tadao, Hasegawa, Naoki, Usuki, Arimitsu, “A hierarchical structure and properties of intercalated polypropylene/clay nanocomposites”, Polymer 42, 9633-9640 (2001).
Pedro, Baltazar M.A., Monteiro, Elisabeth E.C., Dweck, Jo, ”PVC and Agalmatolite composite characterization”, Polymer Testing 20, 269-273 (2001).
Pielichows, Krzysztof, “Thermal energy storage systems based on poly(vinyl chloride) blends”, European Polymer Journal 35, 27-34 (1999).
Pita, V.J.R.R., Sampaio, E.E.M., Monteiro, E.E.C., “Mechanical properties evaluation of PVC/plasticizers and PVC/thermoplastic polyurethane blends from extrusion processing”, Polymer Testing 21, 545-550 (2002).
Qin, Huaili, Zhao, Chungui, Zhang, Shimin, Chen, Guangming, Yang, Mingshu, “Photo-oxidative degradation of polyethylene/montmorillonite nanocomposite”,Polymer Degradation and Stability 81, 497-500 (2003).
Ranade, Ajit, D’Souza, Nandika Anne, Gnade, Bruce, “Exfoliated and intercalated polyamide-imide nanocomposite with montmorillonite”, Polymer 43, 3759-3766 (2002).
Reichert, Peter, Nitz, Hansjörg, Klinke, Stefan, Brandsch, Rainer, Thomann, Ralf, Mülhaupt, Rolf, “Poly(propylene)/organoclay nanocomposite formation: Influence of compatibilizer functionality and organoclay modification”, Macromolecular Materials and Engineering Vol. 275, 8-17 (2000).
Shin, Sang-Young A., Simon, Leonardo C., Soares, João B.P., Scholz, Günter, “Polyethylene-clay hybrid nanocomposites: in situ polymerization using bifunctional organic modifiers”, Polymer 44, 5317-5321 (2003).
Suwanprateeb, J. “Calcium carbonate filled polyethylene: correlation of hardness and yield stress”, Composite: Part A 31, 353-359 (2000).
Tanaka, Genzo, Goettler Lloyd A., “Predicting the binding energy for nylon 6,6/clay nanocomposites by molecular modeling”, Polymer 43, 541-553 (2002).
Tang, Yong, Hu, Yuan, Song, Lei, Zong, Ruowen, Gui, Zhou, Chen, Zuyao, Fan, Weicheng, “Preparation and thermal stability of polypropylene/montmorillonite nanocomposites”, Polymer Degradation and Stability 82, 127-131 (2003).
Thio, Y.S., Argon, A.S., Cohen, R.E., Weinberg, M., “Toughening of isotactic polypropylene with CaCO3 particles”, Polymer 43, 3661-3674 (2002).
Wan, Chaoying, Qiao, Xiuying, Zhang, Yong, Zhang, Yinxi, “Effect of different clay treatment on morphology and mechanical properties of PVC-clay nanocomposites”, Polymer Testing 22 453-461 (2003).
Wang, Dongyan, Parlow, Daniel, Yao, Qiang, Wilkie, Charles A., “PVC-Clay Nanocomposites:Preparation, Thermal and Mechanical Properties”, Journal of Vinyl & Additive Technology Vol.7, No.4, 203-213 (2001).Wang, Dongyan, Parlow, Daniel, Yao, Qiang, Wilkie, Charles A., “Melt Blending Preparation of PVC-Sodium Clay Nanocomposites”, Journal of Vinyl & Additive Technology Vol.8, No.2, 139-150 (2002).Wang, Dongyan, Wilkie, Charles A., “A stibonium-modified clay and its polystryene nanocomposite”, Polymer Degradation and Stability 82, 309-315 (2003).
Wang, Ki Hyun, Choi, Min Ho; Koo, Chong Min; Choi, Yeoug Suk, Chung, In Jae, “Synthesis and characterization of maleated polyethylene/clay nanocomposites”,Polymer 42, 9819-9826 (2001).
Wang, Shaofeng, Hu, Yuan, Song, Lei, Wang, Zhengzhou, Chen, Zuyao, Fan, Weicheng, “Preparation and thermal properties of ABS/montmorillonite nanocomposite”, Polymer Degradation and Stability 77, 423-426 (2002).
Wang, Shaofeng, Hu, Yuan, Song, Lei, Wang, Zhengzhou, Chen, Zuyao, Fan, Weicheng, “Preparation and characterization of flame retardant ABS/montmorillonite nanocomposite”, Applied Clay Science 25, 49-55 (2004).
Yanborisov, V. M., Minsker, K. S., Zaikov, G. E., Zaikov, V. G., “Some Aspects of the Thermal Degradation of PVC. Crosslinking of Macromolecules”, Journal of Vinyl & Additive Technology Vol.8, No.3 176-179 (2002).
Yao, K.J., Song, M., Hourston, D.J., Luo, D.Z., “Polymer/nanocomposites: 2 polyurthane nanocomposites”, Polymer 43, 1017-1020 (2002).
Yasmin, Asma, Abot, Jandro L., Daniel, Isaac M., “Processing of clay/epoxy nanocomposites by shear mixing”, Scripta Materialia 49, 81-86 (2003).
Zanetti, M., Camino, G., Mülhaupt R., “Synthesis and thermal behaviour of layered silicate—EVA nanocomposites”, Polymer 42, 4501-4507 (2001).
Zhang, Jinguo, Wilkie, Charles A., “Preparation and flammability properties of polyethylene-clay nanocomposites”, Polymer Degradation and Stability 80, 163-169 (2003).
Zhang, Guozhen, Shichi, Tetsuya, Takagi, Katsuhiko, “PET-clay hybrids with improved tensile strength”, Materials Latters 57, 1858-1862 (2003).
Zhang, Qin, Wang, Yong, Fu, Qiang, “Shear-induced Change of Exfoliation and Orientation in Polypropylene/Montmorillonite Nanocomposites”, Journal of Polymer Science: Part B: Polymer Physics Vol.41, 1-10 (2003).
Zhen, Wang, Thomas J Pinnavaia, “Hybrid Organic-Inorganic Nanocomposites: Exfoliation of Magadiite Nanolayers in an Elastomeric Epoxy Polymer”, Chemistry of Materials Vol.10, 1820-1826 (1998).
Zhu, Jin, Morgan, Alexander B., Lamelas, Frank J., Wilkie, Charles A., “Fire Properties of Polystyrene-Clay Nanocomposites”, Chemistry of Materials Vol.13, 3774-3780 (2001)
Zhu, S., Zhang, Y., Zhang, Y., Zhang, C., “Effect of CaCO3/Li2CO3 on the HCl generation of PVC during combustion”, Polymer Testing 22, 539-543 (2003).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔