(3.234.221.162) 您好!臺灣時間:2021/04/14 03:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李文仁
研究生(外文):Wen Jen Lee
論文名稱:以原子層化學氣相沉積法成長氮化鈦薄膜之特性研究
論文名稱(外文):The Characteristics of TiN Films Grown by Atomic Layer Chemical Vapor Deposition
指導教授:鄭錫恩
指導教授(外文):Hsyi-En Cheng
學位類別:碩士
校院名稱:南台科技大學
系所名稱:電機工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:91
中文關鍵詞:氮化鈦原子層化學氣相沉積法
外文關鍵詞:titanium nitrideALCVD
相關次數:
  • 被引用被引用:2
  • 點閱點閱:495
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:68
  • 收藏至我的研究室書目清單書目收藏:0
本研究使用原子層化學氣相沉積法(Atomic Layer Chemical Vapor Deposition, ALCVD),於300~500℃之製程溫度,以四氯化鈦(TiCl4)和氨氣(NH3)為反應前驅物在p型矽基材、n型矽基材及二氧化矽基材上成長氮化鈦(TiN)薄膜,探討於不同基材上成長氮化鈦薄膜之微結構、表面型態、薄膜組成元素成份及電阻係數之特性,並針對氮化鈦薄膜之抗熱氧化特性、銅擴散障礙特性以及用於氧化鉿電容器之電極特性等分別加以探討。此外,本研究並藉由改變進氣方式改善ALCVD法所成長薄膜之品質。實驗結果顯示,以ALCVD法成長之氮化鈦薄膜為多晶柱狀結構,並有TiN(200)的優選結晶成長取向。以六階段進氣方式成長之氮化鈦薄膜品質優於傳統四階段方式所成長的薄膜品質,可在350℃的低製程溫度下成長氯雜質含量低於1 at.%之TiN薄膜,且在製程溫度300~500℃所成長之TiN薄膜表面都十分平整,表面粗糙度Rms值都在1 nm以下,本研究在500℃製程溫度下即可獲得相當於傳統低壓化學氣相沉積法在750℃高溫成長的薄膜電阻率,顯示ALCVD比傳統CVD更符合IC產業進入奈米世代低溫製程的需求。氮化鈦薄膜之抗熱氧化特性實驗結果則顯示薄膜耐熱氧化溫度與薄膜成長溫度相關聯,較高溫成長之TiN薄膜有較佳的抗熱氧化特性,但最高耐熱氧化溫度仍低於600℃。銅擴散障礙特性的實驗結果顯示TiN擴散障礙層對銅擴散阻障能力與TiN薄膜成長溫度亦相關聯,較高溫成長之TiN薄膜有較佳的擴散阻障能力,TiN擴散阻障層最高失效溫度達750℃,優於傳統CVD及PVD之結果。本研究同時發現Cu原子擴散速度高於Si原子。氧化鉿高介電值電容器電極應用之實驗結果顯示,TiN薄膜容易誘發HfOx薄膜結晶,導致電容器漏電流增加,因此TiN薄膜並不適合應用於氧化鉿高介電值電容器之下電極。
In this study, titanium nitride (TiN) films were deposited on p-type Si (100), n-type Si (100), and SiO2 substrates by using precursors of TiCl4 and NH3 in an atomic layer chemical vapor deposition (ALCVD) system. The impurity, resistivity, structure and surface morphology of TiN films were characterized by using AES, four point probe, XRD, TEM, SEM and AFM. The film thickness was measured by α-step and the growth rate was calculated by the number of deposition cycles. The XRD results show that the TiN films are polycrystalline with (200) preferential growth. The cross-sectional microstructure by TEM shows columnar grains in TiN films. The AES spectra show that the chlorine content in TiN films is low and is below the detection limit of AES (<1at.%) as the films were grown at process temperature above 350℃. The film surface is smooth and the roughness, Rms, is below 1 nm. A thermal annealing experiment at oxygen atmosphere shows that the TiN films grown at a higher process temperature possess a better oxidation-resistance ability. The temperature at which TiN can keep from oxidation is about 500℃. The diffusion barrier properties of ALCVD-TiN films for Cu metallization are related to deposition temperature. The Cu/TiN/Si devices still work after 1 h annealing at 700℃ for TiN films grown at process temperature above 450℃. A study on MIM capacitor show that the TiN films are not suitable for bottom electrode of HfOx capacitor because the leakage current of capacitor is large due to HfOx crystallization, which could be caused by TiN bottom electrode.
目  錄
中文摘要...........................................................................................................................i
英文摘要………………………………………………………………………………..ii
誌謝…………………………………………………………………………………….iii
目錄…………………………………………………………………………………….iv
圖目錄…………………………………………………………………………………viii
表目錄………………………………………………………………………………..…xi
第一章 前言……..…………………………………………………………………….1
1-1 研究背景....…………………………………………………………………..1
1-2 原子層氣相沉積法之優勢…………..………………..……………………..3
1-3 TiN於半導體元件製程上的應用…………………..……...………….……..4
1-4 研究目的…………………………………………………………..…….…...6
第二章 理論及文獻回顧……………………………………………………………...7
2-1 氮化鈦(TiN)的結構與性質…………………………………..………….7
2-2 原子層化學氣相沉積法理論基礎.………………………………………….9
2-2-1原子層化學氣相沉積法之製程時序…………………….…………….9
2-2-2 原子層化學氣相沉積法之薄膜成長機制…………………………...10
2-2-3 原子層化學氣相沉積法之溫度效應………………….….….………11
2-3熱力學分析…………………………………..…………………………...…13
2-4 國內外有關成長TiN薄膜之研究情況與文獻回顧………………………15
第三章 實驗步驟…………………………………………………………………….18
3-1 實驗流程規劃……………………………………………………….……...18
3-2 ALCVD-TiN系統設計及製作…………………………………………...19
3-2-1 ALCVD-TiN系統設計……………………………………..………19
3-2-1-1 真空反應腔體系統.……………………………………………20
3-2-1-2 原料輸送系統…………………………..……………………...20
3-2-1-3 真空抽氣系統………………………………………..………...21
3-3 基板清洗………………………………………………………..…………..22
3-4 ALCVD-TiN薄膜製備…………………………………………...….……23
3-4-1 原料選擇……………………………………………………………...23
3-4-1-1 製程氣體……………..…………….……………………….….23
3-4-1-2 基材…………………………………………………….………23
3-4-2 製程步驟………………………………………………………….….23
3-5 薄膜量測與分析……………………………………………………………24
3-5-1 膜厚量測與薄膜成長速率分析……………………………………...24
3-5-2 薄膜片電阻量測與電阻率分析……………………………………...24
3-5-3 薄膜結晶分析………………………………………………………...25
3-5-4 薄膜縱深成份分析…………………………………………………...25
3-5-5 薄膜表面型態與粗糙度分析………………………………………...26
3-5-6 薄膜微結構分析……………………………………………………...26
3-6 ALCVD-TiN薄膜耐氧化實驗……………………………………………...27
3-6-1 耐氧化實驗試片製備………………………………………………...27
3-6-2 耐氧化實驗方法……………………………………………………...27
3-7 ALCVD-TiN薄膜擴散阻障特性實驗……………………………………...27
3-7-1 擴散阻障特性實驗試片製備………………………………………...27
3-7-2 擴散阻障特性實驗方法……………………………………………...27
3-8 ALCVD-TiN薄膜電容器下電極實驗……………………………………...28
3-8-1 電容器製備…………………………………………………………...28
3-8-2 電容器電性量測……………………………………………………...29
3-8-2-1 電流-電壓量測………………………………………………....29
第四章 結果與討論………………………………………………………………….30
4-1 以原子層化學氣相沉積法成長氮化鈦薄膜之特性…………….………...30
4-1-1 四階段進氣方式之ALCVD成長TiN薄膜於矽基材上之特性…..30
4-1-1-1 製程溫度對薄膜成長速率之影響….….….…....….….……..31
4-1-1-2 薄膜電阻率分析….……....….…....….….……………….…..32
4-1-1-3 薄膜組成元素縱深成份分析….………….…..………….…..33
4-1-1-4 薄膜結構分析….……………………..….……………….…..33
4-1-1-5 薄膜表面型態及粗糙度分析….….…………..….….…...…..37
4-1-1-6四階段進氣ALCVD-TiN薄膜成長於矽基材上之特性結論.39
4-1-2 六階段進氣方式成長TiN薄膜於矽基材上之特性……………....40
4-1-2-1 6step-ALCVD與4step-ALCVD薄膜成長速率之比較……..42
4-1-2-2 6step-ALCVD與4step-ALCVD薄膜電阻率之比較..…..…..43
4-1-2-3 6step-ALCVD-TiN薄膜組成元素縱深成份分析….………..44
4-1-2-4 6step-ALCVD-TiN薄膜結構分析….…………………….…..46
4-1-2-5 6step-ALCVD-TiN薄膜表面型態及粗糙度分析….…….…..47
4-1-2-6 六階段進氣ALCVD-TiN薄膜成長於矽基材上之特性結論.50
4-1-3 ALCVD-TiN薄膜於二氧化矽基材上之成長特性….….…..……...51
4-1-3-1 製程溫度對薄膜成長速率之影響….….….…....….….……..51
4-1-3-2 薄膜電阻率分析….……....….…....….….……………….…..52
4-1-3-3 薄膜組成元素縱深成份分析….………….…..………….…..54
4-1-3-4 薄膜結構分析….……………………..….……………….…..56
4-1-3-5 薄膜表面型態及粗糙度分析….….…………..….….…...…..57
4-1-3-6 ALCVD-TiN薄膜成長於二氧化矽矽基材上之特性結論….61
4-2 ALCVD-TiN薄膜之耐熱氧化特性…………………………………….…62
4-2-1 氧化處理對ALCVD-TiN薄膜微結構之影響……..….…..……...63
4-2-2 氧化處理對ALCVD-TiN薄膜組成元素成份之影響……..……...65
4-2-3 氧化處理對ALCVD-TiN薄膜電阻率之影響….……...…..……...68
4-2-4 氧化處理對ALCVD-TiN薄膜表面型態及粗糙度之影響..……...70
4-2-5 ALCVD-TiN薄膜耐熱氧化特性結論….…………….....…..……...70
4-3 ALCVD-TiN薄膜之擴散阻障特性…………..……………………………73
4-3-1 前言……..….………………………………………………..……...73
4-3-2 實驗方法……..……………………………………………………...73
4-3-3 Cu/TiN/Si試片擴散試驗結果與討論….…………...…...…..……...74
4-3-3-1 Cu/TiN(300℃)/Si試片擴散試驗分析….….…....….….……..74
4-3-3-2 Cu/TiN(350℃)/Si試片擴散試驗分析….….…....….….……..74
4-3-3-3 Cu/TiN(400℃)/Si試片擴散試驗分析….….…....….….……..74
4-3-3-4 Cu/TiN(300℃)/Si試片擴散試驗分析….….…....….….……..75
4-3-3-5 Cu/TiN(300℃)/Si試片擴散試驗分析….….…....….….……..75
4-3-4 ALCVD-TiN薄膜擴散阻障特性試驗結論….……...…...…..……...76
4-4 ALCVD-TiN薄膜應用於氧化鉿高介電值電容器下電極之特性…..…….80
4-4-1 前言……..….……………………………………….………..……...80
4-4-2 實驗方法……..……………………………………………………...80
4-4-3 結果與討論….…………...…...…..………………………………....81
4-4-4 結論………….…………...…...…..………………………………....81
第五章 結論………………………………………………………………………….56
參考文獻……………………………………………………………………………….58
圖 目 錄
圖1-1、DRAM結構發展趨勢…….……………………...…………………………....2
圖1-2、Cross-sectional SEM of a HfO2 coating inside a hole with an aspect ratio of 35:1.……….....3
圖1-3、半導體元件之截面示意圖……………………....………………………….....5
圖1-4、圓柱型電容器記憶體示意圖……………………...……….……………….....5
圖2-1、氮化鈦晶體結構示意圖…...………………………….….………………….....7
圖2-2、氮化鈦Ti-N之相圖………………………..……………………………….....8
圖2-3、ALCVD反應氣體注入時序圖……………….………………………………10
圖2-4、原子層化學氣相沉積的基本機制…………………………………………......11
圖2-5、製程溫度對反應前驅物的影響與薄膜成長速率之關係圖………………….12
圖2-6、化學反應式(2-1)熱力學計算結果………………………………………...14
圖2-7、化學反應式(2-2)熱力學計算結果…………………………………………...14
圖3-1、本研究規劃之實驗流程圖…………………………………………………...18
圖3-2、ALCVD系統設計圖…………………………………………………………...19
圖3-3、膜厚量測示意圖……………………………………….……………………24
圖3-4、XRD量測示意圖………………………………………………………….…25
圖3-5、MIM電容器示意圖……………………………………………………….28
圖3-6、I-V量測示意圖……………………………….…………………………..29
圖4-1、製程溫度對4step-ALCVD-TiN薄膜成長速率之影響……………………..31
圖4-2、不同製程溫度之ALCVD-TiN薄膜電阻率與LPCVD-TiN之比較………….32
圖4-3、4step-ALCVD-TiN薄膜之AES縱深成份分析……………………………….34
圖4-4、TiN之X光繞射圖譜。(a) 4step-ALCVD-TiN薄膜,(b) JCPDS之TiN資料………………………………………………………………………………..……...35
圖4-5、ALCVD-TiN之橫截面穿透式電子顯微鏡照片………………….………...36
圖4-6、4step-ALCVD-TiN鍍膜表面型態之場發射掃瞄式電子顯微鏡照片……...37
圖4-7、4step-ALCVD-TiN鍍膜原子力顯微鏡表面型態之量測…………………...38
圖4-8、4step-ALCVD-TiN製程溫度與薄膜表面粗糙度關係……………………....39
圖4-9、6step-ALCVD-TiN薄膜成長速率與製程溫度之關係圖……………………42
圖4-10、6step-ALCVD-TiN與4step-ALCVD-TiN薄膜電阻率之比較……………43
圖4-11、6step-ALCVD於不同製程溫度所成長TiN薄膜之AES縱深成份分析….45
圖4-12、6step-ALCVD-TiN薄膜X光繞射圖譜……………………………..….….....46
圖4-13、6step-ALCVD-TiN鍍膜表面型態之場發射掃瞄式電子顯微鏡照片……..48
圖4-14、6step-ALCVD-TiN鍍膜原子力顯微鏡量測之2D表面型態………….……49
圖4-15、6step-ALCVD-TiN與4step-ALCVD-TiN薄膜表面粗糙度之比較……….50
圖4-16、以ALCVD法於SiO2基材上成長TiN薄膜之鍍率與製程溫度關係…..….51
圖4-17、ALCVD-TiN薄膜成長於SiO2基材之製程溫度與電阻率之關係………….53
圖4-18、成長於Si與SiO2基材之ALCVD-TiN薄膜片電阻比較………………….53
圖4-19、不同製程溫度ALCVD-TiN薄膜成長於SiO2基材之AES縱深成份分析...55
圖4-20、不同製程溫度ALCVD-TiN薄膜成長於SiO2基材之X光繞射圖譜…..….56
圖4-21、不同製程溫度ALCVD-TiN薄膜成長於SiO2基材之FE-SEM照片……….58
圖4-22、不同製程溫度ALCVD-TiN薄膜成長於SiO2基材之AFM 2D量測影像….59
圖4-23、AFM量測所使用探針(a)側視圖,(b)仰視圖………….………………......60
圖4-24、於SiO2基材上成長TiN薄膜之製程溫度與薄膜表面粗糙度關係....……60
圖4-25、ALCVD-TiN成長於SiO2與Si基材薄膜表面粗糙度之比較………….....60
圖4-26、TiN薄膜經不同溫度氧化處理之XRD繞射圖……….…………………..64
圖4-27、TiN(300 ~ 500℃)/SiO2試片經400℃氧化處理一小時後AES縱深成份分析……………………………………………………………………………………….66
圖4-28、TiN(300 ~ 500℃)/SiO2試片經500℃氧化處理一小時後AES縱深成份分析……………………………………………………………………………………….67
圖4-29、ALCVD-TiN薄膜片電阻之變化率與氧化處理溫度之關係…………...…69
圖4-30、試片經不同溫度(300~600℃)氧化處理後試片表面粗糙度之比較…...…72
圖4-31、Cu/TiN(300~500℃)/Si擴散試驗試片結構示意圖……………………...…76
圖4-32、Cu/TiN(300~500℃)/Si試片薄膜片電阻之變化與退火溫度之關係…...…77
圖4-33、Cu/TiN(300~500℃)/Si試片經不同溫度退火一小時後之XRD繞射圖譜…78
圖4-34、典型MOS電容器結構示意圖…………………………………………...…80
圖4-35、Ni/HfOx/TiN/n+-Si 之MIM電容器結構示意圖………………………...…81
圖4-36、(a)HfOx/TiN(300~500℃)/n+-Si試片之XRD分析圖譜,(b)HfO2之JCPDS資料.……………………………………………………………………………………82
圖4-37、Ni/HfOx/TiN(300~500℃)/n+-Si電容器元件之I-V量測曲線…………….…83
表 目 錄
表2-1、氮化鈦之物理性質……………………….……………………………...……..4
表2-2、1995年至今ALCVD-TiN重要文獻總覽………….………………………...17
表3-1、氮化鈦蒸汽壓與溫度關係公式(3-1)計算結果…………………….………...20
表3-2、四氯化鈦注入量估結果…………………………………………….………...21
表3-3、氨氣注入量估算結果……………………………………………….………...21
表4-1、四階段進氣方式成長TiN薄膜之製程壓力變化情形………………………..30
表4-2、六階段進氣方式成長TiN薄膜之製程壓力變化情形…………….………...41
表4-3、ALCVD-TiN薄膜之耐氧化特性實驗所使用試片列表.……………………62
表4-4、經氧氣爐管氧化一小時之TiN薄膜片電阻與電阻率之變化情形…………69
表4-5、TiN(300~500℃)/SiO2/p-Si試片經不同溫度氧化處理一小時後表面SEM影像一覽表………………………………………………………….……………………71
表4-6、經氧氣爐管氧化一小時之TiN薄膜表面粗糙度(Rms值)之變化情形……72
表4-7、Cu/TiN/Si試片經不同溫度退火一小時後薄膜片電阻變化一覽表…………77
表4-8、Cu/TiN(300~500℃)/Si試片經不同溫度退火一小時後表面SEM倍率為5000倍之影像一覽表………………………………………………….……………………79
表4-9、1996年至今TiN擴散阻障層重要文獻整理……………………………….80
參考文獻
[1] T. Suntola, J. Antson, 1977, US Patent No. 4 058 430.
[2] M. Ritala, M. Leskelä, Atomic Layer Deposition in Handbook of Thin Film Materials, (Ed: H. S. Nalwa), Academic Press, San Diego (2002), Vol. 1., 103 - 159.
[3] M. Ritala, Ann. Acad. Sci. Fenn., Ser. A, (1994) 257.
[4] K. Kukli, Dissert. Phys. Univ. Tartuensis, (1999) 27.
[5] 莊達人, VLSI製造技術, 第二版, 高立圖書出版公司, (2002).
[6] 張鼎張, 胡榮治, “金屬(W, Cu, Al, TiN, TaN)化學氣相沉積技術”, 電子月刊, 第五卷第四期, (1999), P116-136.
[7] T. Kaga, M. Ohkura, F. Murai, N. Yokoyama, and E. Takeda, “Process and DeviceTechnologies for 1 Gbit Dynamic Random-Access Memory Cells”, J. Vac. Sci. Technol., B13 (1995) 2329.
[8] M. Leskela, M. Ritala, “Atomic layer deposition (ALD): from precursors to thin film structures”, Thin Solid Films, 409 (2002) 138.
[9] M. K. Gobbert, V. Prasad, T. S. Cale, “Predictive modeling of atomic layer deposition on the feature scale”, Thin Solid Films, 410 (2002) 129.
[10] M. Ritala, M. Leskela, J. P. Dekker, C. Mutsaers, P. J. Soininen, and J. Skarp, “Perfectly conformal TiN and Al2O3 films deposited by atomic layer deposition”, Chem. Vap. Deposition, 5 (1999) 7.
[11] A. E. Braun, “ALD breaks materials, conformality barriers”, Semiconductor International, 24 (2001) 52.
[12] 丁立文, “氮化鈦在深次微米製程應用”, 電子月刊, 第一卷第四期, (1995), P101-109.
[13] 吳文發, “銅導線之導體擴散阻障材料”, 電子月刊, 第八卷第四期, (2002), P112-119.
[14] Hong Xiao, “Introduction to Semiconductor Manufacturing Technology”, Prentice Hall, ISBN 0-13-022404-9.
[15] “迎合Gigabit時代的DRAM記憶體電容走向”, 電子月刊第六卷第十期, (2000), P230-231.
[16] T. Omstead, G. C. D’Couto, S. H. Lee, P. Wongsenakaum, J. Collins, K. Levy, “Filling high-AR structures using pulsed nucleation layer deposition”, Solid State Technology, 45 (2002) 51.
[17] S. Smith, W. M. Li, K. E. Elers, K. Pfeifer, “Physical and electrical characterization of ALCVD TiN and WNxCy used as a copper diffusion barrier in dual damascene backend structures”, Microelectronic Engineering, 64 (2002) 247.
[18] A. Satta, M. Baklanov, O. Richard, A. Vantomme, H. Bender, T. Conard, K. Maex, W. M. Li, K. E. Elers, S. Haukka, “Enhancement of ALCVD TiN growth on Si-O-C and α-SiC:H films by O2-based plasma treatments”, Microelectronic Engineering, 60 (2002) 59.
[19] H. S. Lim, S. B. Kang, I. S. Jeon, G. H. Choi, Y. W. Park. S. I. Lee, J. T. Moon, “Atomic layer deposition- and chemical vapor deposition-TiN top electrode optimization for the reliability of Ta2O5 and Al2O3 metal insulator silicon capacitor for 0.13μm Technology and beyond”, Jpn. J. Appl. Phys., 40 (2001) 2669.
[20] J. Koo, J. W. Lee, T. Doh, Y. Kim, Y. D. Kim, and H. Jeon, “Study on the characteristics of TiAlN thin film deposited by atomic layer deposition method”, J. Vac. Sci. Technol., A19 (2001) 2831.
[21] S. D. Yosi, “Barrier layers for Cu ULSI metallization”, J. Electronic Materials, 30 (2001) 336.
[22] J. T. Hillman, M. J. Rice, D. Srinivas, E. C. Eichman, W. M. Triggs, B. Sommer, M. Churley and C. Bell, ULSI-VII (1992) 311.
[22] 鄭錫恩, “化學氣相沉積氮化鈦之成長特性及其性質研究”, 國立成功大學材料科學及工程研究所, 博士論文, (1996).
[23] L. E. Toth, Transition Metal Carbides and Nitrides, Academic press, N. Y., 1971.
[24] CRC Materials Science and Engineering Handbook, ed. by J. F. Shackelf, CRC press, 1994.
[25] H. A. Wriedt and J. L. Murray, “The N-Ti (Nitrogen-Titanium) System”, Bulletin of Alloy Phase Diagrams, 8 (1987) 378.
[26] T. Suntola, Atomic layer epitaxy, in Handbook of Crystal Growth, Ed. D. T. J. Hurle, Vol. 3, Thin Films and Epitaxy, Part B: Growth Mechanisms and Dynamics, Elsevier, Amsterdam 1994, Ch. 14.
[27] M. Putkonen, “Development of low-temperature deposition processes by atomic layer epitaxy for binary and ternary oxide thin films”, Dissertation for PhD., department of chemical technology, Helsinki University of Technology, Espoo 2002, Finland.
[28] M.W. Chase et al., “JANAF thermochemical tables”, 3rd ed., American Chemical Society, American Institute of Physics for the National Bureau of Standards, (1986), New York.
[29] J.-S. Min, Y.-W. Son, W.-G. Kang, S.-S. Chun, and S.-W. Kang, “Atomic layer deposition of TiN films by alternate supply of Tetrakis(ethylmethylamino)- titanium and ammonia”, Jpn. J. Appl. Phys., 37 (1998) 4999.
[30] M. Ritala, and M. Leskela, “Use of 1-Dimethylhydrazine in the atomic layer deposition of transition metal nitride thin films”, J. Electrochem. Soc., 147 (2000) 2277.
[31] D.-J. Kim, Y.-B. Jung, M.-B. Lee, Y.-H. Lee, and J.-H. Lee, “Applicability of ALE TiN films as Cu/Si diffusion barriers”, Thin Solid Films, 372 (2000) 276.
[32] G. Beyer, A. Satta, J. Schuhmacher, K. Maex, W. Besling, O. Kilpela, H. Sprey, G. Tempel, “Development of sub-10nm atomic layer deposition barriers for Cu/Low-k interconnects”, Microelectronic Engineering, 64 (2002) 233.
[33] M. L. Green, M.-Y. Ho, B. Busch, G. D. Wilk, T. Sorsch, T. Conard, B. Brijs, W. Vandervorst, P. I. Raisanen, D. Muller, M. Bude, J. Grazul, “Nucleation and growth of atomic layer deposition HfO2 gate dielectric layers on chemical oxide (Si-O-H) and thermal oxide underlayers”, J. Appl. Phys., 92 (2002) 7168.
[34] M. Ritala, M. Leskela, E. Rauhala, and P. J. Haussalo, “ Atomic layer epitaxy growth of TiN thin films”, J. Electrochem. Soc., 142 (1995) 2731.
[35] M. Ritala, T. Asikainen, M. Leskela, J. Jokinen, R. Lappalainen, M. Utriainen, L. Niinisto, and E. Ristolainen, “Effects of intermediate zinc pulses on properties of TiN and NbN films deposited by atomic layer epitaxy”, Appl. Surf. Sci., 120 (1997) 199.
[36] M. Ritala, M. Leskela, E. Rauhala, and J. Jokinen, “Atomic layer epitaxy growth of TiN thin films from TiI4 and NH3”, J. Electrochem. Soc., 145 (1998) 2914.
[37] J. Uhm, S. Lee, J. Lee, Y.-D. Kim, and H. Jeon, “The characteristics of TiN films deposited by cyclic chemical vapor deposition”, J. Korean Phys. Soc., 35 (1999) 765.
[38] H. Jeon, J.-W. Lee, Y.-D. Kim, D.-S. Kim, and K.-S. Yi, “Study on the characteristics of TiN thin film deposited by atomic layer chemical vapor deposition method”, J. Vac. Sci. Technol., A18 (2000) 1595.
[39] A. Satta, G. Beyer, K. Maex, K. Elers, S. Haukka, and A. Vantomme, “Properties of TiN thin films deposited by ALCVD as barrier for Cu metallization”, Mater. Res. Soc. Symp. Proc., 612 (2000) D651-656.
[40] J. Uhm, and H. Jeon, “TiN diffusion barrier grown by atomic layer deposition method for Cu metallization”, Jpn. J. Appl. Phys., 40 (2001) 4657.
[41] K.-E. Elers, V. Saanila, P. Soininen, W.-M. Li, J. T. Kostamo, S. Haukka, J. Juhanoja, and F. A. Besling, “Diffusion barrier deposition on copper surface by atomic layer deposition”, Advanced Materials, 14 (2002) 149.
[42] 汪建民 主編, “材料分析”,中國材料科學學會。
[43] S. S. Doad, T. S. Cale, M. Ameen, J. Hillman, R. Foster, ULSI-X (1995) 327.
[44] T. Ohba, T. Suzuki, H. Yagi, and Y. Furumura, J. Electrochem, Soc., 142 (1995) 934.
[45] M. B. Lee, H. D. Lee, B. L. Park, U. I. Chung, Y. B. Koh, and M. Y. Lee, IEDM 96 (1996) 683.
[46] J. K. Schaeffer, S. B. Samavedam, D. C. Gilmer, V. Dhandapani, P. J. Tobin, J. Mogab, B.-Y. Nguyen, B. E. White, Jr., S. Dakshina-Murthy, R. S. Rai, Z.-X. Jiang, R. Marth, M. V. Raymond, M. Zavala, L. B. La, J. A. Smith, R. Garcia, D. Roan, M. Kottke, and R. B. Gregory, “Physical and electrical properties of metal gate electrodes on HfO2 gate dielectrics”, J. Vac. Sci. Technol. B, Vol. 21 (2003) 11.
[47] Y. S. Gong, J.-C. Lin, C. Lee, “Interdiffusion and reactions in Cu/TiN/Si thin film system”, Applied Surface Science 92 (1996) 335.
[48] S.-K. Rha, W.-J. Lee, S.-Y. Lee, Y.-S. Hwang, Y.-J. Lee, D.-I. Kim, D.-W. Kim, S.-S. Chun, C.-O. Park, “Improved TiN film as a diffusion barrier between copper and silicon”, Thin Solid Films 320 (1998) 134.
[49] Y. T. Kim*, C.-H. Jun, D. Y. Kim, “Barrier properties of TiN/TiSi2 bilayers formed by two-step rapid thermal conversion process for Cu diffusion barrier”, Thin Solid Films 347 (1999) 214.
[50] M.Y. Kwaka, D.H. Shina, T.W. Kanga*, K.N. Kimb, “Characteristics of TiN barrier layer against Cu diffusion”, Thin Solid Films 339 (1999) 290.
[51] L. L. Brizoual , S. Guilet, G. Lemperiere, A. Granier, N. Coulon, M. Lancin, G. Turban, “Analysis of Ti—Si—N diffusion barrier films obtained by r.f. magnetron sputtering”, Microelectronic Engineering 50 (2000) 509.
[52] K. D. Vargheese, G. M. Rao*, T.V. Balasubramanian, S. K., “Preparation and characterization of TiN films by electron cyclotron resonance (ECR) sputtering for diffusion barrier applications”, Materials Science and Engineering B83 (2001) 242.
[53] K. Chen*, Y. Yu, H. Mu, E.Z. Luo, B. Sundaravel, S.P. Wong, I.H. Wilson, “Preferentially oriented and amorphous Ti, TiN and TiyTiN diffusion barrier for Cu prepared by ion beam assisted deposition (IBAD)”, Surface and Coatings Technology 151 (2002) 434.
[54] M. Moriyama*, T.Kawazoe, M.T anaka, M.Murakami, “Correlation between microstructure and barrier properties of TiN thin films used Cu interconnects”, Thin Solid Films 416 (2002) 136.
[55] W.-H. Lee, Y.-L. Kuo, H.-J. Huang, C. Lee, “Effect of density on the diffusion barrier property of TiNx films between Cu and Si”, Materials Chemistry and Physics 85 (2004) 444.
[56] H. S. Choe and M. Danek, “MOCVD TiN diffusion barriers for copper interconnects”, IITC 99 (1999) 62.
[57] Y.-H. Shin*, Y. Shimogaki, “Diffusion barrier property of TiN and TiN/Al/TiN films deposited with FMCVD for Cu interconnection in ULSI”, Science and Technology of Advanced Materials 5 (2004) 399.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔