(3.230.143.40) 您好!臺灣時間:2021/04/21 18:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:謝乃軻
研究生(外文):Naiko Hsieh
論文名稱:運用數位質點顯像測速於三種單層噴煤鎗在不同速度比下流場特性研究
論文名稱(外文):Fluid-Dynamic Diagnostics in Three Single Lances Under Different Velocity Ratios Using DPIV
指導教授:艾和昌艾和昌引用關係
指導教授(外文):Herchang Ay
學位類別:碩士
校院名稱:南台科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:78
中文關鍵詞:數位質點顯像測速粉煤噴吹射流單層噴煤鎗混合
外文關鍵詞:DPIVPCIJetSingle lanceMixing
相關次數:
  • 被引用被引用:3
  • 點閱點閱:124
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
1980年後,在高爐煉鐵過程中,多採用研磨成粉末之粉煤,由粉煤噴鎗吹入鼓風管(blow pipe),與鼓風管內熱鼓風混合燃燒送入高爐,此程序被稱為粉煤噴吹技術,簡稱為PCI(Pulverized Coal Injection),是現階段高爐煉鐵中最被重視的技術之一。本研究主要是建立三種單層噴煤鎗模型,並以數位質點顯像測速(DPIV)方法,觀測3種單層噴煤鎗當工作流體為水及空氣時粉煤噴吹進入鼓風管之流場結構,實驗時並藉改變速度比,來探討速度比變化對粉煤噴吹進入鼓風管之流場結構的影響。結果顯示三種單層噴煤鎗當速度比越大,噴煤鎗出口射流因俱較大動能會較侵入鼓風管主流流場,所以有較佳之混合效果。截口噴煤鎗因噴煤鎗出口截角與鼓風管主流流向垂直,射流出口即與主流同向流動,所以射流較侵入主流流場,有較佳之混合效果。而兩隻平口噴煤鎗對插型式在各速度比下,其噴煤鎗出口皆有漩渦產生,所以混合效果亦優於單隻平口噴煤鎗。
Since 1980, pulverized coal injection(PCI) using ground powders of coal injected from the lances and mixed with hot air in the blow pipe is the key technology in the steel making industry. The Digital Particle Image Velocimetry(DPIV) method is employed to measure the mixing behavior of pulverized coal injection in the blowpipe for three kinds of single lances. In the visualization experiment, both water and air are used as working fluid and performed each case under three different velocity ratios. The result shows that the design of the lance and the number of the insertion in blowpipe is the main factor for the mixing behavior of pulverized coal injection in the blowpipe. It is disclosed that due to the jet with more momentum at high velocity ratio, the jet could be easy to intrude to main flow for any test section. The jet is more intrusive to main flow for the single lance with an oblique angle at lance exit. The reason is that the jet is co-flow with main flow. And in double single lance, the jet exit appeared vortex for any velocity ratio. In addition, it could be concluded that the mixing effect is more notable because the jet is more intrusive to main flow.
摘  要 v
致  謝 vii
目 次 viii
圖表目錄 x
第一章 前言 1
1.1 單層噴煤鎗之流場特性研究 1
1.2 PIV系統應用研究 2
第二章 實驗設備與方法 5
2.1 數位質點顯像測速系統(DPIV) 5
2.2 液體實驗水桌設備與質點 6
2.3 氣體實驗設備與質點 7
2.3.1 風洞設備 7
2.3.2油霧質點產生器 7
2.4 試件製作 8
2.4.1 液體實驗 8
2.4.2 氣體實驗 8
2.5 實驗方法 9
2.5.1 液體實驗 9
2.5.2 氣體實驗 12
2.6 實驗前置作業 13
2.6.1 四分之一法則 13
2.6.2 動力速度範圍(Dynamic velocity range,簡稱DVR) 13
2.6.3 動力空間範圍(Dynamic spatial range,簡稱DSR) 14
第三章 結果與討論 29
3.1 工作流體為液體 29
3.2 工作流體為氣體 30
3.2.1 case1測試件 30
3.2.2 case2測試件 30
3.2.3 case3測試件 30
3.3 CASE1測試件在工作流體為液體與氣體之比較 32
3.4 CASE1與CASE2測試件在工作流體為氣體之比較 33
3.5 CASE1與CASE3測試件在工作流體為氣體之比較 33
第四章 結論與建議 70
4.1 結論 70
4.2 對未來研究工作建議 71
參考文獻 73
符號彙編 76
作者簡介 78
1. 杜憲文,周奇生,蔡辛慈; 1995,”高爐粉煤吹射燃燒技術應用與其趨勢簡介”,第五屆燃燒科技應用研討會,pp.95-100.
2. Sucec, J. and Bowley, W. W., 1976, “Prediction of the Trajectory of a Turbulent Jet Injected into a Crossflowing Stream”. Trans. of ASME Journal of Fluids Engineering, pp.667-973.
3. Forney, L. J. and KWON, T. C., 1979, “Efficient Single-Jet Mixing in Turbulent Tube Flow”, AIChE Journal, Vol.25, n 4, pp.623-630.
4. Forney, L. J. and Lee. H. C., 1982, “Optimum Dimensions for Pipeline Mixing at a T-Junction”, AIChE Journal, Vol.28, n 6, pp.980-987.
5. Forney, L. J., 1986, “Jet Injection for Optimum Pipeline Mixing”, Encyclopedia of Fluid Mechanics, Vol. Π, Ch.25, N.P. Cheremisinoff, ed., Gulf Publishing, Houston.
6. Sroka, L. M. and Forney, L. J., 1989, “Fluid Mixing with a Pipeline Tee: Theory and Experiment”, AIChE Journal, Vol.35, n 3, pp.406-414.
7. Forney, L. M. and Gray, G. E., 1990, “Optimum Design of a Tee Mixer for Fast Reactions”, AIChe Journal, Vol.36, n 11, pp.1773-1776.
8. Schetz, J. A., 1986, “Hydrodynamics of Jets in CrossFlow”, Encyclopedia of Fluid Mechanics, Vol. Π, Ch.16, N.P. Cheremisinoff, ed., Gulf Publishing, Houston.
9. Demuren, A. O., 1986, “Modeling Turbulent Jets in CrossFlow”, Encyclopedia of Fluid Mechanics, Vol. Π, Ch.17, N.P. Cheremisinoff, ed., Gulf Publishing, Houston.
10. Maruyama, T., Mizushina T. and Watanabe, F., 1982, “Turbulent Mixing of Two Fluid Streams at an Oblique Branch”, International Chemical Engineering, Vol. 22, n2, pp.287-294.
11. Feng, Z., Wang X. and Forney L.J., 1998, “Single Jet Mixing at Arbitary Angle in Turbulent Tube Flow”. American Society of Mechanical Engineers, Fluids Engineering Division (publication) FED Jun pp.21-25.
12. Huang, R. F. and Sheen, H. J., 1996, “Flow and Thermal Structure of a Turbulent Combusing Jet in Cross Flow”, Journal of Chinese Society Mechanical Engineers, Series C. Vol.17, n 4, pp.343-351.
13. 艾和昌,魏慶華; 2001,”單層噴煤鎗之粗細及插入深度對粉體混合之研究”,2001中華民國「燃燒學會民航學會航太學會」學術聯合會議,pp.CI217-CI222.
14. Ay, H., 2003, “Admixture Effect of Lance Arrangement on Pulverized Coal Injection,” Journal of Flow Visualization & Image Processing, Vol.10, pp.143-154.
15. T. M. Liou., Hope Chen. and M. Y. Chen., 1998, “Experimental Study of Confined Turbulent Rectangular Jets,” Proceeding of the 7th Flow Modeling and Turbulence Measurements, pp.283-292.
16. Barata, J. M. M. and Durao, D. F. G., 2004, “Laser-Doppler Measurements of Impinging Jet Flows Through a Crossflow,” Exp. In Fluids, Vol.36, pp.665-674.
17. Julio Soria, John Cater, Jim Kostas, 1999, “High Resolution Multigrid Cross-correlation Digital PIV Measurements of a Turbulent Starting Jet Using Half Frame Image Shift Film Recording.” Optics & Laser Technology Vol.31, pp.3-12.
18. Teruhito Otsuka and Piotr Wolanski, 2001, “Particle Image Velocimetry (PIV)Analysis of Flame Structure,” Journal of Loss Prevention in the Process Industries 14, pp.503-507.
19. Bitting, J. W., Nikitopoulos, D. E., Gogineni, S. P. and Gutmark, E. J., 2001, “Visualization and Two-color DPIV Measurements of Flows in Circular and Square Coaxial Nozzles,” Exp. In Fluids, Vol. 31, pp.1-12.
20. O’Neill, P., Soria, J. and Honnery, D., 2004, “The Stability of Low Reynolds Number Round Jets,” Exp. In Fluids, Vol.36, pp.473-483.
21. New, T. H., Lim, T. T. and Luo, S. C., 2004, “A Flow Field Study of an Elliptic Jet in Cross Flow Using DPIV Technique,” Exp. In Fluids, Vol.36, pp.604-618.
22. Keane, R. D. and Adrian, R. J., 1992, “Theory of Cross-Correlation Analysis of PIV Images,” Applied Scientific Research, Vol. 19, pp. 191-215.
23. Prasad, S.K., Asrian, R.J., Landreth, C.C. and Offutt, P.W., 1992, “Effect of Resolution on the Speed and Accuracy of Particle Image Velocimetry Interrogation,” Exp. In Fluids. Vol. 13, pp. 105-116.
24. Westerweel, J., 1994, “Efficient Detection of Spurious Vectors in Particle Image Velocimetry Data,” Exp. In Fluids, Vol. 16, pp. 236-247.
25. Westerweel, J., Dabiri, D. and Gharib, M., 1997, “The Effect of a Discrete Window Offset on the Accuracy of Cross-Correlation Analysis of Digital PIV Recordings,” Exp. In Fluids, Vol. 23, pp. 20-28.
26. Raffel, M. and Kompenhans, J., 1994, “Error Analysis for PIV Recording Utilizing Image Shifting,” Proc. 7th International Symposium on Application of Laser Techniques to Fluid Mechanics, Lisbon, July, p. 35.5.
27. Fincham, A. M. and Spedding, G. R., 1997, “Low Cost, High Resolution DPIV for Measurement of Turbulent Fluid Flow,” Exp. In Fluids, Vol. 23. pp. 449-462.
28. Keane, R. D. and Adrian, R. J., 1990, “Optimization of Particle Image Velocimeters. Part 1: Double Pulsed Systems,” Meas. Sci. Technol, Vol. 1, pp. 1202-1215.
29. Westerweel, J., 1997, “Fundamentals of Digital Particle Image Velocimetry,” Meas. Sci. Technol, Vol. 8, pp. 1379-1392.
30. Keane, R. D. and Adrian, R. J., 1991, “Optimization of Particle Image Velocimeters. Part 2: Multiple Pulsed System,” Meas. Sci. Technol, Vol. 2, pp. 963-974.
31. Adrian, R. J., 1997, “Dynamic Ranges of Velocity and Spatial Resolution of Particle Image Velocimetry,” Meas. Sci. Technol, Vol. 8, pp. 1393-1398.
32. 陳秉義,2003,”運用數位質點顯像測速於多排交叉電子構裝散熱系統之流場特性研究 ” 南台科技大學機械工程研究所碩士論文.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔