(3.237.20.246) 您好!臺灣時間:2021/04/15 18:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:范盛豪
研究生(外文):Sheng-Hao Fan
論文名稱:奈米定位平台與光學式位移量測系統之研製
論文名稱(外文):Development of Nano-positioning Stage and Optical Displacement Measurement System
指導教授:朱志良朱志良引用關係
學位類別:碩士
校院名稱:南台科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:73
中文關鍵詞:奈米平台
外文關鍵詞:Nano-positioning Stage
相關次數:
  • 被引用被引用:7
  • 點閱點閱:236
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘 要
隨者精密工業發展潮流下,微小化與精密化已成為時勢所趨,在這發展方向的要求下,微米級甚至次微米級精密定位系統需求與日遽增。以往定位裝置在位移放大過程中所產生的側向誤差量,將影響定位上精度,且量測系統所使用的高精度感測元件價格昂貴。因此,本文使用現有之壓電元件作為致動器,依據材料彈性變形的原理設計並製造一奈米直線定位平台,並將奈米平台之直線輸出特性與結構小型化後,做為長行程壓電驅動奈米定位平台之微步進直線定位裝置,搭配滯滑摩擦原理而驅動平台做長行程定位。最後,再研製精密雷射繞射干涉位置量測系統(Laser Diffraction Grating Interferometer) (L.D.G..I)做為一成本低廉之光學式位移量測系統,
在設計階段中,乃根據有限元素之理論基礎來建構奈米直線定位平台模型,輔以ANSYS有限元素軟體所分析的結果來進行設計。針對位移、應力與動態頻寬等考量因素選取適當的設計參數,並以精密線放電加工 EDM研製出實體。而長行程定位之應用上,更以精密圓棒做為直線導引,可有的效提昇系統之直線定位解析能力。另外,針對精密雷射繞射干涉位置量測系統的部分進行原理分析、光路設計與測試。
實驗驗證以雷射干涉儀做為位移量測之標準,實驗量測結果奈米定位平台的最大位移行程為46 μm,位移解析度為8nm,側向角度偏差量小於2μrad。更實現了一可於70nm~35μm的步階大小範圍內驅動平台做長行程的精密定位,且最小位移解析度為10nm,直線度誤差小於50nm。最後,再將所研製之光學式量測系統所量得的平台位移值83.86μm與標準雷射干涉儀量測值83.97μm做比較後,驗證此雷射繞射干涉位置量測系統的研製。
Abstract
With the development of precision industry, miniaturization and precision have become the trends of the times. Due to developments in this direction, there are increasing demands for micrometer and even sub-micrometer positioning systems. In the past, the lateral offset error produced during the displacement enlargement of positioning devices affected the accuracy of positioning, and the high sensitivity sensing devices used by measurement systems are expensive. Therefore, this article, using an existing piezo-element as actuator and based on the theory of elastic deformation, designs and manufactures a nanopositioning stage. After compacting the linear output characteristics and structure of the nanopositioning stage, it drives the stage to make long travel positioning in conjunction with the stick-slip effect as a linear micropositioner of a long travel piezoelectric-driven linear nanopositioning stage. Finally, a precise Laser Diffraction Grating Interferometer as a low cost Optical Displacement Measurement System has been developed.
During the designing stage, the linear nanopositioning stage was built on the basis of finite element method theory and the design was carried out in conjunction with the result of ANSYS finite element software analysis. Appropriate design parameters are selected with due consideration of factors such as displacement, stress, and dynamic response, and prototypes were developed through precise linear Electro-Discharge Machining (EDM). And regarding the application of long travel positioning, a precision cylinder is used as a linear guide, which can effectively improve the linear positioning resolution capability of the system. In addition, theory analysis, optical design and tests were conducted aimed at a Laser Diffraction Grating Interferometer.
Experiment demonstrated takes the laser interferometer as the standard of displacement measurement. The result of experimental measurement shows that the maximum displacement travel of the nanopositioning stage is 46μm; displacement resolution is 8nm and the lateral angular deviation is less than 2μrad. The possibility of driving the stage to make long travel precise positioning with a step size of 70nm~35μm was realized, whereby the minimum displacement resolution is 10nm, and the straightness error is less than 50nm. Finally, in comparing the stage displacement value of 83.86μm measured with the optical measurement system with 83.97μm measured with standard laser interferometer.
目 錄
中文摘要 Ⅰ
英文摘要 Ⅱ
致謝 Ⅳ
目錄 Ⅴ
表目錄 Ⅶ
圖目錄 Ⅷ
第一章 緒論 1 1.1 研究動機 1
1.2 研究背景與文獻回顧 2
1.3 研究目的 5
第二章 奈米定位平台之設計與分析 6
2.1簡介 6
2.2基本機構形式 6
2.3機構撓性轉換 10
2.3.1撓性鉸鍊 10
2.3.2導引機構 11
2.4奈米定位平台之設計與分析 12
2.4.1奈米平台之設計理念 12
2.4.2有限元素分析 14
2.5奈米定位平台加工與組裝 17
第三章 奈米定位平台實驗量測與數據分析 18
3.1實驗設計 18
3.2實驗量測 19
3.2.1感測器選用以及量測系統組裝 19
3.2.2靜態量測實驗結果分析 22
3.2.3動態量測實驗結果分析 27
3.3平台測試性能比較 28
3.3.1奈米定位平台性能整理 28
3.3.2奈米定位平台實驗數據討論 28
第四章 壓電長行程定位平台之研製 30
4.1簡介 30
4.2微步進直線定位裝置之設計與分析 31
4.2.1 基本設計理念 31
4.2.2有限元素分析 35
4.3微步進直線定位裝置加工與組裝 37
第五章 壓電長行程平台實驗量測與數據分析 39
5.1實驗量測 39
5.1.1感測器選用以及量測系統組裝 39
5.1.2步進模式(Stepping mode) 41
5.1.3掃描模式(Scanning mode) 43
5.1.4直線度誤差(Straight error) 46
5.2平台性能比較 47
5.2.1長行程定位平台性能整理 47
5.2.2長行程定位平台實驗數據討論 48
第六章 光學式位移量測系統 49
6.1光柵位移量測基本原理 49
6.1.1 Doppler效應 49
6.1.2繞射光柵的Doppler頻移 51
6.1.3光柵干涉位移量測原理 53
6.1.4干涉條紋的轉換原理 57
6.2光學位移平台之研製 60
6.3 L.D.G.I光學訊號量測 62
6.4雷射干涉儀與L.D.G .I光柵干涉儀性能比較 65
第七章 結論與未來展望 69
參考文獻 70
參考文獻
1.D. W. Pohl, “Dynamic piezoelectric translation devices”, Rev. Sci. Instrum, Vol. 58, No. 1, pp. 54-57, January, 1986.
2.Ph. Niedermann, R. Emch, and P. Descouts, “Simple Piezoelectric Translation Device”, Rev. Sci. Instrum, Vol. 59, No. 2, pp. 368-369, February, 1987.
3.Ch. Renner et al., “A Vertical Piezoelectric Inertial Slider”, Rev. Sci. Instrum, Vol. 61, No. 3, pp. 965-967, March, 1989.
4.A. R. Smith, S. Gwo, and C. K. Shih, “A New High-Resolution Two-Dimensional Micropositioning Device for Scanning Probe Microscopy Applications”, Rev. Sci. Instrum, Vol. 65, No. 10, pp. 3216-3219, October, 1994.
5.J. Park et al., “Development of a compact displacement accumulation actuator device for both large force and large displacement’’, Sensors and Actuators, Vol. 90, No. 3, pp. 191-202, May, 2001.
6.J. Kim, and J. Doo, “Magnetostrictive self-moving cell linear motor’’, Mechatronics, Vol. 13, No. 7, pp. 739-753, September, 2003.
7.Shamoto. E, and Moriwaki. T, “Development of a “walking drive” ultraprecision positioner”, Precision Engineering, Vol. 20, No. 2, pp. 85-92, March, 1997.
8.V. G. Dudnikov, D. V. Kovalevsky, and A. L. Shabalin, “Simple, High Precision Linear-motor-driven XY Positioner (Walker)”, Rev. Sci. Instrum, Vol. 62, No. 10, pp. 2492, October, 1991.
9.W. Wang, and Ilene. Busch-Vishniac, “A High Precision Micropositioner Based on Magnetostriction Principle”, Rev. Sci. Instrum, Vol. 63, No. 1, pp. 249-252, January, 1992.
10.P. Gao, H. Tan, and Z. Yuan, “The design and characterization of a piezo-driven ultra-precision stepping positioner”, Meas. Sci. Technol, Vol. 11, No. 2, pp. N15-N19, February, 2000.
11.F. E. Scire, and E. C. Teague, “Piezodriven 50-μm range stage with subnanometer resolution”, Rev. Sci. Instrum, Vol. 42, No. 12, pp.1735-1740, December, 1978.
12.J. W. Ryu, D. G. Gweon, and K. S. Moon, “Optimal design of a flexure hinge based XYΘ wafer stage”, Precision Engineering, Vol. 21, No. 1, pp. 18-28, July, 1997.
13.J. W. Ryu et al., “Inverse kinematic modeling of a coupled flexure hinge mechanism”, Mechatronics, Vol. 9, No. 6, pp. 657-674, September, 1999.
14.P. Gao, and Z. Yuan, “Development of a micromechanical probe-measuring instrument for surface properties characterization”, Meas. Sci. Technol, Vol. 10, No. 2, pp. N105-N108, February, 1999.
15.P. Gao, S. M. Swei, and Z. Yuan, “A new piezodriven precision micropositioning stage untilizing flexure hinges’’, Nanotechnology, Vol. 10, No. 4, pp. 394-398, December, 1999.
16.S. H. Chang, and B. C. Du, “A Precision Piezodriven Micropositioner Mechanism with Large Travel Range’’, The Review of Scientific Instruments, Vol. 69, No. 4, pp. 1785-1791, April, 1998.
17.S. H. Chang, and S. S. Li, “A High Resolution Long Travel Friction Drive Micropositioner with Programmable Step Size”, The Review of Scientific Instruments, Vol. 70, No. 6, pp. 2776-2782, June, 1999.
18.T. Higuchi, M. Watanabe, and K. Kudou, “Precision positioner utilizing rapid deformations of a piezoelectric element”, Jpn. Soc. Precision Engineering, Vol. 54, No. 11, pp.2107-2112, 1988.
19.T. Morita et al., “Three DOF parallel link mechanism untilizing smooth impact drive mechanism”, Precision Engineering, Vol. 26, pp. 289-295, 2002.
20.Y. T. Liu, T. Higuchi, and R. F. Fung, “A novel precision positioning table untilizing impact force of spring-mounted piezoelectric actuator-part I: experimental design and results”, Precision Engineering, Vol. 27, pp. 14-21, 2003.
21.Y. T. Liu, T. Higuchi, and R. F. Fung, “A novel precision positioning table untilizing impact force of spring-mounted piezoelectric actuator-part II: theoretical analysis ”, Precision Engineering, Vol. 27, pp. 22-31, 2003.
22.S. S. Ku et al., “Design, fabrication, and real-time neural network control of a three-degrees-of-freedom nanopositioner’’, IEEE/ASME Transactions on Mechatronics, Vol. 5, No. 3, pp. 273-280, September, 2000.
23.F. Meli, and R. Thalmann, “Long-range AFM profiler used for accurate pitch measurements Long-range AFM profiler used for accurate pitch measurements’’, Meas. Sci. Technol, Vol. 9, No. 7, pp. 1087-1092, July, 1998.
24.S. H. Chang, C. K. Tseng, and H. C. Chien, “An Ultra-precision XYZ Piezo-micropositioner-Part I: Design and Analysis”, IEEE Trans. Ultrasonics, Ferroelectrics, and Frequency Control., Vol. 46, No. 4, pp. 897-905, July. 1999.
25.S. H. Chang, C. K. Tseng, and H. C. Chien, “An Ultra-precision XYZ Piezo-micropositioner-Part II: Experiment and Performance”, IEEE Trans. Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 46, No. 4, pp. 897-905, July. 1999.
26.張所鋐, 簡宏彰, 曾俊凱, “三超精密三自由度微細定位機構”, 中華民國專利334888號, 1996.
27.張所鋐, 杜本權, “精密直線定位機構含位移放大/縮小裝置”, 中華民國專利335911號, 1997.
28.張所鋐, 李昇憲, “新式高精密長行程步進驅動器”, 中華民國專利328852號, 1997.
29.黃宜正, 謝士渠, “精密微動定位平台”, 中華民國專利469902號, 2001.
30.W. Xu, and T. King, “Flexure hinges for piezoactuator displacement amplifiers: flexibility, accuracy, and stress considerations”, Precision Engineering, Vol.19, No. 1, pp. 4-10, July, 1996.
31.A. A. Elmustafa, and M. G. Lagally, “Flexural-hinge guided motion nanopositioner stage for precision machining: finite element simulations”, Precision Engineering, Vol. 25, No. 1, pp. 77-81, January, 2001.
32.G. Xu, and L. Qu, “Some analytical problems of high performance flexure hinge and micro-motion stage design”, Proceeding of the IEEE Interational Conference on Industrial Techology, No. 2-6, pp. 771-775, 1996.
33.K. Takamasu et al., “Development of Nano-CMM and Parallel-CMM - CMM in the 21th Century’’, Int. Dimensional Metrology Workshop, 1999.
34.J. M. Breguet, and R. Clavel, “Stick and slip actuators: design, control, performances and applications”, in IEEE Micromechatronics and Human Science, Proceedings, pp. 89-95, 1998.
35.K. C. Fan, C. D. Su and J. I. Mou, “Error analysis for a diffraction grating interferometric stylus probing system”, Measurement Science and Technology, Vol. 12, pp. 482-490, 2001.
36.M. Dobosz, “New stylus probe with interferometric transducer for surface roughness and form profiling”, Optical Engineering, Vol. 33, No. 3, p 902-907, 1994.
37.M. Dobosz, “Application of a focused laser beam in a grating interferometer for high-resolution displacement measurements”, Optical engineering, Vol. 38, No. 6, p 958-967, 1999.
38.K. Akiyama, and H. Iwaoka, “High resolution digital diffraction grating scale encoder”, U.S. Patent No. 4,629,886, 1986.
39.T. Nishimura et al., “Encoder incorporating a displaceable diffraction grating”, U.S. Patent No. 5,038,032, 1991.
40.S. Ishii et al., “Optical type encoder including diffraction grating for producing interference fringes that are processed to measure displacement”, U.S. Patent No. 4,912,320, 1990.
41.T. Nishimura et al., “Encoder with diffraction grating and multiply diffracted light”, U.S. Patent No. 4,970,388, 1990.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔