(34.204.185.54) 您好!臺灣時間:2021/04/11 05:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:楊雅惠
論文名稱:麥角固醇與廿烷酸在超臨界二氧化碳流體之溶解度量測及關聯
論文名稱(外文):Measurements and Correlations of the Solubilities of Ergosterol and Eicosanoic acid in Supercritical Carbon Dioxide
指導教授:程學恆楊芳鏘楊芳鏘引用關係
學位類別:碩士
校院名稱:東海大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:141
中文關鍵詞:超臨界流體相平衡廿烷酸麥角固醇
外文關鍵詞:Supercritical FluidPhase equilibriumEicosanoic acidErgosterol
相關次數:
  • 被引用被引用:0
  • 點閱點閱:176
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究採用半流動式相平衡實驗裝置來進行超臨界二氧化碳流體萃取實驗,為了證明本研究相平衡數據之準確性與可靠性,首先以萘(naphthalene)在超臨界二氧化碳流體中之溶解度作為測試系統,並與文獻值作比較,誤差值在4 %以內,與文獻值十分吻合。另外以二氧化碳作為萃取溶劑,分別量測廿烷酸(eicosanoic acid)與麥角固醇(ergosterol)在超臨界狀態下的平衡溶解度,廿烷酸之量測溫度為308.15 K、318.15 K與328.15 K,而麥角固醇之量測溫度則為318.15 K、323.15 K與333.15 K,壓力在119 bar至275 bar之間。
實驗結果顯示,廿烷酸在超臨界二氧化碳流體中之溶解度範圍在莫耳分率1.9×10-5 ~ 3.4×10-4間,而麥角固醇之溶解度略比廿烷酸低十倍,其溶解度範圍在莫耳分率2.9×10-6 ~ 3.0×10-5間。當系統定溫下升壓時,溶質的溶解度會隨壓力上升而增加,同時發現兩溶質於超臨界二氧化碳流體中之溶解度均有交錯現象發生,廿烷酸之交錯壓力在 150~180 bar之間,麥角固醇之交錯壓力在 130~170 bar間。
本研究將實驗所獲得之廿烷酸與麥角固醇的溶解度數據,分別以Chrastil、Schmitt-Reid、Giddings 及Santiago-Teja等半經驗關聯式進行關聯,各關聯式所獲得之最大平均相對誤差為8.5 %,其中廿烷酸與麥角固醇以Giddings關聯模式所獲得之誤差為最小,其誤差分別為4.8 %與4.2 %。
另一方面本研究亦使用Peng-Robinson狀態方程式,配合單一與雙交互作用參數之凡德瓦混合律,同時將昇華壓係數視為可調參數來關聯廿烷酸與麥角固醇在超臨界二氧化碳流體中之溶解度,結果則顯示使用雙參數之凡德瓦混合律對二系統之溶解度迴歸之趨勢較佳,廿烷酸與麥角固醇之平均相對誤差分別為7.7 % 與10.0 %。
In this work, a semi-flow type phase equilibrium apparatus was employed in a supercritical carbon dioxide extraction experiment. In order to ensure the accuracy and reliability of the measurements, the experimental apparatus was first tested by measuring the solubility of naphthalene in supercritical carbon dioxide, and the measured solubility data were compared with the literature data within 4 %. A good agreement between them was found. In addition, equilibrium solubility measurements were carried out at 318.15, 328.15, and 338.15 K and 318.15, 323.15, and 333.15 K in the pressure range from 119 bar to 275 bar for eicosanoic acid and ergosterol, respectively, using carbon dioxide as the supercritical extraction solvent.
The experimental results showed that the observed eicosanoic acid solubilities were higher than those of ergosterol by one order of magnitude. Specifically, the solubilities of eicosanoic acid in terms of mole fraction are in the range of 1.9×10-5 - 3.4×10-4, while those of ergosterol are between 2.9×10-6 and 3.0×10-5. At constant temperature, it was found that the solubilities of both solutes increased with pressure. For eicosanoic acid, the crossover pressures appeared in the 150-180 bar region at the measured temperatures. On the other hand, the crossover region for ergosterol under the given experimental conditions was in the range of 130-170 bar.
The measured solubility data of eicosanoic acid and ergosterol were correlated using four semi-empirical models including the Chrastil, Schmitt-Reid, Giddings, and Santiago-Teja equations. Experimental data and calculated results based on the four semi-empirical equations were in satisfactory agreement with a maximum average absolute relative deviation percentage (AARD) of about 8.5 %. The Giddings model resulted in the smallest deviations of 4.8 % and 4.2 % in correlating solubilities data for eicosanoic acid and ergosterol, respectively.
Also, the Peng-Robinson equation of state using one-parameter and two-parameter van der Waals mixing rules was used to correlate the experimental solubilities data. Solute sublimation pressures were treated as adjustable parameters in regressing the data. The results showed that the Peng-Robinson equation of state with the two-parameter van der Waals mixing rule gave a better agreement with average deviations of 7.7 % for eicosanoic acid and 10.0 % for ergosterol.
指導教授推薦書
口試委員審定書
中文摘要-----------------------------------------------------I
英文摘要---------------------------------------------------III
誌謝---------------------------------------------------------V
目錄--------------------------------------------------------VI
表目錄------------------------------------------------------IX
圖目錄-----------------------------------------------------XII
第一章 緒論--------------------------------------------------1
1-1 前言-----------------------------------------------------1
1-2 研究動機與目的-------------------------------------------2
1-3 論文結構與組織-------------------------------------------3
第二章 文獻回顧----------------------------------------------4
2-1 超臨界流體-----------------------------------------------4
2-1.1 超臨界流體的定義---------------------------------------5
2-1.2 超臨界流體的特性---------------------------------------5
2-1.3 超臨界流體的選擇---------------------------------------7
2-1.4 影響超臨界流體溶解能力的因素--------------------------10
2-1.5 超臨界流體相平衡裝置----------------------------------14
2-1.6 超臨界流體的應用--------------------------------------16
2-2 熱力學理論模式------------------------------------------19
2-2.1 相平衡理論--------------------------------------------19
2-2.2 狀態方程式法------------------------------------------21
2-2.2.1 汽液相平衡------------------------------------------21
2-2.2.2 氣固相平衡------------------------------------------23
2-2.2.3 立方型狀態方程式------------------------------------25
2-2.2.4 混合律----------------------------------------------30
2-2.3 膨脹液體模式法----------------------------------------33
2-2.4 半經驗關聯模式法--------------------------------------36
2-3 實驗物質------------------------------------------------42
第三章 實驗部分---------------------------------------------46
3-1 實驗藥品------------------------------------------------46
3-2 實驗設備------------------------------------------------47
3-3 裝置簡介------------------------------------------------48
3-4 實驗操作步驟--------------------------------------------50
3-5 原始數據處理--------------------------------------------52
第四章 超臨界流體平衡溶解度之模擬計算-----------------------54
4-1 狀態方程式法--------------------------------------------54
4-1.1 應用狀態方程式計算溶解度------------------------------54
4-1.2 物性資料之估算----------------------------------------60
4-2 半經驗關聯模式------------------------------------------63
第五章 結果與討論-------------------------------------------65
5-1 測試系統------------------------------------------------66
5-2 實驗結果------------------------------------------------68
5-2.1 二氧化碳-廿烷酸系統-----------------------------------68
5-2.2 二氧化碳-麥角固醇系統---------------------------------71
5-3 實驗溶解度數據之迴歸------------------------------------74
5-3.1 狀態方程式之迴歸分析----------------------------------74
5-3.2 半經驗關聯式之迴歸分析--------------------------------82
5-4 關聯結果比較-------------------------------------------105
5-4.1 狀態方程式迴歸結果-----------------------------------105
5-4.2 半經驗關聯式迴歸結果---------------------------------110
5-4.3 狀態方程式與半經驗關聯式之方法比較-------------------120
第六章 結論與建議------------------------------------------123
6-1 結論---------------------------------------------------123
6-2 建議---------------------------------------------------125
符號說明---------------------------------------------------126
參考文獻---------------------------------------------------129
附錄A 超臨界流體密度之計算---------------------------------136
簡歷-------------------------------------------------------141
表目錄
表2-1 不同流體狀態下之基本物理性質--------------------------6
表2-2 超臨界溶劑之臨界性質----------------------------------9
表2-3 天然飽和脂肪酸---------------------------------------45
表4-1 Joback官能基貢獻法計算廿烷酸物性所需之參數-----------62
表4-2 Joback官能基貢獻法計算麥角固醇物性所需之參數---------62
表5-1 在328.15 K下,萘於超臨界二氧化碳流體中之實驗溶解度與
文獻值之比較結果-------------------------------------67
表5-2 廿烷酸於超臨界二氧化碳流體中之實驗溶解度數據---------69
表5-3 麥角固醇於超臨界二氧化碳流體中之實驗溶解度數據-------72
表5-4 廿烷酸與麥角固醇之熱力學性質-------------------------76
表5-5 以P-R EOS+VDW1+式(4-2)模式迴歸廿烷酸於超臨界二氧化
碳流體中之溶解度實驗數據的結果(three parameters)-----77
表5-6 以P-R EOS+VDW2+式(4-2)模式迴歸廿烷酸於超臨界二氧化
碳流體中之溶解度實驗數據的結果(four parameters)------78
表5-7 以P-R EOS+VDW1+式(4-2)模式迴歸麥角固醇於超臨界二氧
化碳流體中之溶解度實驗數據的結果(three parameters)---79
表5-8 以P-R EOS+VDW2+式(4-2)模式迴歸麥角固醇於超臨界二氧
化碳流體中之溶解度實驗數據的結果(four parameters)----80
表5-9 以P-R EOS+VDW1+式(4-2)模式迴歸各溶質於超臨界二氧化
碳流體中之溶解度數據所得之參數值---------------------81
表5-10 以P-R EOS+VDW2+式(4-2)模式迴歸各溶質於超臨界二氧化
碳流體中之溶解度數據所得之參數值---------------------81
表5-11 Chrastil關聯式關聯廿烷酸於超臨界二氧化碳流體之中溶解
度數據的結果----------------------------------------83
表5-12 Chrastil關聯式關聯麥角固醇於超臨界二氧化碳流體中之溶
解度數據的結果--------------------------------------84
表5-13 Chrastil關聯式關聯各溶質於超臨界二氧化碳流體中之溶解
度數據所得之參數值----------------------------------87
表5-14 Schmitt and Reid關聯式關聯廿烷酸於超臨界二氧化碳流體
中之溶解度數據的結果--------------------------------92
表5-15 Schmitt and Reid關聯式關聯麥角固醇於超臨界二氧化碳流
體中之溶解度數據的結果------------------------------93
表5-16 Schmitt and Reid關聯式關聯各溶質在超臨界二氧化碳流體
中之溶解度數據所得之參數值--------------------------94
表5-17 Giddings關聯式關聯廿烷酸於超臨界二氧化碳流體中之溶
解度數據的結果--------------------------------------98
表5-18 Giddings關聯式關聯麥角固醇在超臨界二氧化碳流體中之
溶解度數據的結果------------------------------------99
表5-19 Giddings關聯式關聯各溶質在超臨界二氧化碳流體中之溶
解度數據所得之參數值-------------------------------100
表5-20 Santiago and Teja關聯式關聯廿烷酸於超臨界二氧化碳流體
中之溶解度數據的結果-------------------------------102
表5-21 Santiago and Teja關聯式關聯麥角固醇於超臨界二氧化碳流
體中之溶解度數據的結果-----------------------------103
表5-22 Santiago and Teja關聯式關聯各溶質在超臨界二氧化碳流體
中之溶解度數據所得之參數值-------------------------104
表5-23 各種模式對廿烷酸與麥角固醇在超臨界二氧化碳流體中之
溶解度數據關聯的結果-------------------------------122
圖目錄
圖2-1 純物質之典型壓力對溫度相圖----------------------------6
圖2-2 對比壓力與對比密度之關係圖----------------------------8
圖2-3 兩溶質在超臨界流體中之交錯壓力關係圖-----------------13
圖3-1 實驗設備裝置圖---------------------------------------53
圖4-1 以Peng-Robinson EOS配合混合律計算溶解度之流程圖------59
圖5-1 在328.15 K下,萘於超臨界二氧化碳流體中之實驗溶解度與
文獻值之比較-----------------------------------------67
圖5-2 不同溫度壓力下,廿烷酸在超臨界二氧化碳流體中之平衡溶
解度-------------------------------------------------70
圖5-3 不同溫度壓力下,麥角固醇在超臨界二氧化碳流體中之平衡
溶解度-----------------------------------------------73
圖5-4 廿烷酸在超臨界二氧化碳流體中之溶解度與二氧化碳密度
的關係-----------------------------------------------85
圖5-5 麥角固醇在超臨界二氧化碳流體中之溶解度與二氧化碳密
度的關係---------------------------------------------86
圖5-6 廿烷酸於超臨界二氧化碳流體中之增強因子與二氧化碳密
度的關係---------------------------------------------90
圖5-7 麥角固醇於超臨界二氧化碳流體中之增強因子與二氧化碳
密度的關係-------------------------------------------91
圖5-8 廿烷酸於超臨界二氧化碳流體中之溶解度與二氧化碳對比
密度的關係-------------------------------------------96
圖5-9 麥角固醇於超臨界二氧化碳流體中之溶解度與二氧化碳對
比密度的關係-----------------------------------------97
圖5-10 廿烷酸之實驗值與PR EOS +VDW1+式(4-2)模式之計算值比
較(three parameters)--------------------------------106
圖5-11 麥角固醇之實驗值與PR EOS +VDW1+式(4-2)模式之計算值
比較(three parameters)------------------------------107
圖5-12 廿烷酸之實驗值與PR EOS +VDW2+式(4-2)模式之計算值比
較(four parameters)---------------------------------108
圖5-13 麥角固醇之實驗值與PR EOS +VDW2+式(4-2)模式之計算值
比較(four parameters--------------------------------109
圖5-14 廿烷酸之實驗值與以Chrastil關聯式之計算值比較--------112
圖5-15 麥角固醇之實驗值與以Chrastil關聯式之計算值比較------113
圖5-16 廿烷酸之實驗值與以Schmitt and Reid關聯式之計算值比較114
圖5-17 麥角固醇之實驗值與以Schmitt and Reid關聯式之計算值比
較--------------------------------------------------115
圖5-18 廿烷酸之實驗值與Giddings關聯式之計算值比較----------116
圖5-19 麥角固醇之實驗值與Giddings關聯式之計算值比較--------117
圖5-20 廿烷酸之實驗值與Santiago and Teja關聯式之計算值比較 118
圖5-21 麥角固醇之實驗值與Santiago and Teja關聯式之計算值比較
----------------------------------------------------119
1.五十嵐脩, 食品化學-食品成分の特性と變化, 弘學出版株式會社發行, 川崎巿, (1980).
2.Angus, S., B. Armstrong, and K. M. de Reuck, IUPAC. International thermodynamic tables of the fluid state: Carbon Dioxide, Pergamon Press, Oxford, UK (1973).
3.Basil, O. B., C. C. Kao, and K. M. Dooley, R. P. Gambrell, and F. C. Knopf, “Supercritical extraction of toxic organics from soils,” Ind. Eng. Chem. Res., 26, 261-268 (1987).
4.Chrastil, J., “Solubility of solids and liquids in supercritical gases,” J. Phys. Chem., 86, 3016-3021 (1982).
5.Chimowitz, E. H. and K. J. Pennisi, “Process synthesis concepts for supercritical gas extraction in the crossover region,” AIChE J., 23, 1665-1676 (1986).
6.Cortesi, A., I. Kikic, P. Alessi, G. Turtoi, and S. Garnier, “Effect of chemical structure on the solubility of antioxidants in supercritical carbon dioxide:experimental data and correlation,” J. Supercritical Fluids, 14, 139-144 (1999).
7.Cygnarowicz, P. G. and S. K. Kumar, “Design and control of a process to extract β-carotene with supercritical carbon dioxide,” Biotechnol. Prog., 6, 82-91 (1990).
8.De Fillip, R. P. and J. M. Moses, “Extraction of organics from aqueous solution using critical fluid carbon dioxide,” Biotechnol. Bioeng. Symp., 11, 205, (1982).
9.Dooley, K. M., C. P. Kao, R. P. Gambrell, and F. C. Knopf, “The use of entrainers in the supercritical extraction of soils contaminated with hazardous organics,” Ind. Eng. Chem. Res., 26, 2058-2062 (1987).
10.Foster, N. R., H. Singh, S. L. J. Yun, D. L. Tomasko, and S. J. Macnaughton, “Polar and nonpolar cosolvent effects on the solubility of cholesterol in supercritical carbon dioxide,” Ind. Eng. Chem. Res., 32, 2849-2853 (1993).
11.Francis, A. W., “Ternary system of liquid carbon dioxide,” J. Phys. Chem., 58, 1099-1109 (1954).
12.Georgenton, G. K., R. L. Smith, and A. S. Teja, “Application of cubic equation of state to polar fluids and fluid mixtures,” ACS Symp. Series, 300, 434-451 (1986).
13.Giddings, J. C., M. N. Myers, L. McLaren, and R.A. Keller, “High pressure gas chromatography of nonvolatile species,” Science, 162, 67-73 (1968).
14.Giddings, J. C., M. N. Myers, and J. W. King, “Dense gas chromatography at pressures to 2000 atmospheres, ” J. Chromatogr. Sci., 7, 276-283 (1969).
15.Giovanni, D. R. and D. G. Gabriele, “Removal and destruction of toxic micropolluting organic compounds from waste waters by a combined NF and SCWO process, ” Desalination, 138, 61-64 (2001).
16.Gordillo, M. D., M. A. Blanco, A. Molero, and E. Martinez de la Ossa, “Solubility of the antibiotic Penicillin G in supercritical carbon dioxide,” J. Supercritical Fluids, 15, 183-190 (1999).
17.Huron, M. J. and J. Vidal, “New mixing rules in simple equations of state for representing vapor-liquid equilibria of strongly nonideal mixtures,” Fluid Phase Equilibria, 3, 255-271 (1979).
18.Ismadji, S. and S. K. Bhatia, “Solubility of selected esters in supercritical carbon dioxide,” J. Supercritical Fluids, 27, 1-11 (2003).
19.Iwai, Y., T. Fukuda, Y. Koga, and Y. Aral, “Solubilities of myristic acid, palmitic acid, and cetyl alcohol in supercritical carbon dioxide at 35℃,” J. Chem. Eng. Data, 36, 430-432 (1991).
20.Kim, K. H. and J. Hong, “Equilibrium solubilities of spearmint oil components in supercritical carbon dioxide and ethane,” Fluid Phase Equilibria, 164, 107-115 (1999).
21.Kurnik, R. T., S. J. Holla, and R. C. Reid, “Solubility of solids in supercritical carbon dioxide and ethylene,” J. Chem. Eng. Data, 26, 47-51 (1981).
22.Kramer, A. and G. Thodos, “Solubility of 1-hexadecanol and palmitic acid in supercritical carbon dioxide,” J. Chem. Eng. Data, 33, 230-234 (1988).
23.Lee, R. J. and K. C. Chao, “Extraction of 1-methyl naphthalene and m-cresol with supercritical carbon dioxide and ethane,” Fluid Phase Equilibria, 43, 329-340 (1988).
24.Madras, G., C. Kulkarni, and J. Modak, “Modeling the solubilities of fatty acid in supercritical carbon dioxide,” Fluid Phase Equilibria, 209, 207-213 (2003).
25.Marr, R. and T. Gamse, “Use of supercritical fluids for different processes including new developments-a review,” Chem. Eng. Processing, 39, 19-28 (2000).
26.McHugh, M. A. and V. J. Krukonis, Supercritical fluid extraction, Butterworth, Stoneham, (1986).
27.McHugh, M. A. and V. J. Krukonis, Supercritical fluid extraction: principles and practice, 2nd ed., Butterworth-Heinemann, Boston, (1994).
28.McHugh, M. A., A. J. Seckner, and T. J. Yogan, “High-pressure phase behavior of binary mixtures of octacosane and carbon dioxide,” Ind. Eng. Chem. Fundam, 23, 413-432 (1984).
29.Mendes, R. L., B. P. Nobre, J. P. Coelho, and A. F. Palavra, “Solubility of β-carotene in supercritical carbon dioxide and ethylene,” J. Supercritical Fluids, 16, 99-106 (1999).
30.Mendez-Saniago, J. and A. S. Teja, “The solubilities of solids in supercritical fluids,” Fluid Phase Equilibria, 158-160, 501-510 (1999).
31.Murga, R., M. T. Sanz, S. Beltran, and J. L. Cabezas, “Solubility of some phenolic compounds contained in grape seeds in supercritical carbon dioxide,” J. Supercritical Fluids, 23, 113-121 (2002).
32.Murga, R., M. T. Sanz, S. Beltran, and J. L. Cabezas, “Solubility of three hydroxycinnamic acids in supercritical carbon dioxide,” J. Supercritical Fluids, 27, 239-245(2003).
33.Nalesnik, C. A., B. N. Hansen, and J. T. Hsu, “Solubility of pure taxol in supercritical carbon dioxide,” Fluid Phase Equilibria, 146, 315-323 (1998).
34.Nelder, J. A. and R. Mead, “A simple method for function minimization,” Computer J., 7, 308-313 (1964).
35.Patel, N. C. and A. S. Teja, “A new cubic equation of state for fluids and fluid mixtures,” Chem. Eng. Sci., 37, 463-473 (1982).
36.Peng, D. Y. and D. B. Robinson, “A new two-constant equation of state,” Ind. Eng. Chem. Fundam, 15, 59-64 (1976).
37.Reid, R. C., Prausnitz, J. M., and Poling, B. E., The properties of gases and liquids, 4th edn., McGraw-Hill Internation Edition: Singapore, (1988).
38.Rizvi, S. S. H., A. L. Benado, J. A. Zollweg, and J. A. Daniels, “Supercritical fluid extraction:fundamental principles and modeling methods,” Food Technology, 40(6), 54-65 (1986).
39.Roy, B. C., Goto, M., and Hirose, T., “Temperature and pressure effects on supercritical CO2 extraction of tomato seed oil,” International Journal of Food Science and Technology, 31, 137-141 (1996).
40.Poling, B. E., J. M. Prausnitz, and T. P. O’Connell, The properties of gases and liquids, 5th edn., McGraw Hill, New York, 11-28, (2001).
41.Tan, C, S. and D. C. Liou, “Supercritical regeneration of activated carbon loaded with benzene and toluene,” Ind. Eng. Chem. Res., 28, 1222-1226 (1989).
42.Tsekhanskaya, Y., M. Iomtev, and E. Mushkina, “Solubility of naphthalene on ethylene and carbon dioxide under pressure, ” Russ. J. Phys. Chem. 9, 1173-1176 (1964).
43.Schmitt, W. J. and R. C. Reid, “The influence of the solvent gas on solubility and selectivity in supercritical extraction, ” in: J. M. L. Penninger, M. Radosz, M. A. McHugh, V. J. Krukonis (Eds.), Supercritical Fluids Technology, Elsevier, Amsterdam, 123-137 (1985).
44.Soave, G., “Equilibrium constants from a modified Redlich-Kwong equation of state,” Chem. Eng. Sci., 27, 1197-1203 (1972).
45.Sovova, H., R. P. Stateva, and A. A. Galushko, “Solubility of β-carotene in supercritical CO2 and the effect of entrainers,” J. Supercritical Fluids, 21, 195-203 (2001).
46.Wang, Q. and K. C. Chao, “Vapor-liquid and Liquid-liquid equilibria and critical states of water+n-decane mixtures,” Fluid Phase Equilibria, 59, 207-215 (1990).
47.Wells, P. A., R. P. Chaplin, and N. R. Foster, “Solubilities of phenyacetic acid and vanillan in supercritical carbon dioxide,” J. Supercritical Fluids, 3, 8-14 (1990).
48.Wong, J. M. and K. P. Johnston, “Solubilization of biomolecules in carbon dioxide based supercritical fluids,” Biotechnology Progress, 2, 29-39 (1986).
49.Yau, J. S. and F. N. Tasi, “Solubilities of 1-hexadecanol and 1-octadecanol in subcritical and supercritical carbon dioxide,” J. Chem. Eng. Data, 37, 285-287 (1992).
50.Yamini, Y., M. R. Fat’hi, N. Alizadeh, and M. Shamsipur, “Solubilitiy of dihydroxybenzene isomers in supercritical carbon dioxide,” Fluid Phase Equilibria, 152, 299-305 (1998).
51.Yamini, Y., J. Arab, and M. Asghari-khiavi, “Solubilities of phenazopyridine, propranolol, and methimazole in supercritical carbon dioxide,” J. Pharmaceutical and Biomedical Analysis., 32, 181-187 (2003).
52.Yu, Z. R., Singh B., and Rizvi, S. S. H., “Solubilities of fatty acids, fatty acid esters, triglycerides, and fats and oils in supercritical carbon dioxide,” J. Supercritical Fluids, 7, 51-59 (1994).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 江文雄、田振榮、林炎旦、張宗憲(1999)。技職校院學生能力標準建構與能力分析模式。技術及職業教育雙月刊,54,2-8。
2. 朱元祥、蒲介珉(2000)。模組化課程設計之簡介。技術及職業教育雙月刊,57,43-46。
3. 白玉珠、鄒怡真、黃鈴雅、洪曉佩、陶秀蘭(2002)。脫離呼吸器護理評估量表之發展與測試。榮總護理,19(2),168-178。
4. 白玉珠、徐南麗、汪蘋(1999)。某醫學中心護理人員自評之護理能力及個人特質相關性研究。護理研究,7(3),209-220。
5. 白玉珠、陳裕美、張宗培(1995)。胸腔內科病患護理評估記錄表之設計及評值。榮總護理,12(4),328-336。
6. 田振榮(2001)。以職場為導向學生能力標準架構與能力分析模式。技術及職業教育雙月刊,63,16-20。
7. 呂怡慧、黃美智(1997)。呼吸器脫離之護理過程─以一名車禍老年病患為例。榮總護理,14(3),314-326。
8. 李中月(1997)。加護病房分級認定之檢討。衛生報導,7(3),22-28。
9. 李隆盛(2001)。美國能力本位課程發展模式。就業與訓練,19(3),37-45。
10. 李漢雄(2000)。職業能力開發。人力培訓專刊,89年3月號,30-34。
11. 宋文娟(2001)。一種質量並重的研究方法-德菲法在醫務管理學研究領域之應用。醫務管理期刊,2(2),11-20。
12. 周談輝(1984)。職業訓練實施能力本位教學知探討。中美技術季刊,29(4),35-53。
13. 吳清平、楊式興、蔡珮漪、彭萬誠、顏鴻欽、江啟輝(2000)。在醫學中心內新成立的呼吸照護中心使用呼吸器患者一年的預後分析。中華民國重症醫學雜誌,2(1),1-14。
14. 林美英(2000)。一位重複插氣管內管的慢性阻塞性肺疾病病人成功戒斷呼吸器的因應行為。高雄護理雜誌,17(2),62-73。
15. 紀崑山、王秀銀、王銘富、張珍田、顏至慶、周志和(1996)。呼吸衰竭初期營養狀態之探討。內科學誌,7(3),265-273。
 
系統版面圖檔 系統版面圖檔