(3.238.174.50) 您好!臺灣時間:2021/04/17 05:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林瑜旻
研究生(外文):Lin Yu Min
論文名稱:PM-PMA-HOAc系統有限濃度與稀釋端之汽液相平衡研究
論文名稱(外文):Finite and Limiting-Concentration Vapor-Liquid Equilibria for the PM-PMA-HOAc System
指導教授:程學恆
學位類別:碩士
校院名稱:東海大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:132
中文關鍵詞:無限稀釋頂空取樣活性係數汽液相平衡
外文關鍵詞:infinite diluteheadspaceactivity coefficient
相關次數:
  • 被引用被引用:1
  • 點閱點閱:164
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
在化工的分離程序設計當中,常需仰賴汽液相平衡數據,而稀釋端的汽液相平衡數據對於高純度的化學品或是近沸物的分離程序之評估有著關鍵性的影響。傳統上汽液相平衡往往著重於有限濃度範圍,並常以外插方式判斷稀釋端相平衡,但此法並無法準確地描繪稀釋端之相平衡行為,而此區域的相平衡資料卻為許多分離程序(如廢水處理、萃取蒸餾、共沸蒸餾等)開發與設計的依據。
本研究針對丙二醇甲醚(PM)-丙二醇甲醚醋酸酯(PMA)-醋酸(HOAc)系統進行有限濃度端汽液相平衡之探討,首先採用動態再循環式相平衡裝置量測參個二元成份系統常壓下汽液相平衡數據-PM-HOAc,PMA-HOAc及PM-PMA系統,對前二個系統吾人考慮了醋酸在汽相之締合現象並以NRTL模式迴歸,均獲得不錯的結果;且為了要與以其他方式獲取之無限稀釋活性係數作一比較,吾人同時針對PM-PMA系統進行六組低壓下汽液相平衡實驗,並以NRTL模式獲得滿意的迴歸結果並找出最佳模式參數,且均通過一致性檢驗。
吾人再以頂空取樣系統為基礎之平衡頂空取樣法、相比例改變法、多重頂空萃提法,在定溫下(60℃、80℃、100℃)進行稀釋端相平衡實驗,求出無限稀釋下的活性係數與部分莫耳過剩焓值 ,並將此三種方法所得之結果與低壓下汽液相平衡實驗結果加以比較。所得之實驗結果並不很一致,但以低壓下所取得之汽液相平衡數據,與以相比例改變法所得之無限稀釋活性係數與部分莫耳過剩焓值在100℃時較為接近,最後吾人探討各實驗方法所產生之差異與適用性。
We often rely heavily on vapor-liquid equilibrium (VLE) data to properly design separation processes. Yet, vapor-liquid equilibrium data at the dilute end in particular is critical in assessing separation processes involving high-purity chemicals or close-boiling mixtures. Nevertheless, much of the emphasis has been conventionally placed on non-dilute end or so-called finite concentration region. Dilute-end phase equilibrium behavior is usually generated from the extrapolation of finite-concentration vapor-liquid equilibrium data. In this way, the regressed data cannot accurately represent true phase equilibrium behavior especially in the dilute region. In fact, many separation processes, such as wastewater treatment, extractive distillation, and azeotropic distillation processes, frequently use the phase equilibrium data in this particular region as the basis for process design and development purposes.
In this work, the finite-concentration vapor-liquid equilibrium data for the propylene glycol monomethyl ether (PM)- propylene glycol monomethyl ether acetate (PMA)- acetic acid (HOAc) system were first measured with a dynamic recirculation still. Specifically, isobaric VLE measurements were made for the binary systems PM+HOAc, PMA+HOAc, and PM+PMA at 101.3KPa. In regressing the data using the NRTL model, vapor phase nonidealities due to association of acetic acid were accounted for in the first two binary systems. In order to compare infinite dilution activity coefficient data from other methods, VLE data for the PM+PMA system were also measured at six sub-ambient pressures. Satisfactory regression results were obtained for the above data, and optimized NRTL parameters were also found. Additionally, all of the measured data passed the integral test for thermodynamic consistency.
Three experimental methods involving headspace gas chromatography were used to carry out isothermal dilute-end VLE measurements (at 60, 80, and 100℃) - equilibrium headspace sampling method, phase ratio variation method, and multiple headspace extraction method. Infinite dilution activity coefficients of PM in PMA and of PMA in PM, and , at these three temperatures were obtained, along with partial molar excess enthalpies at infinite dilution, and . The values of and from all of the preceding methods were compared and the agreement was less than satisfactory. However, the values at 100 oC measured by the phase ratio variation method were found to be comparable to those calculated using the low-pressure VLE data. Likely errors and deficiencies of the methods were discussed.
中文摘要……………...………………………………………………….I
英文摘要……………...…………………………………………………II
目錄……………...……………………………………………………...III
表目錄……………...…………………………………………………VIII
圖目錄……………...…………………………………………………...XI
第1章 緒論………………...…………………………………………..1
1.1前言…………………………...…………………………………1
1.2研究動機………………………………………………………...2
1.3論文組織與架構………………………………………………...3
第2章 文獻回顧與簡介……………………………………….………4
2.1有限濃度端之汽液相平衡………………………………...……4
2.1.1汽液相平衡簡介…………………………………………4
2.1.2汽液相平衡實驗裝置與類型……………………………5
2.1.3締合現象……………...………………………………….7
2.1.3.1汽相締合現象…………………………………...7
2.1.3.2汽液相締合現象……………………………….10
2.2無限稀釋端之汽液相平衡…………………………………….13
2.2.1無限稀釋活性係數之定義……………………………..13
2.2.2無限稀釋活性係數之應用……………………………..14
2.2.2.1汽液相平衡之預測…………………………...14
2.2.2.2質量分離劑的選擇…………………………...14
2.2.2.3廢水中有機揮發物的去除…………….……..15
2.2.2.4共沸物存在之預測…………………………...15
2.2.3無限稀釋活性係數之模式預測………………………..16
2.2.3.1正規溶液理論…………………………...……16
2.2.3.2 ASOG方法…………………………………...18
2.2.3.3 UNIFAC方法………………………………...19
2.2.3.4 SPACE與MOSCED方法……………………21
2.2.4無限稀釋活性係數測量方法…………………………..22
2.2.4.1微分汽液相平衡法…………………………...22
2.2.4.2氣液相層析法………………………………...24
2.2.4.3非穩態氣液相層析法………………………...25
2.2.4.4液液相層析法………………………………...26
2.2.4.5氣提法………………………………………...27
2.2.4.6 Rayleigh蒸餾法………...……………………28
第3章 以頂空取樣系統為基礎之汽液相平衡……………………...29
3.1平衡頂空取樣法…………………………………….…………29
3.1.1頂空取樣基本原理……………………………………..29
3.1.2頂空取樣測量活性係數………………………………..31
3.1.3頂空取樣修正項………………………………………..32
3.2相比例改變法………………………...………………………..35
3.3多重頂空萃提法………………………………...……………..37
第4章 實驗方法與步驟……………………………………………...42
4.1有限濃度端之汽液相平衡實驗……………………………….42
4.1.1汽液相平衡之實驗裝置………………………………..42
4.1.2實驗樣品…………………………………………..……43
4.1.3分析儀器與條件………………………………………..43
4.1.4 GC檢量曲線…………………………………………...44
4.1.5常壓下之汽液相平衡實驗……………………………..44
4.1.6低壓下之汽液相平衡實驗……………………………..46
4.2稀釋端之汽液相平衡實驗…………………………………….48
4.2.1頂空取樣系統實驗裝置………………………………..48
4.2.2頂空取樣系統之實驗………………………..…………50
4.2.2.1平衡頂空取樣法…………………………...…50
4.2.2.2相比例改變法……...…………………………52
4.2.2.3多重頂空萃提法……….……………………..53
第5章 實驗結果與討論……………………………………………...55
5.1有限濃度端之汽液相平衡…………………………………….55
5.1.1檢量曲線………………………………………………..55
5.1.2物質Antoine參數迴歸…………………………………56
5.1.3常壓下之汽液相平衡…………………………………..57
5.1.4低壓下之汽液相平衡…………………………………..62
5.1.5一致性檢驗……………………………………………..75
5.2稀釋端之汽液相平衡………………………………………….79
5.2.1平衡頂空取樣法………………………………………..79
5.2.2相比例改變法…………………………………………..97
5.2.3多重頂空萃提法………………………………………105
5.3結果與討稐…………………………………………………...110
第6章 未來展望…………………………………………………….121
符號說明……………...…………………………………………….…122
參考文獻……………...…………………………………………….…126
1. Li, T., J. G. Yan, and Z. G. Yan, “Synthesis of Propylene Glycol Monomethyl Ether Acetate,” J. of East China Univ. of Sci. and Technology, 26, 587 (2000).
2. Sebastiani, E. and L. Lacgantini, “Acetic Acid-Water System Thermodynamical Correlation of Vapor-Liquid Equilibrium Data,” Chem. Eng. Sci., 22, 1155 (1967).
3. Marek, J., “Vapor-Liquid Equilibria in Mixtures Containing an Associating Substance. II. Binary Mixtures of Acetic Acid at Atmospheric Pressure,” Collen. Czech. Chem. Commun., 20, 1490 (1955).
4. Kojima, K., S. Zhang, and T. Hiaki, “Measuring Methods of Infinite Dilution Activity Coefficients and a Database for Systems Including Water,” Fluid Phase Equilibria, 131, 145 (1997).
5. Alessi, P., M. Fermeglia, and I. Kikic, “Significance of Dilute Regions,” Fluid Phase Equilibria, 70, 239 (1991).
6. Byers, W. D. and C. M. Morton, Environ. Prog., 4(2), 111 (1985).
7. Okoniewski, B. A., Chem. Eng. Prog., Feb. 89 (1992).
8. Fleming, J. L., Volatilization Technologies for Removing Organics from Water, Noyes Publications, Park Ridge, N. J. (1989).
9. Hildebrand, J. H. and R. L. Scott, Regular Solution, Prentice-Hall, Englewood Cliffs, N. J. (1962).
10. Poling, B. E., J. M. Prausnitz, and J. P. O’Connell, The Properties of Gases and Liquids, 5th, McGraw-Hill, N. Y. (2001).
11. Wilson, G. M. and C. H. Deal, Ind. Eng. Chem. Fundam., 1, 20 (1962).
12. Wilson, G. M., J. Am. Chem. Soc., 86, 127 (1964).
13. Eckert, C. A. and S. R. Sherman, “Measurement and Prediction of Limiting Activity Coefficients,” Fluid Phase Equilibria, 116, 333 (1996).
14. Fredenslund, A., R. L. Jones, and J. M. Prausnitz, AIChE J., 21, 1086 (1975).
15. Gmehling, J., “Vapor-Liquid Equilibriums by UNIFAC Group Contribution. Revision and Extension. 2 ,” Ind. Eng. Chem. Proc. Des. Dev., 21, 118 (1982).
16. Tieg, D., J. Gmehling, and P. Rasmussen, “Vapor-Liquid Equilibria by UNIFAC Group Contribution. 4. Revision and Extension,” Ind. Eng. Chem. Res., 26, 159 (1987).
17. J. Gmehling, J. Li, and M. Schiller, Fluid Phase Equilibria, 27, 171 (1986).
18. Weidlich, U. and J. Gmehling, “A Modified UNIFAC Model. 1. Prediction of VLE, and Infinite Dilution Activity Coefficient,” Ind. Eng. Chem. Res., 26, 1372 (1987).
19. Gmehling, J., J. Li, and M. Schiller, “A Modified UNIFAC Model. 2.Present Parameter Matrix and Results for Different Thermodynamic Properties,” Ind. Eng. Chem. Res., 32, 178 (1993).
20. Castells, C. B., P. W. Carr, D. I. Eikens, D. Bush, and C. A. Eckert, “Comparative Study of Semitheoretical Models for Predicting Infinite Dilution Activity Coefficients of Alkanes in Organic Solvents,” Ind. Eng. Chem. Res., 38, 4104 (1999).
21. Hait, M. J., C. L. Liotta, C. A. Eckert, D. L., Bergmann, A. M. Karachewski, A. J. Dallas, D. I., Eikens, J. J., Li, P. W. Carr, R. B. Poe, and S. C. Rutan, “Space Predictor for Infinite Dilution Activity Coefficients,” Ind. Eng. Chem. Res., 32, 2905 (1993).
22. Thomas, E. R. and C. A. Eckert, “Prediction of Limiting Activity Coefficients by A Modified Separation of Cohesive Energy Density Model and UNIFAC,” Ind. Eng. Chem. Proc. Des. Dev., 23, 194 (1984).
23. Howell, W. J., A. M. Karachewski,K. M. Stephenson, C. A. Eckert, J. H. Park, P. W. Carr, and S. C. Rutan, Fluid Phase Equilibria, 52, 151 (1989).
24. Thomas, E. R., B. A. Newman, G. L. Nicolaides, and C. A. Eckert, “Limiting Activity Coefficients from Differential Ebulliometry,” J. Chem. Eng. Data, 27, 233 (1982).
25. Scott, L. S., Fluid Phase Equilibria, 26, 149 (1986).
26. Trampe, D. M. and C. A. Eckert, “Limiting Activity Coefficients from An Improved Differential Boiling Point Technique,” J. Chem. Eng. Data, 35, 156 (1990).
27. Gautreaux, M. F. and J. Coates, AIChE J., 1, 496 (1955).
28. Dohnal, V. and Novotna, M., “Infinite-Dilution Activity Coefficient by Comparative Ebulliometry: the Mixtures of Freon 112 with Oxygenated Solvents and Hydrocarbons,” Fluid Phase Equilib., 23, 303 (1985).
29. Pividal, K. A. and S. I. Sandler, “Ebulliometric Method for Measuring Activity Coefficients at Infinite Dilution: Systems with Cyclic Ethers,” J. Chem. Eng. Data, 33, 438 (1988).
30. Goncalves, A. S. and E. A. Macedo, “Infinite-Dilution Activity Coefficients by Comparative Ebulliometry: Five Systems Containing Ethyl Formate,” Fluid Phase Equilib., 85, 171 (1993).
31. Gmehling, J. and U. Onken, DECHEMA Chemistry Data Series, Frankfurt/Main (1978-1994).
32. Anand, S. C., J. P. E. Grolier, S. Klyohara, C. J. Halpin, and G. C. Benson, “ Thermodynamic Properties of Some Cycloalkane-
Cycloalkanol Systems at 298. 15K,” J. Chem. Eng. Data, 20, 184 (1975).
33. Belfer, A. J. and D. C. Locke, “Non-Steady-State Gas Chromatography for Activity Coefficient Measurements,” Anal. Chem., 56, 2485 (1984).
34. Landau, I., A. J. Belfer, and D. C. Locke, “Measurement of Limiting Activity Coefficients Using Non-Steady-State Gas Chromatography,” Ind. Eng. Chem. Res., 30, 1900 (1991).
35. Martin, A. J. P. and R. L. M. Synge, Biochem. J., 35, 91 (1941).
36. Locke, D. C. and D. E. Martire, “Theory of Solute Retention in Liquid-Liquid Chromatography,” Anal. Chem., 39, 921 (1967).
37. Leroi, J. C., J. C. Masson, H. Renon, J. F. Fabrics, and H. Sannier, “Accurate Measurement of Activity Coefficients at Infinite Dilution by Inert Gas Stripping and Gas Chromatography,” Ind. Eng. Chem. Proc. Des. Dev., 16, 139 (1977).
38. Li, J., Andrew J. Dallas, David I. Eikens, Peter W. Carr, Diane L. Bergmann, Mitchell J. Hait, and Charles A. Eckert, “Measurement of Large Infinite Dilution Activity Coefficients of Nonelectrolytes in Water by Inert Gas Stripping and Gas Chromatography,” 65, 3212 (1993).
39. Hovorka, S., V. Dohnal, A. H. Roux, and G. Roux-Desgranges, “Determination of Temperature Dependence of Limiting Activity Coefficients for A Group of Moderately Hydrophobic Organic Solutes in Water,” Fluid Phase Equilibria, 201, 135 (2002).
40. Kolb, B. and L. S. Ettre, Static Headspace Gas Chromatography, Theory and Practice, New York (1997).
41. Hussam, A. and P. W. Carr, “Rapid and Precise Method for the Measurement of Vapor/Liquid Equilibria by Headspace Gas Chromatography,” Anal. Chem., 57, 793-801 (1985).
42. Chai, X. S. and J. Y. Zhu, “Indirect Headspace Gas Chromatographic Method for Vapor—Liquid Phase Equilibrium Study,” J. Chromatogr. A, 799, 207 (1998).
43. Gupta, A. K., A. S. Teja, X. S. Chai, and J. Y. Zhu, “Henry''s Constants of n-Alkanols (Methanol Through n-Hexanol) in Water at Temperatures between 40°C and 90°C,” Fluid Phase Equilibria, 170, 183 (2000).
44. Kolb, B. and L. S. Ettre, Chromatographia, 32, 505 (1991).
45. Chai, X. S. and J. Y. Zhu, “Simultaneous Measurements of Solute Concentration and Henry''s Constant Using Multiple Headspace Extraction Gas Chromatography,” Anal. Chem., 70, 3481 (1998).
46. Filho, O. C., P. Proust, and P. Rasmussen, “Vapor-Liquid Equilibria for Glycol Ether + Water Systems,” J. Chem. Eng. Data, 38, 128 (1993).
47. Sandler, S. I., Chemical and Engineering Thermodynamics, 3rd, ed. (1999).
48. Schreiber, D. R. and K. S. Pitzer, Fluid Phase Equilibria, 46, 113 (1989).
49. Leland, T. W., Jr. and P. S. Chappelear, “The Corresponding States Principle-A Review of Current Theory and Practice,” Ind. Eng. Chem., 60 (7) , 15 (1968).
50. Ramaiah, V. and L. I. Stiel, “Effective Parameters for Nonpolar Mixtures from Properties of Components,” Ind. Eng. Chem. Proc. Des. Dev., 11 , 501 (1972).
51. Kolb, B., L. S. Ettre, and C. Welter, “Determination of Gas-Liquid Partition Coefficients by Automatic Equilibrium Headspace-Gas Chromatography Utilizing the Phase Ratio Variation Method,” Chromatographia, 35, 73 (1993).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 呂宏進、林政東(89)。激勵與爆發力的訓練週期,大專體育學刊,165-173頁。
2. 游添燈(民81)。柔軟度與關節活動範圍,大專體育,56-65頁。
3. 陳聰毅(民91)。肌肉組織的伸展適應。中華體育,30-38頁。
4. 黃妙國、梁正有、高志強(民90)。2000年雪梨奧運百公尺成績與起跑反應時間之相關研究。宜蘭技術學報第7期,127-133
5. 薩來欣、林大豐(1990)。耳穴貼壓刺激對激烈運動 中耗氧量之影響。中華民國體育學會體育學報,12輯 ,159-174頁。
6. 薩來欣、林昭庚、林正常(1994)。耳穴貼壓刺激對激烈運動前後生理反應之影響。中華民國體育學會體育學報,17輯,287-306頁。
7. 王雅玄(1998)。德懷術(Delphi)在課程評鑑上之應用。教育資料與研究,25,43-46。
8. 江文雄、田振榮、林炎旦、張宗憲(1999)。技職校院學生能力標準建構與能力分析模式之規劃。技術及職業教育雙月刊,54,2-8。
9. 江文雄、田振榮、林炎旦、張宗憲、周碩樑、孫聖和、江亦瑄(1999) 。技職校院學生能力分析模式之探討,商業職業教育,73,10-18。
10. 宋文娟(2001) 。一種質量並重的研究法─德菲法在醫務管理學研究領域之應用。醫務管理期刊,2(2),11-20。
11. 吳宗立(2000)。情境學習論在教學上的應用。人文及社會學科教學通訊,11(3),157-164。
12. 李隆盛(2001)。美國能力本位課程發展模式。就業與訓練,19(3),37-45。
13. 邱淑芬、蔡欣玲(1996) 。德爾菲預測術-一種專家預測的護理研究法。護理研究,4(1),92-98。
14. 施郁芬、陳如琇(1996)。情境脈絡與學習遷移。教學科技與媒體,29,23-31。
15. 陳春山(1995)。誰點燃醫療糾紛導火線?醫療糾紛的起源與類型。法律與你,88,8-13。
 
系統版面圖檔 系統版面圖檔