跳到主要內容

臺灣博碩士論文加值系統

(44.220.255.141) 您好!臺灣時間:2024/11/13 09:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:沈家弘
研究生(外文):Jia-Hong Shen
論文名稱:不同去乙醯度幾丁聚醣乳化性質之比較及其應用於沙拉醬之研究
論文名稱(外文):Comparison of emulsification properties of chitosan with different deacetylation degrees and its application on producing salad dressing
指導教授:阮進惠阮進惠引用關係
指導教授(外文):Jin-Hwei Rwan
學位類別:碩士
校院名稱:東海大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:120
中文關鍵詞:幾丁聚醣不同去乙醯度乳化性質沙拉醬
外文關鍵詞:chitosandifferent deacetylation degreesemulsification propertiessalad dressing
相關次數:
  • 被引用被引用:25
  • 點閱點閱:954
  • 評分評分:
  • 下載下載:170
  • 收藏至我的研究室書目清單書目收藏:1
將粗幾丁質以2N HCl及2N NaOH溶液依序除去碳酸鈣及蛋白質製成幾丁質(chitin),再以濃鹼液(57%,w/v)於高溫下加熱至不同時間以去除乙醯基(acetyl group),可得20~30、40~50、60~70及80~90 %去乙醯度之幾丁聚醣(chitosan)。進而研究討論於不同去乙醯度之幾丁聚醣、使用濃度(0.5、1.0、1.5及2.0 %)及pH (3.0、4.0、5.0及6.0)下乳化對其乳化能力及乳化安定性之影響。乳化安定性之測試項目包括:乳化液經5℃、室溫、60℃,30 min、100℃,30 min及121℃,30 min處理後存放兩星期;凍結-解凍循環(freeze-thawing cycle)共5次;及黏度、乳滴大小分布。在食品應用方面,將上述不同去乙醯度之幾丁聚醣取代蛋黃製備法式沙拉醬,並比較這些沙拉醬與傳統沙拉醬的官能評估、黏度、安定性及菌的生長問題。
結果發現,在乳化能力方面,80~90 %去乙醯度幾丁聚醣之乳化能力最高,20~30 %去乙醯度者最低,而40~50 %及60~70 %去乙醯度者介在上述兩組中間。幾丁聚醣濃度越高其乳化能力越低,而幾丁聚醣溶液之pH偏於6.0時有較高之乳化能力。
在乳化安定性方面,20~30 %去乙醯度者於pH 3.0及pH 4.0,濃度1.0 %以上乳化,其乳化液經5℃至121℃處理後存放兩星期均無分層現象,若於pH 5.0下乳化則需濃度1.5 %以上,而於pH 6.0下則需提高濃度至2.0 %。40~50 %去乙醯度者,以濃度1.0 %,pH 3.0及pH 4.0下乳化,於100℃之內處理後存放尚為安定,但121℃處理即馬上分層,其於pH 5.0及pH 6.0乳化,除以100℃內處理後存放均為安定外,並於121℃處理後可存放3天方產生分層。60~70 %去乙醯度者,於pH 3.0及pH 4.0,濃度為2.0 %下乳化,其乳化液於100℃內處理後存放均為安定,121℃處理則不宜,於pH 5.0,濃度2.0 %或於pH 6.0濃度1.0 %以上乳化並於121℃內處理後存放兩星期均未分層。此外,80~90 %去乙醯度者更適合偏pH 6.0下乳化,其濃度只要1.0 %以上,121℃內處理後存放均不分層。
在凍結-解凍循環安定性方面,20~30 %去乙醯度組幾乎於每次循環都會有些許油分離情形;40~50 %去乙醯度組表現最差;60~70 %去乙醯度組,使用濃度為2.0 %方為安定;而80~90 %去乙醯度組表現最為安定,其濃度1.5 %以上,凍結-解凍循環5次均無分層。在乳化液之黏度方面,對不同去乙醯度者於適合濃度及pH下乳化,其乳化液較安定者黏度較黏。乳化液之乳滴大小分布情形亦隨著乳化安定性越佳其乳滴直徑0.02 cm內之數量亦越多。此外,幾丁聚醣乳化型態為w/o/w (water-in-oil-in-water)。
此外,在沙拉醬應用方面,由官評結果得知,除了40~50%去乙醯度組及各組呈現澀味為缺點外,其餘去乙醯度組的口感、風味、顏色似乎均略優於傳統組,其總接受性與傳統組為不明顯差異。此外,幾丁聚醣乳化液均比傳統者較安定(不分層),且雜菌不易生長。
Crude chitin was treated with 2N HCl and 2N NaOH solution to remove calcium carbonate and protein, respectively, to produce chitin. Chitin was treated with concentrated alkali solution (57%, w/v) under high temperature and different intervals to cleave acetyl group and became 20~30、40~50、60~70 and 80~90 % deacetylated chitosans. Emulsifying capacities and stabilities of the chitosans were determined at different deacetylation degree chitosan、concentrations ( 0.5, 1.0, 1.5, and 2.0 % ) and pHs ( 3.0, 4.0, 5.0, and 6.0). The treated items of emulsion stability include: Treating emulsions at 5℃and storing at 5℃for 2 weeks; treating emulsions at room temperature; 60℃, 30 min; 100℃, 30 min; and 121℃, 30 min, and storing at room temperature for 2 weeks; freeze-thawing cycle 5 times; viscosity test and emulsions droplet distribution. To food application, French salad dressing was done by replacing egg yolk with the deacetylated chitosans. The products were compared on the sensory evaluation, viscosity, stability, and microbial growth. Traditional salad dressing was also done as a control.
As result, in the aspect of emulsion capacity, 80~90 % deacetylated chitosan had a highest value, 20~30 % deacetylated chtitosan presented lowest, where 40~50 % and 60~70 % deacetylated chitosans were between the 80~90 % and 20~30 % samples. The higher the chitosan concentration, the lower the emulsifying capacity. Chitosan solutions slanted toward pH 6.0 had a higher emulsion capacity.
In the aspect of emulsion stability, 20~30 % deacetylated chitosan was emulsified at pH 3.0and pH 4.0, and a concentration above 1.0 %, then appeared no separation after treating at temperature from 5℃to 121℃and storing during 2 weeks . But the emulsion was carried at pH 5.0, or at pH 6.0, a concentration must be above 1.5 %, or at 2.0 %, respectively to keep the stability. For 40~50 % deacetylated chitosan, it was emulsified at a concentration of 1.0 %, pH 3.0 or pH 4.0 then treated at temperatures within 100℃, gave a stable emulsion, but its emulsion immediately separated as treat at 121℃. When it was emulsified at pH 5.0 or pH 6.0, the emulsion separated for 3 days after treating at 121℃. For 60~70 % deacetylated chitosan, its emulsions were all stable at concentration 2.0 %, pH 3.0 or pH 4.0 after treating within 100℃, but separated as treated at 121℃. If the emulsion was carried out at a concentration of 2.0 % and pH 5.0, or at a concentration above 1.0 %, and pH 6.0, then treated within 121℃and stored during 2 weeks, gave no separation. And for 80~90 % deacetylated chitosan, it was emulsified at a concentration above 1.0 % and pH 6.0, then treated within 121℃, gave a stable emulsion during storing 2 weeks.
On the freeze-thawing resistance, the emulsion of 20~30 % deacetylated chitosan had some oil leak at every cycle; that of 40~50 % deacetylated chitosan appeared more badly; 60~70 % deacetylated one was stable at a concentration of 2.0 %while 80~90 % deacetylated one was the most stable at a concentration above 1.5 % in 5 freeze- thawing cycles. Most of stable emulsions those were carried out under suitable concentration and pH value, gave a high viscosity and high percentage of small droplet size (less than 0.02cm) distribution. The chitosan emulsion were water-in-oil-in-water type.
Salad dressings those were prepared from 20~30 %, 60~70 %, and 80~90 % deacetylated chitosans appeared better mouth-feel, flavor, and color than that of traditional one, and gave a similar score of total acceptability as the latter although they had some astringent taste. Chitosan salad dressings also showed more stable, and less microbial growth than traditional one.
總目錄
壹、中文摘要 1
貳、英文摘要 3
參、前言 6
肆、文獻整理 9
一、幾丁質及幾丁聚醣 9
(一) 幾丁質與幾丁聚醣的發現 9
(二) 幾丁質、幾丁聚醣簡介 9
(三) 幾丁質、幾丁聚醣的結構及特性 11
1. 幾丁質 11
2. 幾丁聚醣 15
(四) 幾丁質、幾丁聚醣的製備 17
1. 蟹殼之成分 17
2. 幾丁質製備 17
3. 幾丁聚醣製備 19
4. 完全去乙醯幾丁聚醣之製備 23
(五) 幾丁質與幾丁聚醣純度之測定 23
1. 以碳元素含量計算 23
2. 以氮元素含量計算 24
(六) 理化性質的分析 24
1. 分子量的測定 24
2. 去乙醯度的測定 25
(七) 幾丁質與幾丁聚醣之安全性與法規 29
(八) 幾丁質與幾丁聚醣之應用 30
1. 食品工業上之應用 30
2. 醫藥方面之應用 41
3. 生化方面 41
4. 其它 41
二、乳化 42
(一) 乳化之形成原理 42
(二) 乳化劑之簡介 43
(三) HLB (Hydrophile Lipophile Balance)值 44
1. W. C. Griffin所訂的基本計算方式 44
2. 川上計算方式 45
3. Davis計算法 46
(四) 乳化物之類型 46
1. 色素法 48
2. 稀釋法 48
3. 導電度法 48
(五) 沙拉醬與蛋黃醬簡介 49
1. Oil and vinegar dressing 49
2. Emulsified dressings 49
3. Cooked salad dressings 49
(六) 幾丁聚醣之乳化性質 50
伍、材料與方法 54
一、實驗材料 54
(一) 粗幾丁質原料 54
(二) 大豆沙拉油 54
(三) 實驗所需藥品 54
二、實驗之儀器設備 54
三、實驗材料之製備 55
(一) 幾丁質 55
(二) 不同去乙醯度之幾丁聚醣 55
四、實驗方法 56
(一) 幾丁聚醣產品乳化能力之測定 56
(二) 幾丁聚醣產品乳化安定性之測定 56
1. 油量添加量對乳化液黏度影響之測定 57
2. 處理溫度、幾丁聚醣之去乙醯度和濃度、pH對乳化液安定性影響之測定 57
3. 凍結-解凍循環對乳化液安定性影響之測定 58
(三) 食品應用 58
1. 法式沙拉醬之配方 58
2. 製備方法 59
3. 官能評估 59
4. 產品安定試驗 59
(四) 分析方法 59
1. 幾丁聚醣去乙醯度之測定 59
2. 黏度測定 60
3. 乳滴大小分布 60
4. o/w、w/o、o/w/o及w/o/w型乳化液觀察及測定 60
5. 生菌數之檢驗 61
6. 統計分析 61
陸、結果與討論 62
一、幾丁質之製備 62
二、不同去乙醯度幾丁聚醣之製備 62
三、幾丁聚醣之乳化能力 64
(一) 幾丁聚醣之去乙醯度對乳化能力之影響 64
(二) 幾丁聚醣之濃度對乳化能力之影響 65
(三) pH對幾丁聚醣乳化能力之影響 65
四、幾丁聚醣之乳化安定性 68
(一) 油量之選擇 68
(二) 處理溫度、幾丁聚醣之去乙醯度和濃度、pH對乳化液安定性之影響 68
1. 20~30 %去乙醯度幾丁聚糖乳化液之黏度及安定性 70
2. 40~50 %去乙醯度幾丁聚糖乳化液之黏度及安定性 71
3. 60~70 %及80~90 %去乙醯度幾丁聚糖乳化液之黏度及安定性 73
(三) 幾丁聚醣乳化液滴之大小分布 83
1. 20~30 %去乙醯度幾丁聚醣乳化液滴大小之分布 83
2. 40~50 %去乙醯度幾丁聚醣乳化液滴大小之分布 83
3. 60~70 %去乙醯度幾丁聚醣乳化液滴大小之分布 84
4. 80~90 %去乙醯度幾丁聚醣乳化液滴大小之分布 84
(四) 處理溫度對幾丁聚醣乳化液滴之影響 89
(五) 凍結-解凍循環(freeze-thawing cycle)對乳化物安定性之影響 92
五、o/w、w/o、o/w/o及w/o/w型乳化液觀察 96
六、相關食品應用:沙拉醬 99
(一) 黏度 99
(二) 官能評估 99
(三) 生菌數之檢驗 102
柒、結論 105
一、在乳化能力方面 105
二、在乳化安定性方面 105
(一) 在不同溫度處理對幾丁聚醣乳化液安定性之影響方面 105
(二) 在幾丁聚醣乳化液抵抗循環凍結解凍的能力方面 106
三、幾丁聚醣乳化液滴之大小分布情形方面 106
四、幾丁聚醣乳化液在顯微鏡下觀察方面 106
五、在沙拉醬應用方面 106
六、未來之展望方面 107
捌、參考文獻 108
圖目錄
圖一、幾丁質、幾丁聚醣及纖維素之結構。 12
圖二、α型幾丁質之立體結構。 13
圖三、β型幾丁質之立體結構。 14
圖四、軟體動物外殼有機結構模型的描繪圖。 18
圖五、幾丁質與幾丁聚醣加工之簡單流程圖。 22
圖六、兩相乳化液(a)水中油滴型(o/w,上)或是油中水滴型(w/o,下)。多重相乳化液(b)以w/o/w型做說明。 47
圖七、反應時間對幾丁質去乙醯度之影響。 63
圖八、幾丁聚醣之去乙醯度和濃度及pH對乳化能力之影響。 67
圖九、導電度突減前所加入油之比例對乳化液黏度之影響。 69
圖十、去乙醯度20~30 %幾丁聚醣乳化液滴之大小分布情形。 85
圖十一、去乙醯度40~50 %幾丁聚醣乳化液滴之大小分布情形。 86
圖十二、去乙醯度60~70 %幾丁聚醣乳化液滴之大小分布情形。 87
圖十三、去乙醯度80~90 %幾丁聚醣乳化液滴之大小分布情形。 88
圖十四、去乙醯度80~90%幾丁聚醣(pH 6.0,1.5%)乳化液滴在不同溫度下大小分布情形。 90
圖十五、不同溫度下乳化液外觀。 91
圖十六、凍結-解凍循環5次後乳化液外觀。 94
圖十七、凍結-解凍循環5次後乳滴大小分布圖。 95
圖十八、幾丁聚醣乳化液之類型測試。 97
圖十九、w/o/w型乳化液。 98
表目錄
表一、甲殼動物、節肢動物、軟體動物、及真菌類之幾丁質含量。 10
表二、不同去乙醯程度幾丁聚醣之製備條件。 20
表三、幾丁聚醣在降低食品加工廢棄物中固形物的影響。 35
表四、幾丁質、幾丁聚醣及其衍生物在食品工業上的應用。 37
表五、幾丁質及幾丁聚醣之應用。 39
表六、乳化顆粒大小與外觀。 48
表七、處理溫度、20~30 %去乙醯度幾丁聚醣之濃度及pH對乳化液黏度之影響。 75
表八、處理溫度、20~30 %去乙醯度幾丁聚醣之濃度及pH對乳化液存放兩星期間安定性之影響。 76
表九、處理溫度、40~50 %去乙醯度幾丁聚醣之濃度及pH對乳化液黏度之影響。 77
表十、處理溫度、40~50 %去乙醯度幾丁聚醣之濃度及pH對乳化液存放兩星期間安定性之影響。 78
表十一、處理溫度、60~70 %去乙醯度幾丁聚醣之濃度及pH對乳化液黏度之影響。 79
表十二、處理溫度、60~70 %去乙醯度幾丁聚醣之濃度及pH對乳化液存放兩星期間安定性之影響。 80
表十三、處理溫度、80~90 %去乙醯度幾丁聚醣之濃度及pH對乳化液黏度之影響。 81
表十四、處理溫度、80~90 %去乙醯度幾丁聚醣之濃度及pH對乳化液存放兩星期間安定性之影響。 82
表十五、循環凍結-解凍對幾丁聚醣乳化物安定性之影響。 93
表十六、傳統沙拉醬與幾丁聚醣沙拉醬黏度之比較。 100
表十七、傳統沙拉醬與不同去乙醯度幾丁聚醣沙拉醬產品之官能評估結果。 101
表十八、傳統沙拉醬與去乙醯度80~90%幾丁聚醣沙拉醬在儲藏期間之總生菌數。 104
方紹威(1990)。幾丁質及幾丁聚醣在廢水處理、生化、食品和醫藥上之研究發展現況。藥物食品檢驗局調查研究年報。8:20。
王綺芬(1989)。蟹殼幾丁質產品理化性質測定及製備方法之研究。國立台灣大學食品科技研究所碩士論文。
王鳳英編譯(1993)。界面活性劑的原理與應用。高立圖書有限公司。
吳貞誼(1995)。以幾丁聚醣自葡萄柚汁脫酸、澄清及抗菌之研究。私立東海大學食品科學研究所碩士論文。
阮進惠(1984)。脫色豬血血球蛋白之加熱修飾及其在食品上之應用。東海學報。25:1013。
阮進惠、林芬年(1999)。利用幾丁聚醣脫酸澄清梅汁。中農化誌。37:403。
阮進惠、林翰良、羅淑珍(1997)。幾丁聚醣水解物之連續式生產及其抑菌作用。中農化誌。35:596。
吳玟秀(2003)。不同水解度之幾丁聚醣對老鼠營養質之吸收、肝臟和血清膽固醇和三酸甘油脂之含量及體重之影響。私立東海大學碩士論文。
阮進惠、吳貞誼(1996)。利用幾丁聚醣脫酸葡萄柚汁。食品科學。23:509。
阮進惠、張文翰(1996)。以加熱和果膠修飾豬血血球蛋白及其功能性質。食品科學。23:215。
阮進惠、張為憲(1984)。豬血血漿與血球蛋白質之分離回收及其功能性質。食品科學。11:178。
阮進惠、張為憲(1995)。利用不同去乙醯度之幾丁聚醣固定澱粉葡萄糖化。中農化誌。33:732。
吳適(1979)。乳化劑在食品工業上的應用。食品工業11:28。
李勳宜(1988)。草蝦幾丁聚醣之製備及其應用研究。國立台灣大學食品科技研究所碩士論文。
林芬年(1997)。以幾丁聚醣脫酸澄清梅汁之研究。私立東海大學食品科學研究所碩士論文。
林俊煌(1992)。不同去乙醯程度之幾丁聚醣的流變性質與鏈柔軟度;膜之物理特性的關係。國立海洋大學水產食品科學研究所碩士論文。
林翰良(1995)。以固定化幾丁聚醣生產幾丁聚醣水解物及其抑菌之研究。私立東海大學食品科學研究所碩士論文。
陳俊豪(2003)。利用幾丁聚醣水解物為凝固劑製備中式豆腐以升級產品及降低廢水污染之研究。私立東海大學食品科學研究所碩士論文。
陳崇賢(1996)。乳液概論。介面科學會誌19:1。
陳懿慧(1995)。幾丁聚醣應用於葡萄柚汁澄清之探討。國立台灣大學食品科技研究所碩士論文。
張珍田、任瑞芝、宋賢一、蘇仲卿(1986)。利用親合層析法純化雞蛋白溶菌之研究。中農化誌。24:272。
張炳揚(2001)。食品體系中乳化安定性之控制。食品工業33:42。
張薏苓(2000)。鳳梨酵素粗製品水解幾丁聚醣之研究。私立靜宜大學食品營養系碩士論文。
游士弘(1997)。幾丁質與幾丁聚醣之N-乙醯化程度及純度測定方法之探討,國立台灣海洋大學水產食品科學系碩士論文。
黃德琳(2000)。黴菌中幾丁聚醣酵素之篩選、純化與性質的研究。國立交通大學應用化學系碩士論文。
楊萃渚(2002)。水溶性幾丁聚醣單、雙醣衍生物之合成與其一些理化與功能特性之探討。國立台灣大學食品科技研究所博士論文。
趙承琛編著(1991)。界面科學基礎(原名:界面化學)。復文書局。
蔡義宏(1979)。乳化原理。應用界面化學2:13。
劉曉君(2001)。幾丁質類產品純度分析方法之建立。國立海洋大學食品科學系碩士論文。
劉瓊淑(1994)。幾丁質幾丁聚醣及其相關酵素之特性與應用。食品工業。26:26。
賴淑琪(1979)。水產廢棄物蝦、蟹外殼之高度利用。食品工業。11: 23。
蘇仲卿、張珍田、莊榮輝(1981)。利用親合層析法分離豬胰臟蛋白質水解酵素trypsin和chymotrypsin之中間規模試驗。中農化誌。19:218。
山口壽(1986)。食品、醫藥品分野に應用擴がるキチン、キトサソ。食品と開發。
戶倉清一(1990)。キテソ,キトサソの免疫賦活能とその制御。食品工業。10:37
宮尾茂雄(1995)。キトサソの基礎と應用。防菌防黴。23(7):421。
Aiba, S., Fujiwara, Y., Hideshima, T., Kakizaki, M., Izume, N., Shoij, T., Tsutsumi, A., Hwang, C., Rha, C. K., and Sinskey, A. J. (1986). Filmogenic properties of chitin/chitosan. In: Chitin in nature and technology. Muzzarelli, R. A. A., Jeuniaux, C., and Gooday, G. M. (Eds), Plenum Press. New York. p.389.
Aiba, S. (1992). Studies on chitosan:IV. Lysozymic hydrolysis of partially N-acetylated chitosans. Int. J. Biol. Macromol. 14:225.
Alonso, I. G., Peniche-Covas, C., and Nieto, J. M. (1983). Determination of the degree of acetylation of chitin and chitosan by thermal analysis. J. Thermal Analysis. 28:189.
Arai, K., Minumari, K., and Fujita, T. (1968) On the toxicity of chitosan. Bull, Tokai. Reg. Fich. Lab. 56:889.
Austin, P. R., Brine, C. J., Castle, J. E., and Zikakis, J. P. (1981). Chitin:New facets of research. Science 212:749.
Beri, R. G., Walker, J., Reese, E. T., and Rollings, J. E. (1993). Characterization of chitosans via coupled size-exclusion chromatography and multiple-angle laser light-scattering technique. Carbohydrate. Res. 238:11.
Blackwell, J. (1988). Physical methods for the determination of chitin structure and conformation. Methods in enzymology. 16:435.
Bough, W. A. (1975). Reduction of suspended solids in vegetable canning waste Effluents by coagulation with chitosan. J. Food Sci. 40:297.
Bough, W. A. (1976). Chitosan-a polymer from seafood waste,for use in treatment of food processing wastes and activated sludge. Proc. Biochem. 11:13.
Bough, W. A., and Landes, D. R. (1977). Recovery and nutritional evalution of proteinaceous solids separated from whey by coagulation with chitosan. J. Dairy Sci. 59:1874.
Bough, W. A., Salter, W. L., WU, A. C. M., and Perkins, B. E. (1978). Influence of manufacturing variables on the characteristics and effectiveness of chitosan products. II. Coagulation of activated sludge suspensions, Biotechnology and bioengineering. 20:1931.
Brine, C. J., and Austin, P. R. (1981) Chitin varaubility with pecies and method of preparation. Biochem. Phsiol. 68:283.
Butler, B. L., Vergano, P. J., Testin, R. F., Bunn, J. N., and Wiles, J. L. (1996). Mechanical and barrier properties of edible chitosan films as affected by composition and storage. J. Food Sci. 61:953,961.
Chen, C., Liau, W., and Tsai, G. (1998). Antibacterial effects of N-Sulfonated and N-Sulfobenzoyl Chitosan and Application to Oyster Preservation. J. Food Protection. 61:1124.
Cuero, R. G., Osuji, G., and Washington, A. (1991). N-Carboxymethyl chitosan inhibition of aflatoxin production: Role of zinc. Biotechnology Letters. 13:441.
Curotto, E., and Aros, F. (1993). Quantitative determination of chitosan and the percentage of free amine groups. Anal. Biochem. 211:240.
Das, K. P., and Kinsella, J. E. (1990). Stability of food emulsions. Advance in Food Nutrition Research. 34:81.
Davis, D. H., and Hayes, E. R. (1988). Determination of the degree of acetylation of chitin and chitosan. Method in Enzymology. 161: 442.
Deans, J. R., and Dixon, B. G. (1992). Bioabsorbents for waste-water treatment. In: Advances in Chitin and Chitosan. Brine,C. J., Sandford, P. A., Zikakis, J. P. (Eds), Elsevier Applied Science, London and New York. p.648.
Del Blanco, L. F., Rodriguez, M. S., Schulz, P. C., and Agullo, E. (1999). Influence of the deacetylation degree on chitosan emulsification properties. Colloid polym. Sci. 277:1087.
Dickinson, E., and Stainsby, G. (1982) Colloids in foods. Applied Science, London.
Domard, A. (1987). Determination of N-acetyl content in chitosan samples by C.D. measurements. Int. J. Biol. Macromol. 9:333.
Dutkiewicz, J., Tuora, M., Judkiewicz, L., and Ciszewski, R. (1992). New forms of chitosan polyelectrolyte complexes. In: Advances in Chitin and Chitosan. Brine, C. J., Sanford, P. A., Zikakis, J. P. (Eds), Elsevier Applied Science, London and New York. p.496.
El-Adawy, T. A. (2000). Functional properties and nutritional quality of acetylated and succinylated mungbean protein isolate. Food Chem. 70:83.
El Ghaouth, A., Arul, J., Asselin, A., and Benhamou, N. (1992). Antifungal activity of chitosan on Post-Harvest pathogens:Induction of morphological and cytological alterations an Rhizopus Stolonifer. Mycol. Res. 96:769.
El Ghaouth, A., Ponnampalam, R., Castaigne, F., and Arul, J. (1992). Chitosan coating to extend the storage life of tomatoes. Hortscience 27: 1016.
Fang, S. W., Li, C. F., and Shih, D. Y. C. (1994). Antifungal activity of chitosan and its preservative effect on low-sugar candied kumquat. J. Food Protection. 56:136.
Filar, L. F., and Wirick, M. G. (1978). Bulk and solution properties of chitosan. In: Proceedings of the 1st International Conference on chitin and chitosan. Muzzarelli, R. A. A., and Pariser, E. R. (Eds). p.169.
Friberg, S. E., and Larsson, K. (1997). Food emulsions. New York. p.2.
Galat, A. (1979). Conformation and ultrastructural organization of chitin isolated from crayfish Astacus astacus. Bulletin of the Academie Polonaise des Sciences.27:987.
Gamzazade, A. I., Sklyar, A. M., Pavlova, S. S. A., and Rogozhin, S. V. (1981). On the viscosity properties of chitosan solutions. Polym. Sci. U. S. S. R. 23:665.
Hackman, R. H., and Goldberg. M. (1965). Studies on chitin.Ⅵ. The nature ofαandβ- chitins. Aust. J. Biol. Sci. 18:935.
Hirano, S., Tanaka, Y., Hasegawa, M., Tobetto, K., and Nruaoka, A. (1985) Effect of sulfated derivatives of chitosan on some blood coagulant factors. Carbohydrate Reasearch. 137:205.
Hirano, S. (1989). Production and application of chitin and chitosan in Japan. In: Chitin and Chitosan. Skjak-Braek, G., Anthonsen, T., Sandford, P. (Eds), Elsevier Applied Science, London, UK. p.51.
Hirano, S., Hakura, C., Seino, H., Akiyama, Y., Nonaka, I., Kanbara, N., and Kawakami, T. (1990). Chitosan as an ingredient of domestic animal feed. J. agric. Food Chem. 38:1214.
Hirano, S., and Akiyama, Y. (1995). Absence of hypocholesterolaemic action of chitosan in high serum-cholesterol rabbits. J. Sci. Food Agric. 69:91.
Hoagland, P. D., and Parris, N. (1996). Chitosan/Pectin laminated films. J. Agric. Food Chem 44:1915.
Holan, Z., and Voyruba, J. (1980). New method of chitin determination based on deacetylation and gas-liquid chromatographic assay of liberated acetic acid. J. Chromatography. 190:67.
Ignacio, G. C., Robert, A. F., and Paula. C. (1982). Bioconversion of shellfish chitin wastes: Waste pretreatment, Enzyme production, process design, and economic analysis. J. Food Sci. 47:901.
Imeri, A. G., and Knorr, D. (1988). Effect of chitosan on yield and compositional data of carrot and apple juice. J. Food Sci. 53:1707.
Jeuniaux, C. (1986). Chitosan as a tool for the purircation of waters. In: Chitin in Nature and Technology. Muzzarelli,R. A. A., Jeuniaux, C., Gooday, G. W. (Eds), Plenum Press, New York, USA. p. 551.
Johnson, E., and Peniston, Q. P. (1982). Utilization of shellfish waste for chitin and chitosan production. In: Chemistry and Biochemistry of marine food products. Martin, R. E., Flick, G. J., Hebard, C. E., and Ward, D. R. (Eds)
Jumaa, M., Furkert, F.H., and Muller, B. M. (2002). A new lipid emulsion formulation with high antimicrobial efficacy using chitosan. European J. Pharm. Biopharm. 53:115.
Kanauchi, O., Deuchi, K., Imasato, Y., Shizukuishi, M., and Kobayashi, E. (1995). Mechanism for the inhibition of fat digestion by chitosan and for the synergistic effect of ascorbate. Biosc. Biotech. Biochem. 59:786.
Kester, J. J., and Fennema, O. R. (1986). Edible films and coatings: A Review. Food Technol. 40: 47.
Kienzle-Sterzer, C., and Rha, C. K. (1984). Solution properties of chitosan: Chain conformation. In: Chitin, Chitosan and related enzymes. Zikakis, J. P. (Eds), Axademic Press, Landon. p.383.
Kienzle-Sterzer, C., and Rha, C. K. (1985). Flow behavior of a cation Biopolymer: chitosan. Polym. Bull. 13:1.
Kittur, F. S., Kumar, K. R., and Tharanathan, R. N. (1998). Functional packaging properties of chitosan films. Z Lesbensm. Unters Forsch. A. 206: 44.
Knorr, D. (1982). Functional properties of chitin and chitosan. J. Food Sci. 47:593.
Knorr, D. (1984). Use of chitinous polymers in food-a challenge for food research and development. Food Technol. 38:85.
Knorr, D. (1986). Nutritional quality, food processing, and biotechnology aspects of chitin and chitosan: A Review. Proc. Biochem. 6:90.
Knorr, D. (1991). Recovery and utilization of chitin and chitosan in food processing waste management. Food Technol 45:114.
Krog, N. J., Riisom, T. H., and Larsson, K. (1985). Application in the food industry: 1 Chap. 1. In: Encyclopaedia of emulsion technology. Becher, P. (Ed), New York:Decker. p.321.
Labuza, T. P., and Breene, W. M. (1989). Applications of 'Active Packaging'' for improvement of shelf-life and nutritional quality of fresh and extended shelf-life foods. J. Food Proc. Preserv 13:1.
Launay, B., Doublier, L. L., and Cuverilier, G. (1986). Flow properties of aqueous solution and dispersions of polysaccharides. In: Function properties of food macromolecules. Mitchell, J. R., and Ledward, D. A., (Eds), Elsevier applied Sci. Publishers. p.1.
Macrae, R., Robinson, R. K., and Sadler, M. J. (1993). Encyclopaedia of food science food technology and nutrition. Academic press, New York. p.1443,1577.
March, G. C., and Napper, D. H.(1977).The thermodynamic limit of the flocculation stability of sterical stabilized emulsion. J. Colloid Int. Sci. 61:383.
Miller, W. R., Spalding, D. H., and Risse, L. A. (1983). Decay,firmness and color development of florida bell pepper dipped in chlorine and imazalil and film-wrapped. Proc. Fla.State Hort. Soc. 96:347.
Mima, S., Miya, M., Iwamoto, R., and Yoshikawa, S. (1983). Highly deacetylated chitosan and its properties. J. Applied Polymer Sci.28:1909.
Mitsukawa, H., Shimizu, O., and Nishi, H. (1971). Colorimetric determination of α-amino nitrogen in urine and plasma with ninhydrin reaction. Agr. Biol. Chem. 35:272.
Moore, G. K., and Roberts, G. A. F. (1980). Determination of the degree of N-acetylation of chitosan. Int. J. Biol. Macromol. 2:115.
Muzzarelli, R. A. A. (1977).In: Chitin. Muzzarelli, R. A. A. (Ed). Pergamon Press, Oxford. New York, Toronto, Sydney, Paris, Frankfurt. p.5.
Muzzarelli, R. A. A., and Rocchetti, R. (1985). Determination of the degree of acetylation of chitosans by first derivative ultraviolet spectrophotometry. Carbohydr. Polymers. 5: 461.
Muzzarelli, R. A. A. (1986). Filmogenic properties of chitin/chitosan. In: Chitin in Nature and Technology. Muzzarelli,R. A. A., Jeuniaux, C., Gooday, G.W. (Eds), Plenum Press, New York, USA. p.389.
Muzzarelli, R. A. A., Weckx, M., and Fillipini, O. (1989). Removal of trace metal ions from industrial waters, unclear effluents and drinking water, with the aid of cross-linked N-carboxymethylchitosan. Carbohydr. Polym. 11:293.
Muzzarelli, R. A. A. (1996). Chitosan-based dietary foods. Carbohydr. Polym. 29:309.
Muzzarelli, R. A. A. (1997). Chitosan as dietary food additives. In: Applications of Chitin and Chitosan. Goosen, M. F. A. (Ed), Technomic. Lancaster, PA, UK. p.115.
Nanjo, F., Katsumi, R., and Sakai, K. (1991). Enzymatic method for determination of the degree of deacetylation of chitosan. Anal. Biochem. 193:164.
Napper, D. H. (1983). Polymeric stabilization of colloidal dispersions. New York:Academic Press.
Niola, F., Basora, N., Chornet, E., and Vidal, P. F. (1993). A rapid method for the determination of the degree of N-acetylation of chitin-chitosan samples by acid hydrolysis and HPLC. Carbohydr. Res. 238:1.
No, H. K., and Meyers, S. P. (1989). CrawRsh chitosan as a coagulant in recovery of organic compounds from seafood processing streams. J. Agric. Food Chem. 37:580.
Papineau, A. M., Hoover, D. G., Knorr, D., and Farkas, D. F. (1991). Antimicrobial effect of water-soluble chitosans with high hydrostatic pressure. Food Biotechnol. 5:45.
Percot, A., Viton, C., and Domard, A. (2003) Optimization from shrimp shells. Biomacromol. 4:12.
Pinelli, S. A.,Toledo, G. A. R., Esquerra, B. I. R., Luviano, S. A. R., and Higuera, C. I. (1998). Methods for extracting chitin from shrimp shell waste. Archivos Latinoamericanos de Nutrition. 48(1):58.
Pons, M., Galotto, M. J., and Subirats, S. (1994). Light mayonnaise. Comparison of the steady rheological characterization of normal food. Hydrocolloids. 8:389.
Poulicek, M., Voss-Foucart, M. F., and Jeuniaux, C. (1985). Chitinoproteic compleses and mineralization in mollusk skeletal structures. In: Chitin in Nature and Technology. Muzzarelli, R. A. A., Jeuniaux, C., Gooday, G. W. (Eds), Plenum Press, New York and London. p.7.
Rinaudo, M., and Domard, A. (1988). Solution properties of chitosan. In: Chitin and Chitosan: sources, chemistry, biochemistry, physical properties and applicat- ion. Skjak-braek, G., Anthonsen, T., and Sandford, P. (Eds), Elsevier Applied Science, London and New York. p.71.
Risse, L. A., Chun, D., Mc Donald, R. E., and Miller, W. R. (1987). Volatile production and decay during storage of cucumber waxed, imazlil-treated, and film-wrapped. Hortscience 22:274.
Roberts, G. A. F., and Domszy, J. G. (1982). Determination of the viscometric constants for chitosan. Int. J. Biol. Macromol. 4:374.
Rodriguez, M. S., Albertengo, L. A., and Agullo, E. (2001). Emulsification capacity of chitosan at different pH. In: Chitin and Chitosan in Life Science. Uragami T., Kurita K., and Fukamizo T. (Eds). Kodansha scientific ltd. P.113.
Rodriguez, M. S., Albertengo, L. A., and Agullo, E. (2002). Emulsification capacity of chitosan. Carbohydr. Polym. 48:271.
Ruiz-Herrera, J. (1978). The distribution and quantitative importance of chitin in fungi. In: Chitin and chitosan, Proceedings of the First International Conference on Chitin and Chitosan. Muzzarelli, R. A. A. and Pariser, E. R. (Eds). MIT Sea Grant Program, Cambridge, Mass. p.11.
Saito, M., Tabeta, R., and Ogawa, K. (1987). High-resolution solid-state 13C NMR study of chitosan and its salts with acid:conformation characterization of polymorph and helical structures as viewed from the conformation-dependent 13C chemical shifts. Macromolecules. 20:2424.
Sannan, T., Kurita, K., Ogura, K., and Iwakura, Y. (1978). Studies on chitin7:I.R. Spectroscopic determination of degree of deacetylation. Polymer. 19:458.
Sathe, S. K., and Salunkhe, D. E. (1981). Functional properties of the great Northern-bean protein:emulsion, Foaming, viscosity, and gelation properties. J. Food. Sci. 46:71.
Schulz, P. C., Rodriguez, M. S., Del Blanco, L. F., Pistonesi, M., and Agullo, E. (1998). Emulsification properties of chitosan. Colloid Polym. Sci. 276:1159.
Senstad, C. andMattiasson, B. (1989). A.nity-precipitation using chitosan as ligand carrier. Biotechnol. Bioeng. 33:216.
Shahidi, F., Vidana Arachchi, J. K., and Jeon, Y. J. (1999). Food applications of chitin and chitosan. Trends in Food Sci.&Technol. 10:37.
Simpson, B. K., Gagne, N., and Simpson, M. V. (1994). Bioprocessing of chitin and chitosan. In: Fisheries Processing: Biotechnological Applications. Martin, A. M. (Ed), Chapman and Hall, London, UK. p.155.
Soto-Perlata, N. V., Muller, H., and Knorr, D. (1989). Effect of chitosan treatments on the clarity and color of apple juice. J. Food Sci. 54:495.
Spagna, G., Pifferi, P.G., Rangoni, C., Mattivi, F., Nicolini, G., and Palmonari, R. (1996). The stabilization of white wines by adsorption of phenolic compounds on chitin and chitosan. Food Res. Intern. 29:241.
Stanley, W. L., Watters, G.. G.., Chan, B., and Mercer, J. M. (1975). Lactase and other enzymes bound to chitin with glutaraldehyde. Biotech. Bioeng. 17:315.
Suzuki, K., Tokoro, A., Okawa, Y., Suziki, S., and Suziki, M. (1986) Effect of N-acetyl-chitooligosaccharides on activation of phagocytes. Microbiol. Immunol. 30:777.
Tan, S. C., Khor, E., Tan, T. K., and Wong, S. M. (1998). The degree of deacetylation of chitosan:advocating the first derivative UV-spectrophotometry method of determination. Talanta. 45:713.
Tesch, S., Gerhends, Ch., and Schubert, H. (2002). Stabilization of emulsion by OSA starches. J. Food Eng. 54:167.
Thome, J. P., and Daele, Y. V. (1986). Adsorption of polychlorinated biphenyls (PCB) on chitosan and application to decontamination of polluted stream waters. In: Chitin in Nature and Technology. Muzzarelli, R. A. A., Jeuniaux, C., Gooday, G. W. (Eds), Plenum Press, New York, USA. p.551.
Tirmizi, S. A., Iqbal, J., and Isa, M. (1996). Collection of metal ions present in water samples of different sites of pakistan using biopolymer chitosan. J. Chem. Soc. Pakistan. 18:312.
Toei, K., and Kohara, T. (1976). A conductometric method for colloid titrations. Analytica Chimica Acta. 83:59.
Uragami, T., Matsuda, T., Okuno, H., and Miyata, T. (1994). Structure of chemically ModiRed chitosan membranes and their characteristics of permeation and separation of aqueous ethanol solutions. J. Membrane Sci. 88:243.
Van Nieuwenhuyzen, W., and Szuhaj, B. F. (1998). Effects of lecithind and proteins on the stability of emulsions. Fet/Lipid 100. 7:282.
Volesky, B. (1987). Biosorbents for metal recovery. Trends Biotechnol. 5:96.
Wu, A. C. M., and Bough, W. A. (1976). Determination of molecular-weight distribution of chitosan by high-performance liquid chromatography. J. Chromatography. 128:87.
Yang, T, and Zall, R. R. (1984). Chitosan membranes for reverse osmosis application. J. Food Sci. 49:91.
Young, D. H., Kohle, H., and Kauss, H. (1982). Effect of chitosan on membrane permeability of suspension cultured glycine max and phaseolus vulgaris cells. Plant Physiol. 70:1449.
Zacour, A. C, Silva, M. E, Cecon, P. R., Bumbirra, E. A., and Vieira, E. C. (1992). Effect of dietary chitin on cholesterol absorption and metabolism in rats. J. Nutr. Sci. Vitaminol. 38:309.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top