(3.238.249.17) 您好!臺灣時間:2021/04/14 12:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:梁永瑩
研究生(外文):Liang Yung-Ying
論文名稱:應用示波器探討飲用水前處理之直接與間接臭氧反應
論文名稱(外文):Applying Oscilloscope to Investigate the Direct and Indirect Ozone Reactions in Water Pretreatment
指導教授:張鎮南張鎮南引用關係
指導教授(外文):Chang Cheng-Nan
學位類別:碩士
校院名稱:東海大學
系所名稱:環境科學系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:87
中文關鍵詞:臭氧氫氧自由基腐植酸Nernst Equation氧化還原電位示波器13C-NMR
外文關鍵詞:OzoneHydroxyl RadicalsHANernst EquationORPoscilloscope13C-NMR
相關次數:
  • 被引用被引用:1
  • 點閱點閱:119
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
水中的臭氧氧化反應包含直接臭氧分子攻擊與間接氫氧自由基氧化反應,此二反應途徑也許會有效的攻擊與氧化有機物之官能基,但在臭氧反應的同時亦會產生消毒副產物。 臭氧反應之直接與間接攻擊比率也許會受臭氧氧化狀況之影響。 因此,了解臭氧氧化之二個反應途徑之機制是有必要的。
本研究利用碳酸鹽及重碳酸鹽做為抑制劑,利用碳酸鹽與重碳酸鹽快速與間接臭氧反應所生成之氫氧自由基結合之特性,藉此抑制間接氫氧自由基之反應。 在臭氧反應中添加抑制劑,水中之反應由於氫氧自由基被抑制,將只有臭氧分子之直接攻擊部分。 因此,水中的臭氧反應可藉由抑制劑之添加,可將直接臭氧分子攻擊及間接氫氧自由基氧化加以分離及研究。
在本研究中,含有腐植酸之天然水樣與人工合成腐植酸的水樣均進行添加抑制劑之抑制實驗及無添加抑制劑之臭氧實驗。 實驗結果指出間接反應的貢獻隨著抑制劑劑量的增加而降低。 在鹼性腐植酸水樣中,其直接與間接攻擊貢獻比率介於3至19。 本研究之氧化還原電位連續監測是利用氧化還原電位電極連接示波器而進行線上監測。 利用Nernst equation 及線上監測之氧化還原電位可發展水中臭氧程序的即時監測及控制。
13C-NMR 光譜指出直接臭氧分子反應可降低carbohydrate carbons (60- 90 ppm) 及aromatic carbons/ double bond carbons (90- 165 ppm) 。 而在反應初期,氫氧自由基可以消耗aliphatic carbons (0- 60 ppm) 。 臭氧分子反應主要攻擊大分子物質的支鏈而產生aliphatic carbons (0- 60 ppm)、 carbohydrate carbons (60- 90 ppm) 及 aromatic carbons/ double bond carbons (90- 165 ppm) 。
Ozone oxidation reaction consists of direct ozone molecule and indirect hydroxyl radical oxidations. These two reactions may target and oxidize organic functional groups effectively. Unfortunately, it also generate disinfection by-product at the same time. The ratio of direct and indirect attack may affected by the conditions that the ozonation oxidation is carried out. Understanding the mechanisms of these two ozone oxidation pathways are valuable.
This study are adapts carbonate and bicarbonate as scavenger to inhibit the formation of hydroxyl radicals which will lead to an indriect ozone attack. Ozonation of samples with scavenger will undergo only direct ozone molecular oxidation. Thus, the direct and indirect ozone oxidation can be separated and investigated individually.
In this study, synthetic and natural samples containing humic acids (HA) have been investigated for the inhibited and non-inhibited ozone oxidation. The results indicate that the contribution of indirect reaction is decreasing with the increasing amounts of inhibitor dosing. Ratio of direct and indirect attack is ranging from 3 to 19 in basic HA solution. The process oxidation reduction Potential (ORP) is monitored continuously with an on-line ORP sensor connected to oscilloscope. A real-time monitoring and controlling of ozone process has been developed using the Nernst equation based on on-line ORP measurement.
13C-NMR spectrums indicate that direct reaction can decrease the amount of carbohydrate carbons (60- 90 ppm) and aromatic carbons/ double bond carbons (90- 165 ppm). Hydroxyl free radical can consume aliphatic carbons (0- 60 ppm) at the beginning of ozonation. The molecular ozone direct attack reaction mainly decomposes the side chain of macromolecule to generate aliphatic carbons (0- 60 ppm), carbohydrate carbons (60- 90 ppm) and aromatic carbons/ double bond carbons (90- 165 ppm).
CHAPTER 1 INTRODUCTION 1
CHAPTER 2 LITERATURE REVIEW 4
2-1 NATURAL ORGANIC MATTERS AND DISINFECTION BY-PRODUCTS 4
2-2 APPLICATION OF OZONE IN WATER TREATMENT 6
2-3 TWO OXIDATION PATHWAYS OF OZONATION 6
2-4 CARBONATE AND BICARBONATE AS A SCAVENGER 9
2-5 APPLICATION OF ON-LINE OSCILLOSCOPE TO MONITOR THE OZONATION 9
2-6 FUNCTIONAL GROUPS OF CONTAMINANT IN WATER 11
CHAPTER 3 MATERIALS AND METHODS 13
3-1 EXPERIMENTAL DESIGN 13
3-2 METHOD AND INSTRUMENTS 16
3-2-1 Sampling site 16
3-2-2 Isolation and fractionation 17
3-2-3 Disinfection by-product Formation Potential (DBPFP) Studies 22
3-2-4 Ozonation treatment and on-line oscilloscope monitor apparatus 22
3-3 ANALYSIS METHODS 25
3-3-1 Basic water quality analysis 25
3-3-2 Trihalomethanes (THMs) 25
3-3-3 Haloacetic acids (HAAs) 28
3-3-4 Adsorbed organic halides (AOX) 31
3-3-5 Absorbance at the wavelength of 254 nm (A254) 32
3-3-6 Dissolve organic carbon (DOC) 33
3-3-7 Molecular weight determination (Gel Permeation Chromatography, GPC) 34
3-3-8 Fourier Transform Infrared Spectrometer (FT-IR) 35
3-3-9 Carbon Nuclear Magnetic Resonance (CPMAS 13C NMR) 36
CHAPTER 4 RESULTS AND DISCUSSION 37
4-1 WATER QUALITY OF TE-CHI RESERVOIR 37
4-2 THE OZONATION STUDY OF TE-CHI RESERVOIR RAW WATER AND COMMERCIAL HA 41
4-2-1 Quenching study of Indirect Hydroxyl Radical Oxidation 41
4-2-2 The redox potential of pre-ozonation and inhibited reaction 44
4-2-3 The AMW of pre-ozonation and inhibited reaction 46
4-2-4 The reduction of DBPFP by inhibited and non-inhibited ozonation reaction 48
4-2-5 The effect of pH on ozonation 52
4-2-6 The two stage ozonation reaction on A254 56
4-3 MODEL SIMULATION 58
4-4 THE VARIATION OF FUNCTIONAL GROUPS IN INHIBITED AND NON-INHIBITED REACTION 65
4-4-1 FT-IR spectrum 66
4-4-2 13C-NMR spectra 69
CHAPTER 5 CONCLUSIONS AND SUGGESTIONS 77
5-1 CONCLUSIONS 77
5-2 SUGGESTIONS 79
REFERENCES 80
APPENDIXⅠ 85
APPENDIX Ⅱ 87
Alaton, I. A., Kornmuller, A. and Jekel, M. R., (2002), “Ozonation of spent reactive dye-baths: effect of HCO3-/CO32- alkalinity”, J. Environ. Eng., 128(8): 689-696.
Andreozzi, R., Caprio, V., Insola, A. and Marotta, R., (1999), “Advanced oxidation processes (AOP) for water purification and recovery”, Catalysis Today, 53(1):51-59.
APHA, AWWA and WEF (1998). Standard methods for examination of water and wastewater, 20th Edition. American Public Health Association, Washington D.C., USA.
Bader, H. and Hoigné, J., (1982), “Determination of ozone in water by the indigo method; a submitted standard method”, Ozone: Sci. & Eng., 4(4): 169-76.
Buxton, G. V., Greenstock, C. L., Helman, W. P. and Ross, A. B., (1988), “Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (•OH/•O-) in aqueous solution”, J. Phy. and Chem. Ref. Data, 17(2): 513-886.
Calace, N., Capolei, M., Lucchese, M. and Petronio, B. M., (1999), “The structural composition of humic compounds as indicator of organic carbon sources”, Talanta, 49(2): 277-284.
Chang, C. N., Cheng, H. B. and Chao, A. C. (2004). “Applying the Nernst equation to simulate redox potential variations for nitrogen removal in a sequencing batch membrane bioreactor (SBMBR) system” Environ. Sci. Technol., 38(6): 1807-1812.
Chang, C. N., Lin, J. G., Chao, A. C., Cho, B. C. and Yu, R. F., (1997), “The pretreatment of acrylonitrile and styrene with the ozonation process” Wat. Sci. Tech., 36(2-3): 263-270.
Chang, C. N., Lin, J. G., Chao, A. C. and Liu, C. S., (1996), “Modified Nernst model for on-line control of the chemical oxidation decoloring process”, Wat. Sci. Tech., 34(3/4): 151-157.
Chang, C. N., Ma, Y. S. and Zing, F. F., (2002), “Reducing the formation of disinfection by-products by pre-ozonation”, Chemosphere, 46(1): 21-30.
Chiang, P. C., Chang, E. E., Liang, C. H. (2002), “NOM characteristics and treatabilities of ozonation processes” Chemosphere, 46(6): 929-936.
Chu, W. and Ma, C. W., (2000), “Quantitative prediction of direct and indirect dye ozonation kinetics”, Wat. Res., 34(12):3153-3160.
Chu, W. and Ching, M. H., (2003), “Modeling the ozonation of 2, 4-dichlorophoxyacetic acid through a kinetic approach”, Wat. Res., 37(1): 39-46.
Chu, W. and Wong, C. C., (2003) “A disappearance model for the prediction of trichlorphenol ozonation”, Chemosphere, 51(4): 289-294.
Crittenden, J. C., Hu, S., Hand, D. W. and Green, S. A., (1999), “A kinetic model for H2O2/UV process in a completely mixed batch reactor”, Wat. Res., 33(10): 2315-2328.
Galapate, R. P., Baes, A. U. and Okada, M., (2001), “Transformation of dissolved organic matter during ozonation: effects on trihalomethane formation potential”, Wat. Res., 35(9): 2201-2206.
Gao, Y., Yang, M., Hu, J. and Zhang, Y., (2004), “Fenton’s process for simultaneous removal of TOC and Fe2+ from acidic waste liquor”, Desalination, 160: 123-130.
Goel, S., Hozalski, R. M. and Bouwer, E. J., (1995) “Biodegradation of NOM: effect of NOM source and ozone dose” J. Am. Water Works Assoc. 87(1): 90-105.
Hoigné, J., (1997), “Inter-calibration of OH radical sources and water quality parameters” Wat. Sci. Tech., 35(4): 1-8.
Hoigné J. and Bader H., (1983), “Rate constants of reactions of ozone with organic and inorganic compounds in water. Ⅱ. Dissociatin organic compounds”, Wat. Res., 17: 185-194.
Hoigné, J., Bader, H., Haag, W. R. and Staehelin, J., (1985), “Rate constants of reactions of ozone with organic and inorganic compounds in water - III. Inorganic compounds and radicals” Wat. Res., 19(8): 993-1004.
Hoigné, J. and Bader, H., (1975), “Ozonation of water: role of hydroxyl radicals as oxidizing intermediates”, Science, 190(21): 782-784.
Hoigné, J. and Bader, H., (1976), “The role of hydroxyl radical reactions in ozonation processes in aqueous solutions”, Wat. Res., 10(5): 377-386.
Kitis, M., Karanfil, T., Wigton, A.and Kilduff J. E., (2002), “Probing reactivity of dissolved organic matter for disinfection by-product formation using XAD-8 resins adsorption and ultrafiltration fractionation”, Wat. Res., 36(15): 3834-3848.
Kleiser, G. and Frimmel, F. H., (2000), “Removal of precursors for disinfection by-products (DBPs) differences between ozone- and OH-radical-induced oxidation”, Sci. Total Environ., 256(1): 1-9.
Landgraf, S., (2001) “Application of semiconductor light sources for investigations of photochemical reactions”, Spectrochim. Acta Part, A, 57: 2029—2048.
Leenheer, J. A., (1981), “Comprehensive approach to preparative isolation and fractionation of dissolved organic carbon from natural waters and wastewaters”, Environ. Sci. Technol., 15(5): 578-587.
Leenheer, J. A., Nanny, M. A.and Mclntyre, C., (2003, a), “Terpenoids as major precursors of dissolved organic matter in landfill leachates, surface water, and groundwater”, Environ. Sci. Technol., 37(11): 2323-2331.
Leenheer, J. A., Wershaw, R. L., Brown, G. K. and Reddy, M. M., (2003, b) “Characterization and diagnosis of strong-acid carboxyl groups in humic substances”, Applied Geochem., 18(3): 471-482.
Ma, C. W. and Chu, W., (2001), “Photodegradation mechanism and rate improvement of chlorinated aromatic dye in non-ionic surfactant solutions”, Wat. Res., 35(10): 2453-2459.
Ma, J. and Graham, N. J. D., (2000), “Degradation of atrazine by manganese-catalyzed ozonation-influence of radical scavengers”, Wat. Res., 34(15): 3822-3828.
Ma, Y. S., (2004), “Reaction mechanisms for DBPS reduction in humic acid ozonation” Ozone: Sci. & Eng., 26(2): 153-164.
Nishimura, T. and Umetsu, Y., (2001), “Oxidative precipitation of arsenic (III) with manganese (II) and iron (II) in dilute acidic solution by ozone”, Hydrometallurgy, 62(2): 83-92.
Pomes, M. L., Larive, C. K., Thurman, E. M., Green, W. R., Orem, W. H., Rostad, C. E., Coplen, T. B., Cutak, B. J. and Dixon, A. M., (2000), “Sources and haloacetic acid/trihalomethane formation potentials of aquatic humic substances in the Wakarusa river and Clinton Lake near Lawrence, Kansas”, Environ. Sci. Technol., 34(20): 4278-4286.
Prado, J., Arantegui, J., Chamarro, E. and Esplugas, S., (1994), “Degradation of 2, 4—D by ozone and light”, Ozone: Sci. & Eng., 16: 235-245.
Rice, R. G., Robson C. M., Miller G. W., and Hill A. G. M., (1981), “Use of ozone-bromide reactions”, J. Am. Water Works Assoc., 85(1):63-72.
Rook, J. J., (1977), “Chlorination reactions of fulvic acids in natural waters”, Environ. Sci. Technol., 11(5): 478-82.
Saito, H. and Hyodo, T., (2003), “Improvement in the gamma-ray timing measurements using a fast digital oscilloscope”, Radiation Phy. Chem., 68(3-4): 431-434.
Sohn, J., Amy, G., Cho, J., Lee, Y., Yoon, Y., (2004), “Disinfectant decay and disinfection by-products formation model development: chlorination and ozonation by-products”, Wat. Res., 38(10): 2461-2478.
Staehelin, J. and Hoigné, J., (1985), “Decomposition of ozone in water in the presence of organic solutes acting as promoters and inhibitors of radical chain reactions”, Environ. Sci. Technol., 19(12): 1206-13.
Thurman, E. M.and Malcolm, R. L., (1981), “Preparative isolation of aquatic humic substances”, Environ. Sci. Technol., 15(4): 463-466.
Valdes, H., Zaror, C. A. and Jekel, M., (2003), “Kinetic study of reactions between ozone and benzothiazole in water”, Wat. Sci. Tech., 48(11-12): 505-510.
von Gunten, U., (2003a), “Ozonation of drinking water: Part I. Oxidation kinetics and product formation”, Wat. Res., 37(7):1443-1467.
von Gunten, U., (2003b), “Ozonation of drinking water: Part II. Disinfection and by-product formation in presence of bromide, iodide or chlorine”, Wat. Res., 37(7): 1469-1487.
張裕和 (1997), “水源中各類有機物不同分子量分佈對生成消毒副產物的影響及其控制策略之探討”, 東海大學環境科學研究所碩士論文
李福順, (1998), “大甲溪流域及旗下游豐原淨水廠水體中有機性消毒副產物前驅物質分佈特性之研究”, 東海大學環境科學研究所碩士論文.
辛汎峰, (1999), “以臭氧及膜濾法降低優氧化水體中同有機成分生成消毒副產物潛能之探討”, 東海大學環境科學系碩士班碩士論文
吳家興, (2000), “台灣地區水庫水源特性分及消毒副產物生成潛能之探討”, 東海大學環境科學碩士班碩士論文
陳峙霖 (2001), “以預臭氧對腐植酸生成消毒副產物特性之探討”, 東海大學環境科學研究所碩士論文
蔡美純 (2002), “從水中天然有機物官能基變化探討前臭氧/粒狀活性碳反應機制”, 東海大學環境科學研究所碩士論文
宋曉帆 (2003), “利用高級處理程序及高速擷取設備輔助監測水體中天然有機物官能基特性變化及降低消毒副產物生成潛能探討”, 東海大學環境科學研究所碩士論文
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 張清濱。(民85)。教師進修-邁向專業化的途徑。研習資訊,13(6),2-9。
2. 洪福財。(民88)。學校本位課程發展中的小學教師角色。教育實習輔導季刊,5(1),6-13。
3. 呂錘卿。(民80)。談國民小學教師在職進修現況。國教輔導,30(4),11-21。
4. 吳明隆。(民85)。高雄市國民小學教師在職進修教育之調查研究。教育資料文摘,6,131-161。
5. 吳政達。(民87)。國小教師在職進修教育的需求評估與績效評鑑方法。國教月刊,44(56),23-27。
6. 吳政達。(民86)。教師在職進修需求評估與績效評鑑。研習資訊,14(3),64-71。
7. 何福田。(民87)。教師在職進修現況與展望。國教天地,130,4-11。
8. 何福田。(民82)。漫談教師在職進修。國教天地,99,1-3。
9. 王家通。(民82)。突破教師進修的瓶頸。教師天地 ,68,23-27。
10. 王千倖。(民88)。實施「九年一貫課程」成左滌臕式G落實教師在職進修需求評估。視聽教育雙月刊,41(2),25-29。
11. 黃榮村。(民85)。教師的專業成長:一個外行人的觀點。教師天地,83,8-12。
12. 黃玉幸。(民88)。九年一貫課程中的教師專業成長。公教資訊季刊,3(3),29-35。
13. 黃炳煌。(民83)。我對國內中小學教師在職進修的一些期盼。教師天地,68,16-18。
14. 掌慶維。(民90)。九年一貫健康與體育領域能力指標之議題探討。翰林文教雜誌,24,16-19。
15. 程瑞福。(民89)。台灣地區中小學體育教師專業能力之研究。體育學報,28,123-132。
 
系統版面圖檔 系統版面圖檔