(3.215.77.193) 您好!臺灣時間:2021/04/17 01:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李莉鈴
研究生(外文):Li-Ling Lee
論文名稱:建立並模擬同時硝化脫硝之反應機制
論文名稱(外文):The feasibility study of establishing automatic control strategy in simultaneous nitrification and denitrification (SND)
指導教授:張鎮南張鎮南引用關係
指導教授(外文):Cheng-Nan Chang
學位類別:碩士
校院名稱:東海大學
系所名稱:環境科學系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:88
中文關鍵詞:同時硝化脫硝氧化還原電位自動控制技術Nernst equation
外文關鍵詞:Simultaneous Nitrification and Denitrification (SND)Oxidation Reduction Potential (ORP)on-line controlNernst equations
相關次數:
  • 被引用被引用:4
  • 點閱點閱:254
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年文獻中指出,傳統二階段硝化及脫硝反應可以在同一好氧操作環境下發生,稱為同時硝化脫硝(Simultaneous Nitrification and Denitrification, SND)。若SND技術可以適度改進而實際應用,傳統二階段生物硝化脫硝反應過程就可以一階段SND反應過程取代,不僅可以解決傳統二階段式生物硝化脫硝反應程序中好氧段及缺氧段操作上之衝突,更可以降低操作成本。即使SND反應與傳統二階段生物硝化脫硝反應在機制上是不同的,但本研究希望能將ORP線上自動控制技術應用在SND反應的控制上,以達到省下曝氣設備所需之動力需求。
研究結果顯示SND最佳操作因子如下:碳氮比為11.1時,可達到完全SND反應而過程中無NO2-產生。在SND系統中,氨氮去除效率會隨著氨氮負荷的增加而減少。另外,當空氣流量自5 l/min提高至10 l/min時,放流水中會殘留有NH2OH濃度0.25 mg/L和NO2-濃度6.5 mg/L。
本研究發展Nernst equation模式,以模擬SND反應過程中ORP之變化。由研究結果顯示,利用Nernst equation所模擬的ORP值與反應過程中監測之ORP值相似。因此,利用Nernst equations模式作為SND自動控制之基礎,能夠有效節省30%曝氣時間。另外在SND系統中,亦初步偵測出異營性硝化菌及SND能力的Nitrosomonas europaea。
Recently some laboratory results indicate that the nitrification and denitrification processes can proceed under low DO conditions in a process known as Simultaneous Nitrification and Denitrification (SND). If this cutting-edge SND technology is developed into a practical application technology, the traditional two-stage nitrification and denitrification processes can be replaced by a single-stage SND process and tremendous energy savings can be achieved. Additionally, the operation of the SND process may be controlled using the on-line ORP know-how to attain better efficiency and cost-effectiveness.
The objectives of this study are to obtain the optimum mixture SND operating conditions. When C/N ratio is 11.1, it can achieve complete SND reaction without NO2 production. Nitrogen removal efficiency decreases gradually with the increasing of ammonia loading rates in SND system. Additionally, the air flow rate increases from 5 l/min to 10 l/min level aeration loadings of 0.17 and 0.33 l-air/L -min), the NH2OH and NO2--N are found both from nil to 0.25 mg/L and 6.5 mg/L, respectively.
Nernst equation model is developed and modified is suitable for simulating the redox potential (ORP) variation of the SND process. The results indicate that the simulated ORP value corresponds to pr-determined degree of completion for the biochemical SND reaction can be calculated. Thus, these Nernst equations can enable saving 30% aeration energy by on-line control of the SND process. Heterotrophic nitrifiers and Nitrosomonas europaea with SND ability have been detects preliminary in the SND system.
Chapter 1 Introduction...................................1
1.1 Background Information................................1
1.2 Research Objectives and Approach......................3
Chapter 2 Literature Review..............................4
2.1 Nitrification .........................................4
2.2 Denitrification.......................................6
2.3 Heterotrophic Nitrification...........................7
2.4 Aerobic Denitrification...............................8
2.5 Simultaneous Nitrification and Denitrification (SND)..9
2.5.1 SND Mechanism........................................9
2.5.2 Factors Affecting SND...............................13
2.6 Biological Treatment Control Strategy.................15
2.7 The Relationship Between Redox Potential (ORP) and Ammonium Nitrogen During SND...............................17
2.8 Detection of Heterotrophic Nitrifying and SND Organisms..................................................19
Chapter 3 Materials and Methods..........................20
3.1 Experimental Design and Investigation Flow Chart......20
3.1.1 Part (A): Optimum SND Operating Conditions...........20
3.1.2 Part (B): Investigation of Nernst Equation by Batch SND Experiments................................................29
3.1.3 Part (C): Detection of Heterotrophic Nitrifiers and SND Organisms..................................................30
3.2 Analysis Methods......................................32
Chapter 4 Results and Discussion.........................34
4.1 Compare SND System in Oxic and Anoxic Stages..........34
4.2 Optimum Operating Conditions of SND System............36
4.2.1 Influence of C/N Ratio...............................36
4.2.2 Operation Mode of Two Step Adding Excess Carbon......40
4.2.3 Influence of Ammonia Loading Rate....................44
4.2.4 Oxygen Limitation Condition..........................52
4.3 Pure Oxygen Batch Test................................55
4.4 Model Development.....................................58
4.4.1 Establish Nernst Equation in SND Process.............58
4.4.2 Nernst Equation Establishment in SND Process.........64
4.5 Model Verification....................................72
4.6 Detection of Heterotrophic Nitrifiers and SND Organisms..................................................76
Chapter 5 Conclusions and Suggestions....................78
5.1 Conclusions...........................................78
5.2 Suggestions...........................................79
References.................................................80
Appendix I.................................................86
Appendix II................................................87
APHA, AWWA and WEF. (1998). Standards Methods for Examination of Water and Wastewaters. 20th Edn. of American Public Health Association, Washington, DC, USA.
Andreottola, G., Foladori, P. and Ragazzi, M. (2001). On-line control of a SBR system for nitrogen removal from industrial wastewater. Wat. Sci. Tech. 43(3): 93-100.
Arciero, D. M. and Hooper, A. B. (1993). Hydroxylamine oxidoreductase from Nitrosomonas europaea is a multimer of an octo-heme subunit. J. Biol. Chem. 268(20): 14645-14654.
Barrow, G. M. (1988). Physical Chemistry; McGraw-Hill: New York.
Bock, E., Schmidt, I., Stüven, R. and Zart, D. (1995). Nitrogen loss caused by denitrifying nitrosomonas cells using ammonium or hydrogen as electron donors and nitrite as electron acceptor. Arch. Microbiol. 163(1): 16-20.
Chang, C. N., Cheng, H. B. and Chao, A. C. (2004). Applying the Nernst equation to simulate redox potential variations for nitrogen removal in a sequencing batch membrane bioreactor (SBMBR) system. J. of Environ. Sci. Technol. 38(6): 1807-1812.
Chiu, Y. C. and Chung, M. S. (2001). BNP test to evaluate the influence of C/N ratio on N2O production in biological denitrification. Wat. Sci. Tech. 42(3-4): 22-27.
Chiu, Y. C. and Chung, M. S. (2003). Determination of optimal COD/Nitrate ratio for biological denitrification. International Biodeterioration and Biodegradation 51(1): 43-49.
De Boer, W. and Kowalchuk, G. A. (2001). Nitrification in acid soils: micro-organisms and mechanisms. Soil Biology & Biochemistry 33(7-8): 853-866.
Drtil, M., Nemeth, P., Kucman, K., Bodik, I. and Kasperek, V. (1995). Acidobasic balances in the course of heterotrophic denitrification. Wat. Res. 29(5): 1353-1360.
Du, G., Geng, J., Chen, J. and Lun, S. (2003). Mixed culture of nitrifying bacteria and denitrifying bacteria for simultaneous nitrificaion and denitrifion. World Journal of Microbiology & Biotechnology 19(4): 433-437.
Duggin, J. A., Voigt, G. K. and Bormann, F. H. (1991). Autotrophic and heterotrophic nitrification in response to clear-cutting northern hardwood forest. Soil Biol. Biochem. 23: 779-787.
Heal, I. M., Saunders, J. R. and Pickup, R.W. (1998). Microbial evolution, diversity, and ecology: a decade of ribosomal RNA analysis of uncultivated microorganisms. Microb. Ecol. 35(1): 1-21.
Hellinga, C., Schellen, A. A. J. C., Mulder, J. W., van Loosdrecht, M. C. M., Heijnen, J. J. (1998). The Sharon process: an innovative method for nitrogen removal from ammonium-rich waste water. Wat. Sci. Tech. 37(9): 135-142.
Hooper, A. B., Vannelli, T., Bergmann, D. J. and Arciero, D. (1997). Enzymology of the oxidation of ammonia to nitrite by bacteria. Antonie van Leeuwenhoek 71(1-2): 59-67.
Hibiya, K., Terada, A., Tsuneda, S. and Hirata, A. (2003). Simultaneous nitrification and denitrification by controlling vertical and horizontal microenvironment in a membrane-aerated biofilm reactor. Journal of Biotechnology 100(1): 23-32.
Jetten, M. S. M.; de Bruijn, P., Kuenen, J. G. (1997). Hydroxylamine metabolism in Pseudomonas PB16: involvement of a novel hydroxylamine oxidoreductase. Antonie van Leeuwenhoek 71(1-2): 69-74.
Katie, A. T., Natalie, B. and Ralf, C. R. (2003). Simultaneous Nitrification and Denitrification Using Stored Substrate (PHB) as the Electron Donor in an SBR. Biotechnology and Bioengineering 83(6): 706-720.
Keller, J., Subramaniam, K., Gösswein, J. and Greenfield, P. F. (1997). Nutrient removal from industrial wastewater using single tank sequencing batch reaction. Wat. Sci. Tech. 35(6): 137-144.
Killham, K., (1990). Nitrification in coniferous forest soils. Plant and Soil 128(1): 31-44.
Kim, H. and Hao, O. J. (2001). pH and oxidation-reduction potential control strategy for optimization of nitrogen removal in an alternating aerobic-anoxic system. Water Environment Research 73(1): 95-102.
Kim, Y. H. and Hensley, R. (1997). Effective control of chlorination and dechlorination at wastewater treatment plants using redox potential. Wat. Env. Res. 69(5): 1008-1014.
Kless, R. and Silverstein, J. (1992). Improved biological nitrification using recirculation in rotating biological contactors. Wat. Sci. and Tech. 26(3-4): 545—553.
Kurokawa, M., Fukumori, Y. and Yamanaka, T. (1985). Ahydroxylamine-Cytochrome C reductase occurs in the heterotrophic nitrifier Arthrobacter globiformis. Plant Cell Physiol. 26(7): 1439—1442.
Lee, P. G., Lea, R. N., Dohmann, E., Prebilsky, W., Turk, P. E., Ying, H. and Whitson, J. L. (2000). Denitrification in aquaculture systems: an example of a fuzzy logic control problem. Aquacultural Engineering 23: 37-59.
Lee, H. J., Bae, J. H. and Cho, K. M. (2001). Simultaneous nitrification and denitrification in a mixed methanotrophic culture. Biotechnology Letters 23(12): 935-941.
Lie, E. and Welander, T. (1994). Influence of dissolved oxygen and oxidation- reduction potential on the denitrification rate of activated sludge. Wat. Sci. Tech. 30(6): 91-100.
Matějù, V., Čižinská, S., Krej í, J. and Janoch, T. (1992). Biological water denitrification-a review. Enzyme and Microbial Technology 14(3): 170-183.
McDevitt, C., Burrell, P., Blackall, L. L. and McEwan, A. G. (2000). Aerobic nitrate respiration in a nitrite-oxidising bioreactor. FEMS Microbiol. Lett. 184 (1): 113-118.
Meiberg, J. B. M., Bruinenberg, P. M., Harder, W. (1980). Effect of dissolved oxygen tension on the metabolism of methylated amines in Hyphomicrobium X in the absence and presence of nitrate: evidence for ''aerobic'' denitrification. Journal of General Microbiology 120(2): 453-63.
Metcalf, X. and Eddy, X. (1991). Wastewater engineering: Treatment, disposal and reuse. Singapore: McGraw-Hill.
Moir, J. W. B., Crossman, L. C., Spiro, S., Richardson, D. J. (1996). The purification of ammonia mono-oxygenase from Paracoccus denitrificans. FEBS Letters 387(1): 71-74.
Neef, A., Zaglauer, A., Meier, H., Amann, R., Lemmer, H. and Schleifer, K. H. (1996). Population analysis in a denitrification sand filter: conventional and in situ of Paracoccus spp. In methanol-fed biofilms. Appl. Envirn. Microbiol. 62(12): 4329-4339.
Ng, W. J., Ong, S. L., Gomez, M. J., Hu, J. Y. and Fan, X. J. (2000). Study on a sequencing batch membrane bioreactor for wastewater treatment. Wat. Sci. Tech. 41(10-11): 227-234.
Nishio, T., Yoshikura, T., Mishima, H., Inouye, Z. and Itoh, H. (1998). Condition for nitrification and denitrification by immobilized heterotrophic nitrifying bacterium Alcaligenes faecalis OKK17. Journal of Fermentation and Bioengineering 86(4): 351-356.
Paul, E., Plission-Saune, S., Mauret, M. and Cantet, J. (1998). Process state evaluation of alternating oxic-anoxic activated sludge using ORP, pH and DO. Wat. Sci. Tech. 38(3): 299-306.
Patureau, D., Davison, J., Bernet, N. and Moletta, R. (1994). Denitrification under various aeration conditions in Comamonas sp., strain SGLY2. FEMS Microbiology Ecology 14(1): 71-78.
Patureau, D., Bernet, N. and Moletta, R. (1996). Effect of oxygen on denitrification in continuous chemostat culture with Comamonas sp., strain SGLY2. Journal of Industrial Microbiology 16(2): 124-128.
Patureau, D., Bernet, N. and Moletta, R. (1997). Combined nitrification and denitrification in a single aerated reactor using the aerobic denitrifier Comamonas sp. strain SGLY2. Wat. Res. 31(6): 1363-1370.
Patureau, D., Bernet, N., Dabert, P., Godon, J. J., Steyer, J. P., Delgenes, J. P. and Moletta, R. (1998). Physiological, molecular and modeling studies of an aerobic denitrifier: Microvirgula Aerodenitrificans. use of its properties in an integrated nitrogen removal plant. Wat. Sci. Tech. 38(1): 167-175.
Patureau, D., Zumstein, E., Delgenes, J. P. and Moletta, R. (2000). Aerobic denitrifiers isolated from diverse natural and mansged ecosystems. Microbial Ecology 39(2): 145-152.
Patureau, D., Helloin, E., Rustrian, E., Bouchez, T., Delgenes, J. P. and Moletta, R. (2001). Combined phosphate and nitrogen removal in a sequencing batch reactor using the aerobic denitrifier, Microvirgual aeroedenitrificans. Wat. Res. 35(1): 189-197.
Pochana, K. and Keller, J. (1999). Study of factors affecting simultaneous nitrification and denitrification (SND). Wat. Sci. Tech. 39(6): 61-68.
Ramalho, R. S. (1997). Introduction to wastewater treatment processes. John Wiley & Sons, Inc., New York.
Robertson L. A. and Kuenen, J. G. (1984). Aerobic denitrification: A controversy revived. Arch. Microbiol. 139(4): 2847-2855.
Robertson, L. A., and Kuenen, J. G.. (1988). Heterotrophic nitrification on Thiosphaera pantotropha: oxygen uptake and enzyme studies. Journal of General Microbiology 134(4): 857-863.
Robertson, L. A., van Niel, E. W. J., Torremans, R. M. and Kuenen, J. G.. (1988). Simultaneous nitrification and denitrification in aerobic chemostat culture of Thiosphaera patotropha. Applied and Environmental Microbiology 54(11): 2812-2818.
Robertson, L. A., Dalsgaard, T., Revsbech, N. P. and Kuenen, J. G. (1995). Confirmation of “aerobic denitrification” in batch cultures, using gas chromatography and N mass spectrometry. FEMS Microbiology Ecology 18(2): 113-120.
Rotthauwe, J. H., Witzel, K. P. and Liesack, W. (1997). The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Applied and Environmental Microbiology 63(12): 4704-4712.
Schlesinger, W. H. (1997). Biogeochemistry, Second Edition: An Analysis of Global Change. USA.
Sedlak, R. I. (1991). Phosphorus and nitrogen removal from municipal wastewater, Lewis Publisher, New York.
Shrestha, N. K., Hadano, S., Kamachi, T. and Okura, I. (2002). Dinitrogen production from ammonia by Nitrosomonas europaea. Applied Catalysis A: General 237(1-2): 33-20.
Stouthamer, A. H., de Boer, A. P. N. van der Oost, J. and van Spanning, R. J. M. (1997). Emerging principles of inorganic nitrogen metabolish in Paracoccus denitrificans and related bacteria. Antonie van Leeuwenhoek 71(1-2): 33-41.
Strous, M., Fuerst, J. A., Kramer, E. H., Logemann, S., Muyzer, G.., van de Pas-Schoonen, K. T., Webb, R., Kuenen, J. G.. and Jetten, M. S. (1999). Missing lithotroph identified as new planctomycete. Nature 400(6743): 446-449.
Surmacz-Gorska, J., Cichon, A., Miksch, K. (1997). Nitrogen removal from wastewater with high ammonia nitrogen concentration via shorter nitrification and denitrification. Wat. Sci. Tech. 36(10): 73-78.
Surampalli, R. Y., Tyagi, R. D., Scheible, O. K. and Heidman, J. A. (1997). Nitrification, denitrification and phosphorus removal in sequential batch reactors. Bioresource Technology 61(2): 151-157.
Thayalakumaran, N., Bhamidimarri, R. and Bickers, P. O. (2003). Biological nutrient removal from meat processing wastewater using a sequencing batch reactor. Wat. Sci. Tech. 47(10): 101-108.
van Loosdrecht, M. C. M. and Jetten, M. S. M. (1998). Microbiological conversions in nitrogen removal. Wat. Sci. Tech. 38(1): 1-7.
van Niel, E. W. J., Braber, K. J., Robertson, L. A. and Kuenen, J. G. (1992). Heterotrophic nitrification aerobic denitrification in Alcaligenes faecalis strain TUD. Antonie van Leeuwenhoek 62(3): 231-237.
Vitousek, P. M., Aber, J. D., Howarth, R. W., Likens, G. E., Matson, P. A., Schindler, D. W., Schlesinger, W. H. and Tilman. D. G. (1997). Human alteration of the global nitrogen cycle: Sources and consequences. Ecological Applications 7: 737-750.
von Münch, E. Lant, P. and Keller, J., (1996). Simultaneous nitrification and denitrification in bench-scale sequencing batch reactors. Wat. Res. 30(2): 277-284.
Yoo, K., Ahn, K. H., Lee, H. J., Kwak, Y. J. and Song, K. G. (1999). Nitrogen removal from synthetic wastewater by simultaneous nitrification and denitrification (SND) via nitrite in an intermittently-aerated reactor. Wat. Res. 33(1): 145-154.
Yu, R. F., Liaw, S. L., Chang, C. N., Lu, H. J., Cheng, W. Y. (1998). Applying real-time control to enhance the performance of nitrogen removal in the continuous-flow SBR system. Wat. Sci. Tech. 38(1):271-280.
Zahn, J. A, Duncan, C. and Dispirito, A. A. (1994). Oxidation of hydroxylamine by cytochrome P-460 of the obligate methylotroph Methylococcus capsulatus Bath. J. Bacteriol. 176(19): 5879-5887.
Zart, D. and Eberhard, B. (1998). High rate of aerobic nitrification and denitrification by Nitrosomonas eutropha grown in a fermentor with complete biomass restention in the presence of gaseous NO2 and NO. Arch. Microbiol. 169(4): 282-286.
Zeng, R. J., Lemaire, Z., Yuan, Z. and Keller, J. (2003). Simultaneous nitrification, and denitrification, and phosphorus removal in a lab-scale sequencing batch reactor. Biotechnology and Bioengineering 84(2): 170-178.
Zhao, H. W., Mavinic, D. S., Oldham, W. K. and Koch, F. A. (1999). Controlling factors for simultaneous nitrification and denitrification in a two-stage intermittent aeration process treating domestic sewage. Wat. Res. 33(4): 961-970.
Zipper, T., Fleischmann, N. and Haberl, R. (1998). Development of a new system for control and optimization of small wastewater treatment plants using oxidation-reduction potential (ORP). Wat. Sci. Tech. 38(3): 307-314.
吳依龍、陳旻谷、曾四恭 (2003),菌株Achromobacter sp. 同時硝化脫硝之特性研究,第二十八屆廢水處理研討會論文集
曾四恭、曹明浙 (2003),同槽硝化脫硝反應去除廢水氨氮之研究,第二十八屆廢水處理研討會論文集
彭明琛 (2003),養殖環境中氨氧化菌之研究,國立中山大學海洋資源研究所碩士論文
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 陳朝陽(民 86):法治教育的精神與教學。研習資訊,14(4),頁8~15。
2. 林金朝(民 87):從法學觀點探討公民對法律應有的認識與素養。公民訓育學報,7,頁153-170。
3. 林孟皇、陳叡智(民 87):談國小法治教育之推展。研習資訊,15(5),頁64-87。
4. 林儒(民 87):法治教育研究的新方向-法律社會化。教育研究,64,頁14-17。
5. 李柏佳(民 86):論國民小學之民主法治教育-以行政院青輔會「小執法說故事」法治播種服務為例。公民訓育學報,6,頁287-306。
6. 沈六(民 80):法治認知發展與教育。訓育研究,30(3),頁3-14。
7. 盧素碧(民79):中日新頒幼稚園課程標準之剖析。家政教育,11(3),18-33。
8. 阮志聰( 民78): 幼兒智力與運動能力相關之研究。國教學報, 2,251-277。
9. 陳惠苓(民 87):從當前社會現象談學校法治教育。臺灣教育,568,頁37-41。
10. 陳義男(民 91):落實法治教育。南縣國教,7,頁50-51。
11. 張秀雄、李琪明(民91):理想公民資質之探討-台灣地區個案研究。公民訓育學報,12,頁1-32。
12. 湯孝彬(民 87):加強中學法治教育之芻議。臺灣教育,568,頁24-25。
13. 黃旭田(民 88):法治教育的起源-國民教育階段都在教些什麼。司法改革雜誌,21,頁10-13。
14. 詹棟樑(民 87):德國的法治教育。臺灣教育,568,頁4-7。
15. 謝瑞智(民 86):如何在民主社會中建立守法精神。研習資訊,14(4),頁22-30。
 
系統版面圖檔 系統版面圖檔