跳到主要內容

臺灣博碩士論文加值系統

(44.210.149.218) 您好!臺灣時間:2024/11/07 20:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳廷菖
研究生(外文):T. C. Chen
論文名稱:ABS導電複合材料電氣與機械性質之研究
論文名稱(外文):A Study of the Electrical and Mechanical Properties of ABS Conductive Composites
指導教授:鄭國彬鄭國彬引用關係
指導教授(外文):K. B. Cheng
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:有機高分子研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:150
中文關鍵詞:丙烯腈-丁二烯-苯乙烯共聚物導電複合材料表面電阻係數電磁波屏蔽效益
外文關鍵詞:Acrylonitrile-Butadiene-StyreneConductive compositeSurface Resistance CoefficientElectromagnetic Shielding Effectiveness
相關次數:
  • 被引用被引用:5
  • 點閱點閱:892
  • 評分評分:
  • 下載下載:127
  • 收藏至我的研究室書目清單書目收藏:2
本文係將導電碳纖維與導電碳黑利用高分子混摻法(Polymer blend)添加入高分子基材內,製作成具有防靜電和防電磁波的功能性材料。碳纖維與導電微粒碳黑是常見的填充材料,因此本實驗選擇碳纖維與碳黑作為製作導電複合材料的導電來源材料。由於碳黑的粒徑甚小,碳黑分子間常會因凡得瓦爾力的吸引而產生聚集現象,因此在混煉(Compounding)前須先將團聚的碳黑顆粒經粉碎機粉碎,此過程可減少因較長的混煉時間所造成的高分子劣解現象,並提高碳黑在基材內的分散性,再與丙烯腈-丁二烯-苯乙烯共聚物(Acrylonitrile-Butadiene-Styrene, ABS)在雙螺桿混煉機中充分混鍊均勻成導電高分子複合材料,待冷卻後經造粒機造粒,由射出成型機射出成所需試片樣式,藉以探討其表面電阻係數、導電率、電磁波屏蔽效益、靜電放電電壓等電氣性質及拉伸、彎曲與衝擊等機械性質。由於碳纖維有較高的形狀係數(Aspect ratio),碳纖維間的接觸機率也較高,因此添加碳纖維的導電複合材料比添加碳黑的導電複合材料,其導電率與電磁波遮蔽值均較佳。本實驗採用向量網路分析儀(Vector Network Analyzer)搭配同軸夾具以評估電磁波遮蔽值,所規範的電磁波量測頻率範圍設定在50MHz-3GHz,經測試結果顯示當導電填充材料的添加量達到一定比例,碳黑10wt%添加量下,單層(2mm)可衰減訊號至少15dB以上;多層(20mm)可達到48dB以上。拉伸測試方面,在添加導電碳黑含量3wt%的拉伸強度最佳,為42.47MPa,添加碳纖維含量為10wt%的拉伸強度最佳可達到60.32MPa;與拉伸強度為28.99MPa之純ABS做比較,可以發現碳纖維與碳黑的添加對於拉伸之機械性質測試都有補強的作用;而由於碳纖維的高形狀係數也預期會比添加碳黑有較好的抗拉伸性質。由本文所提出之實驗品可以適用於防治靜電放電現象與需要抗電磁波防護的之汽車、飛機之內裝材、電子設備包裝材等用途。
This article is concerned with compounding ABS with carbon fiber (CF) and carbon black (CB) to fabricate functional materials, which are anti-static and anti-electromagnetic, by polymer blending. Conductive CF and CB are familiar filler materials, which use to be conductive origin materials of the conductive composites. Owing to the small size of CB, there exists attraction between carbon black particles by the Van Der Waals force that brings an aggregate phenomenon. Before compounding, we pulverize the aggregate CB to prevent polymer degradation as a longer compounding time, and enhance the dispersion of particles in the matrix. Furthermore, the conductive fillers are well compound with the ABS in a Twin-Screw mixer, and then we break the conductive composites after cooling. By using the injection model machine, the sample shapes are formed to produce the electrical properties including surface resistance coefficient, electromagnetic shielding effectiveness, and the mechanical properties including tensile, 3-point bending, and impact test. On account of the higher aspect ratio, there is a better contact ratio between carbon fibers, thus the composites filled with carbon fiber have better conductivity and electromagnetic shielding effectiveness than those filled with carbon black.
The shielding values were measured by a Vector Network Analyzer and coaxial holder, at frequencies between 50MHz-3GHz, the resulting experiment can detect more than 10dB of SE in one plate (the thickness is 2mm) and more than 40dB of SE in multi-plate (the thickness is 20mm) when the addition content percentage of conductive carbon black filled materials gets up to 10wt%. On tensile test, the composite filled with 3wt% carbon black content has a better tensile strength, 42.47MPa. Otherwise, the composite filled with 3wt% carbon fiber content has a better tensile strength, 60.32MPa. Compared with pure ABS (tensile strength is 28.99MPa), we can establish that the two composites filled with CB and CF can both raise the tensile strength. The high shape coefficient of CF is better than CB and consequently results in an improved tensile property. In the course of time, the conductive products from this experiment can be applied to anti-electrostatic discharge phenomena and protection from electromagnetic waves, such as the inner packing materials of cars, airplanes, or materials for packing electronic equipment.
目 錄
中文摘要.....................................................i
英文摘要...................................................iii
誌謝..........................................................v
目錄.........................................................vi
表目錄.....................................................viii
圖目錄.......................................................ix
第一章 緒論..................................................1
1.1前言...................................................1
1.2研究目的...............................................5
1.3 論文架構..............................................6
第二章 文獻回顧..............................................7
2.1高分子導電複合材料.....................................7
2.2電磁波屏蔽相關文獻.....................................9
第三章 材料特性與理論.......................................13
3.1 何謂ABS?.............................................13
3.2高分子導電複合材料....................................16
3.3碳纖維材料特性........................................19
3.3.1 PAN系碳纖維的製程................................20
3.3.2 碳系材料導電原理.................................21
3.4 碳黑材料特性.........................................23
3.4.1 碳黑製造方法與結構...............................23
3.5靜電產生原理與作用及其防護............................25
3.6電磁波干擾理論........................................31
3.7電磁波屏蔽理論........................................36
第四章 研究方法..............................................47
4.1實驗材料..............................................47
4.1.1 ABS..............................................47
4.1.2導電填充材料......................................48
4.1.2.1碳黑.........................................48
4.1.2.2碳纖維.......................................48
4.1.2.3不鏽鋼纖維...................................48
4.2實驗設備..............................................48
4.3實驗流程..............................................52
4.4導電複合材料之製作....................................53
4.4.1導電複合材料之規格................................53
4.5電氣性質測試..........................................55
4.5.1表面電阻係數之測試................................55
4.4.2電磁波遮蔽效應測試................................56
4.6機械性質測試..........................................57
4.6.1拉伸測試..........................................57
4.6.2衝擊測試..........................................58
4.6.3彎曲測試..........................................61
第五章 結果與討論............................................62
5.1改變不同填充材料種類對導電複合材料之表面電阻係數
之影響...................................................62
5.2 改變不同填充材料對導電複合材料之電磁波屏蔽效益之
影響.....................................................66
5.2.1 不同填充材料種類對厚度2mm導電複合材料之電
磁波吸收損失...........................................66
5.2.2不同填充材料種類對導電複合材料之電磁波反射損
失之影響...............................................72
5.2.3 不同填充材料種類與厚度對導電複合材料電磁波
屏蔽效益之影響.........................................78
5.3 不同填充材料對導電複合材料拉伸強度之影響.............88
5.4不同填充材料種類對導電複合材料三點彎曲強度之影響......95
5.5不同填充材料對導電複合材料衝擊強度之影響.............101
5.6複合材料破損分析.....................................108
5.6.1拉伸試驗破損分析.................................108
5.6.2衝擊試驗破損分析.................................120
5.6.3彎曲試驗破損分析.................................134
5.7 導電複合材料射出過程對纖維長度之影響................138
第六章 結論.................................................140
參考文獻....................................................143
[1]S. A. Halperin, “Guidelines for Static Control Management”, Eurostat,1990.
[2]李煥松,電磁相容性(EMC)測試,電子月刊,第五卷,第八期,1999,第74-86頁。
[3]盛鵬編譯,EMC的基礎和實踐,全華書局,1998,第3-7頁。
[4]余富吉譯,電磁波技術之現狀與發展,電機月刊,第六卷,第三期,1996,第167-178頁。
[5]H. Rahma, J. Dowling, P. K. Sara, “Application of frequency sensitive surfaces in electromagnetic shielding”, Journal of Materials Processing Technology, 1995, 54, pp.21-28.
[6]Wang Guoquan, Zeng Peng,“Electrical Conductivity of Poly(Vinyl Chloride) Plastic-Short Carbon Fiber Composite” ,Polymer Engineering and Science, 1997,37, pp.96-100.
[7]Mark Weber, Musa R. Kamal, “Estimation of Electrically Conductive Composites”, Polymer Composites, 1997, 18, pp.711-725.
[8]Xiaoyi Liang, Licheng Ling, Chunxiang Lu, Lang Liu,“Resistivity of carbon fibers/ABS resin composites”, Materials Letters, 2000, 43, pp.144-147.
[9]G. Jiang, M. Gilbet, D.J. Hitt, G.D. Wilcox, K. Balasubramanian, “Preparation of nikel coated mica as a conductive filler”, Composites, 2002, 33, pp.745-751.
[10]Guanghong Lu, Xiaotian Li, Hancheng Jiang“Electrical and Shielding Properties of ABS Resin Filled with Nickel-Coated Carbon Fibers”, Composites Science and Technology, 1996, 56, pp.193-200.
[11]Chi-Yuan Hung and Tay-Wen Chiou,“The Effect of Reprocessing on the EMI Shielding Effectiveness of Conductive Fibre Reinforced ABS Composites” , Polymer, 1996, 34, pp.37-43.
[12]Xiaopiang Shui and D.D.L Chung,“Nickel Filament Polymer-Matrix Composites with Low Surface Impedance and High Electromagnetic Interference Shielding Effectiveness”, Electronic Materials, 1997, 26, pp.928-934.
[13]Shinn-Shyong Tzeng, Fa-Yen Chang, “EMI Shielding Effectiveness of Matel-Coated Carbon Fiber-Reinforced ABS Composites”, Materials Science and Engineering, 2000, A320, pp.258-267.
[14]石天威、陳汝琦、蔡明錦、呂崇賓,「不鏽鋼纖維/聚酯纖維混紡紗對梭織物電磁波屏蔽效應之探討」,第二十屆纖維紡織研討會論文集,2004,第BO-004頁。
[15]吳淑婷、鄭大偉、鄭國彬,「改變不同填充物種類與含量對PU複合薄膜電磁波吸收損失的影響」,第二十屆纖維紡織研討會論文集,2004,第CO-011頁。
[16]李貴琪、林佳詩、陳昭寰,「單層金屬複合針織物的電磁波吸收效益研究」,第二十屆纖維紡織研討會論文集,2004,第BP-003頁。
[17]國喬石化股份有限公司,2004, http://www.gppc.com.tw/
[18]中國塑料編輯部,現代塑料百科,第三卷,1997,第191-195頁。
[19]富強鑫精密工業股份有限公司,2004, http://www.fcs.com.tw/webtop/FAQ_B5/index.phtml?action=browse&id=77&StoreID=6&
[20]Ming Qiu Zhang and Gang Yu & Han Min Zeng, Hai Bo Zhang, and Yan Hui Hou ,“Two-Step Percolation in Polymer Blends Filled with Carbon Black” , Macromolecules ,1998, 31, pp.6724-6726.
[21]許馨顯,PAN系碳纖維的電性與磁性分析及電磁波遮蔽材之研究,碩士學位論文,私立逢甲大學材料科學研究所,1991。
[22]陳宗毅,碳-碳複合材料磨耗面顯微組織研究,碩士學位論文,私立義守大學材料科學與工程研究所,2001。
[23]鄭博仁,添加碳黑對碳/碳複合材料機械及磨耗性質之影響,碩士學位論文,國立成功大學材料科學及工程研究所,2000。
[24]楊承哲,活性團聯共聚合物接枝包覆碳黑之奈米複合微粒的合成、性質與溶劑中分散特性,碩士學位論文,國立台灣大學化學工程學研究所,2002。
[25]古訪賢,微粒粉末在高分子連續相之分散研究,碩士學位論文,國立台北科技大學有機高分子研究所,2001。
[26]廖秋峰,詹益松,ESD消除及EMI屏蔽材料,工業材料,第161期,2000。
[27]行政院勞工委員會勞工安全衛生研究所,靜電消除設備,IOSH安全資料表,2000。
[28]亞特必股份有限公司 導電ESD材料介紹網頁,2004
http://www.asiateck.com.tw/product/conductive/
[29]陳弘彬,PU/無機微粒複合薄膜抗UV、靜電及電磁波屏蔽效益之研究,碩士學位論文,國立台北科技大學,2003。
[30]曹龍泉,防電磁波干擾電子資訊產品外殼材料研究,博士學位論文,國立台灣大學材料科學與工程學研究所,2000。
[31]R. M. Gresham, “EMI/RFI Shielding of plastics, Plating and Surface Finishing”, Feb, 1988, pp.63-69.
[32]Ferraris, L., Chang-Yu Wu, “EMI shielding-common problems and containment strategies”, Electromagnetic Compatibility Proceedings, 1997, pp. 86-89.
[33]P. A. Chatterton, M. A. Houlden, “EMC:Electromagnetic Theory to Practical Design”, University of Liverpool, 1991, pp.33-50.
[34]方志行,陳淑貞編譯,淺談電磁干擾,科技圖書股份有限公司,1993,第89-93頁。
[35]Leland H. Hemming, “Architectural Electromagnetic Shielding Handbook:a design and specification guide”, Institute of Electrical and Electronics Engineers, 1991, pp.13-34.
[36]王國華,本質型導電高分子於電腦塑殼電磁干擾消除應用研究,碩士學位論文,私立文化大學應用化學研究所,2000。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top