(18.204.2.190) 您好!臺灣時間:2021/04/22 08:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:馬正驥
研究生(外文):Ma, Cheng-Ji
論文名稱:應用雙重質子交換法製作積體光學波長解多工器
論文名稱(外文):Fabrication of Integrated-Optic Wavelength Demultiplexer by Double Proton Exchange
指導教授:王子建洪魏寬
指導教授(外文):Wang, Tzyy-JiannHung, Wei-Kuan
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:光電技術研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:91
中文關鍵詞:波長解多工器鈮酸鋰模態揀選效應
外文關鍵詞:wavelength demultiplexerlithium niobatemode sorting effect
相關次數:
  • 被引用被引用:0
  • 點閱點閱:195
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
為了因應光纖通訊中資訊傳遞量日益增大的趨勢,新型態波長解多工器的發展成為一項刻不容緩的工作。本論文即是應用積體光學中的模態揀選效應,成功地在鈮酸鋰基板上以兩階段質子交換的製程方式製作出Y分岔型980/1550波長解多工器。在研究上,首先設計Y分岔兩輸出波導之結構,經由理論計算的方式選擇適當的製程參數,使元件產生模態揀選效應而達到波長解多工的目的。另外在Y分岔光波導結構製作完成後,藉由在Y分岔其中一輸出波導上部加上一薄高折射率層,來調整波導的色散特性以提升元件之效能。相較於其他結構的波長解多工器,Y分岔型波長解多工器的製程容忍度高、操作波段範圍寬,而所提出的結構由於僅需使用質子交換的單一製程方式在鈮酸鋰基板上製作,因此亦可承受較高的輸入幫浦光功率,並且具有製程簡單、製作成本低、可與摻鉺鈮酸鋰元件整合等優點。在目前的製程條件下,元件在波長980nm與波段1550nm附近下的訊熄比分別可達到18.5dB與18.1dB以上。

For the request of the increase of data transmission in the fiber optics communication, the development of new type wavelength demultiplexers is important to meet this request. Based on the mode sorting effect in integrated optics, a new 980/1550 Y-branch-type wavelength demultiplxer on LiNbO3 is successfully demonstrated by using double proton exchange method. In this study, we first design the waveguide structures of two output waveguides of Y-branch and select the fabrication parameter by theoretical calculations. The dispersion characteristics of the output waveguide can be tuned by adding an extra layer of high index and the performance of the proposed devices can be further improved. Comparing to other types of wavelength demultiplexers, Y-branch-type wavelength demultiplexer has the advantages of high fabrication tolerance and wide operational wavelength range. The proposed device structure has additional advantages of high input pump power, easy fabrication, low fabrication cost and can be integrated with Er-doped LiNbO3 devices because it uses only proton exchange method on LiNbO3. In the present fabrication condition, the extinction ratios of the device at wavelength of 980nm and band of 1550nm can reach over 18.5dB and 18.1dB, respectively.

目 錄
中文摘要 i
英文摘要 ii
致謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
第一章 緒論 1
1.1 積體光學簡介 1
1.2 積體光學元件的材料 2
1.3 鈮酸鋰晶體的特性 3
1.3.1 物理與化學性質 3
1.3.2 光學性質 4
1.4 研究動機 6
1.5 內容簡介 7
第二章 鈮酸鋰光波導特性與製作 8
2.1 鈮酸鋰光波導特性 8
2.1.1 金屬擴散式波導 8
2.1.2 質子交換式波導 9
2.2 鈮酸鋰光波導的製作 11
2.2.1 晶片切割 11
2.2.2 晶片清洗 12
2.2.3 光學微影 12
2.2.4 薄膜沉積 13
2.2.5 圖樣形成 14
2.2.6 高溫處理 14
2.2.7 晶片研磨 15
第三章 波長解多工器的設計與製作 16
3.1 波長解多工器簡介 16
3.2 波長解多工器的設計 17
3.2.1 模態揀選效應 17
3.2.2 元件結構的設計 19
3.2.3 製程參數的選擇 21
3.3 波長解多工器的製作 24
第四章 實驗結果與討論 27
4.1 波長解多工器的特性量測 27
4.1.1 元件特性的量測 27
4.1.2 元件效能的評估 28
4.2 實驗結果 28
4.2.1 第一組製程參數 29
4.2.2 第二組製程參數 29
4.2.3 第三組製程參數 30
4.2.4 操作波長範圍的探討 30
4.3 討論 31
第五章 結論 33
附表 34
附圖 41
參考文獻 81
中英文名詞對照表 84
附件:發表於2003年台灣光電科技研討會(opt2003)之論文 89

參考文獻
[1] R. S. Weis and T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys. A., vol. 37, no. 4, pp. 191-203, 1985.
[2] M. N. Armenise, “Fabrication techniques of lithium niobate waveguides,” IEE Proc.-J, vol. 135, no. 2, pp. 85-91, 1988.
[3] M. Fukuma and J. Noda, “Optical properties of titanium-diffused strip LiNbO3 waveguides and their coupling-to-fiber characteristics,” Appl. Opt., vol. 19, no. 4, pp. 591-597, 1980.
[4] F. S. Chu and P. L. Liu, “Simulations of Ti:LiNbO3 waveguide modulator — a comparison of simulation technique,” J. Lightwave Technol., vol. 8, no. 10, pp. 1492-1496, 1990.
[5] I. P. Kaminow and J. R. Carruthers, “Optical waveguiding layer in LiNbO3, ” Appl. Phys. Lett., vol. 22, no. 7, pp. 326-328, 1973.
[6] C. Canall, C. Bernardi, M. Sario, A. Loffredo, G. Mazzi, and S. Morasca, ”Effects of water vapor on refractive index profiles in Ti:LiNbO3 planar waveguides,” J. Lightwave Technol., vol. 4, no. 7, pp. 951-955, 1986.
[7] P. K. Wei and W. S. Wang, “Fabrication of lithium nioabte optical channel waveguides by nickel indiffusion,” Microwave Opt. Technol. Lett., vol. 7, no. 5, pp. 219-221, 1994.
[8] W. S. Wang, Y. P. Liao, and C. H. Yang, “Nickel-indiffusion waveguide for TE-TM mode splitter in lithium niobate,” Int. J. High Speed Electronics and System, vol. 8, no. 4, pp. 621-642, 1997.
[9] W. M. Young, M. M. Fejer, M. J. F. Digonnet, A. F. Marshall, and R. S. Feigelson, “Fabrication, characterization and index profile modeling of high-damage resistance Zn-diffused waveguides in congruent and MgO:lithium niobate,” J. Lightwave Technol., vol. 10, no. 9, pp. 1238-1246, 1992.
[10] Y. P. Liao, D. J. Chen, R. C. Lu, and W. S. Wang, “Nickel-diffused lithium niobate optical waveguide with process-dependent polarization,” IEEE Photon. Technol. Lett., vol. 8, no. 4, pp. 548-550, 1996.
[11] J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high-index waveguides in LiNbO3,” Appl. Phys. Lett., vol. 41, pp. 607-608, 1982.
[12] J. J. Veselka and G. A. Bogert, “Low-insertion-loss channel waveguides in LiNbO3 fabricated by proton exchange,” Electron. Lett., vol. 23, no. 6, pp. 265-266, Mar. 1987.
[13] J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high-index waveguides in LiNbO3,” Appl. Phys. Lett., vol. 41, no. 7, pp. 607-608, 1982.
[14] E. Y. B. Pun, K. K. Loi, and P. S. Chung, “Proton-exchanged optical waveguides in Z-cut LiNbO3 using phosphoric acid,” J. Lightwave Technol., vol. 11, no. 2, pp. 277-284, 1986.
[15] N. Goto and Gar Lam Yip, “Characterization of proton-exchange and annealed LiNbO3 waveguides with pyrophosphoric acid,” Appl. Opt., vol. 28, no. 1, pp. 60-65, 1989.
[16] T. Maciak, “LiNbO3 optical waveguides obtained by proton exchange in oleic acid,” Int. J. Optoelectron., vol. 5, pp. 227-234, 1990.
[17] E. Y. B. Pun, S. A. Zhao, K. K. Loi, and P. S. Chung, “Proton-exchanged LiNbO3 optical waveguides using stearic acid,” IEEE Photon. Technol. Lett., vol. 3, no. 11, pp. 1006-1008, 1991.
[18] E. Y. B. Pun, Y. O. Tse, and P. S. Chung, “Proton-exchanged optical waveguides in LiNbO3 using octanoic acid,” IEEE Photon. Technol. Lett., vol. 3, no. 6, pp. 522-523, 1991.
[19] Y. S. Son, H. J. Lee, Y. K. Jhee, S. Y. Shin, and B. G. Kim, “Fabrication of LiNbO3 waveguides using water,” IEEE Photon. Technol. Lett., vol. 4, no. 5, pp. 457-459, 1992.
[20] M. Rottschalk, A. Rasch, and W. Karthe, “Electrooptic behavior of proton exchanged LiNbO3 optical waveguides,” J. Opt. Comm., vol. 9, pp. 19-23, 1988.
[21] I. Savatinova, S. Tonchev, R. Todorov, M. N. Armenise, V. M. N. Passaro, and C. C. Ziling, “Electro-optic effect in proton exchanged LiNbO3 and LiTaO3 waveguides,” J. Lightwave Technol., vol. 14, pp. 403-409, 1996.
[22] A. Yi-Yan, “Index instability in proton exchanged LiNbO3 waveguides,” Appl. Phys. Lett., vol. 42, no. 8, pp. 633-635, 1983.
[23] K. Yamamoto and T. Taniuchi, “Characteristics of pyrophosphoric acid proton-exchanged waveguides in LiNbO3,” J. Appl. Phys., vol. 70, pp. 6663-6668, 1991.
[24] K. K. Wong, “An experimental study of dilute melt proton exchange waveguides in X- and Z-cut lithium niobate,” GEC J. Research., vol. 3, pp. 243-250, 1985.
[25] C. Y. Wang, H. H. Shih, S. C. Wang, H. P. Shiao, and Y. K. Tu, “Novel 0.98/1.55μm dichoric-coupler based on lithium niobate,” Optoelectronic Component Technol., vol. 1813, pp. 95-103, 1992.
[26] M. R. Paiam and R. I. MacDonald, “Polarization-insensitive 980/1550nm wavelength (de)multiplexer using MMI couplers,” Electron. Lett., vol. 33, no. 14, pp. 1219-1220, 1991.
[27] F. Rottmann, A. Neyer, W. Mevenkamp, and E. Voges “Integrated-optic wavelength multiplexers on lithium niobate based on two-mode interference,” J. Lightwave Technol., vol. 6, no. 6, pp. 946-952, 1988.
[28] T. Negami, H. Haga, and S. Yamamoto “Guided-wave optical wavelength demultiplexer using an asymmetric Y junction,” Appl. Phys. Lett., vol. 54, no. 12, pp. 1080-1082, 1989.
[29] N. Goto and G. L. Yip, “Y-branch wavelength multi-demultiplexer for λ=1.30 and 1.55μm,” Electron. Lett., vol. 26, no. 2, pp. 102-103, 1990.
[30] Z. Weissman, D. Nir, S. Ruschin, and A. Hardy “Asymmetric Y junction wavelength demultiplexer based on segmented waveguides,” Appl. Phys. Lett., vol. 67, no. 3, pp. 302-304, 1995.
[31] H. Yajima, “Dielectric thin-film optical branching waveguide,” Appl. Phys. Lett., vol. 22, no. 12, pp. 647-649, 1973.
[32] W. K. Burns and A. F. Milton, “Mode conversion in planar-dielectric separating waveguides,” IEEE J. Quantum Electron., vol. 11, no. 1, pp. 32-39, 1975.
[33] F. Laurell, J. Webjorn, G. Arvidsson, and J. Holmberg, “Wet etching of proton-exchanged lithium niobate - a novel processing technique,” IEEE J. Lightwave Technol., vol. 10, no. 11, pp. 1606-1609, 1992.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔