(34.204.186.91) 您好!臺灣時間:2021/04/19 15:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳星助
研究生(外文):Xingdrew Chen
論文名稱:一體成型之均熱板與鳍片散熱器製程參數研究
論文名稱(外文):A Study of the Manufacturing Parameters for the Integrated Cooler Composed of Vapor Chamber Heat Spreader and Fins
指導教授:王金樹王金樹引用關係
指導教授(外文):Wang Chin-Shu
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:製造科技研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:96
中文關鍵詞:蒸汽式散熱器熱管真空相變化熱傳
外文關鍵詞:vapor chamber type coolerheat pipevacuumphase change heat transfer
相關次數:
  • 被引用被引用:6
  • 點閱點閱:599
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文發展兩種一體成型散熱器之製程(銅網銅粉結構、完全銅粉結構),一體成型於均熱板上的鳍片則可增加散熱面積,兩者的組合可快速並大量完成傳熱與散熱的任務,經由被動式散熱熱阻(Intel Code)測得,優於純銅底座散熱器,分別為5%與13%左右。
討論蒸汽式散熱器、均熱板的設計與製造方式,元件毛細結構的燒結製程,其中探討兩種粉、四種燒結溫度、三個燒結時間,產生的不同孔隙率與不同滲透率,且確保封裝填液量與抽氣損失率的穩定性,進而達成真空系統性能的確認;並針對不同填水量與不同冷卻風量(20、30、40CFM)、不同發熱量(40、60、80W)下,在微小晶片面積(144mm2)時測試,發現在風量40CFM下,銅網製程在40W時,熱阻優於純銅底5%,屬於一種低發熱量之設計,但80CFM下,完全銅粉製程在80W時的熱阻優於純銅底約13%,屬於一種適合高發熱量散熱之設計。
吾人建議未來在朝向高發熱量之蒸汽式散熱器設計時,將更應注意冷凝與蒸發最佳平衡狀態的考慮。在最佳水量參數下,得到整體散熱器熱阻為0.522℃/W,均熱板以Fujitsu方式所得為0.163℃/W,得鳍片熱阻為兩者之差,約為0.359℃/W,可較軟體分析之鳍片熱阻值0.527℃/W降低約0.168℃/W。足見均熱板對增近鳍片效率,降低鰭片熱阻具有相當功效。
There are two integrated cooler manufacturing process in the disquisition (copper powder sintering structure with mesh and without mesh). The vapor chamber is to absorb heat from heat source, and transfer it to fins quickly by latent heat. And the fuction of fin component bonded on top of the spreader is to increase heat transfer area. The thermal resistance of the two process measured by a passive thermal testing system is lower than the copper cooler about 5% and 13%.
The thesis discuss the design and manufacture of vapor chamber type cooler and heat spreader, the sintering process of component wick. To observe the porosity and permeability of 2 types of powder, 4 sintering temperature, 3 sintering time. We find out the vacuum system performance in order to ensure the stability of working fluid volume and fluid loss rate. And obtain sintering powder wick structure with mesh is a design that used in low heating power. The thermal resistance at 40W CPU power is lower than pure copper cooler about 5%. But the process without mesh is a good at high heating power. Because the thermal resistance of the device is lower than pure copper cooler about 13% at 80W heating power.
授權書
審定書
摘 要 i
ABSTRACT ii
致 謝 iii
目 錄 iii
表目錄 iii
圖目錄 iii
第一章 緒 論 3
1.1 研究動機 3
1.2 相變化熱傳應用與原理 3
1.3 文獻回顧 3
第二章 蒸汽式散熱器設計 3
2.1 均熱底板選定 3
2.2 工作流體的使用 3
2.3 毛細結構的選擇 3
2.4 鳍片設計 3
第三章 蒸汽式散熱器製程 3
3.1 系統介紹 3
3.2 前處理與燒結製程 3
3.3 封裝製程 3
3.3.1 工作流體填入量 3
3.3.2 封裝方法種類 3
3.3.3 真空封裝 3
第四章 燒結型毛細現象與實驗 3
4.1 金屬粉末毛細結構燒結現象 3
4.2 粒徑分析與粉體性能評估 3
4.2.1 粒徑分析 3
4.2.2 孔隙率與滲透率量測目的 3
4.2.3 孔隙率與滲透率測試標的 3
第五章 燒結型蒸汽式散熱器性能測試 3
5.1 散熱器測試標準 3
5.2 熱阻測試設備與原理 3
5.3 均熱板之紅外線溫度分佈觀測與散熱器均溫測試 3
第六章 實驗結果與討論 3
6.1 流體損失率實驗結果 3
6.1.1 各種製程效應對損失率與閃變的影響 3
6.1.2 損失率與抽真空時間關係 3
6.2 粉體孔隙率與滲透率實驗結果 3
6.2.1 單一粉(Y)與混合粉(GR)之孔隙率與滲透率結果 3
6.2.2 相同平均粒徑、不同標準差之粉體孔隙與滲透率結果 3
6.2.3 不同燒結時間與燒結溫度下之孔隙與滲透率比較 3
6.3 單片均熱板之紅外線熱像觀測結果 3
6.4 一體成型之散熱器熱阻量測結果 3
6.5 一體成型之散熱器均溫測試結果 3
第七章 結 論 3
7.1 結果 3
7.2 研究貢獻 3
7.3 目前研究瓶頸 3
7.4 期許與未來發展 3
參考文獻 3
附錄
A 材料性質 3
B 相變化元件最大熱輸送量式 3
C Qfin分析結果 3
D 標準填粉燒結與銲接流程 3
E 理論工作流體充填量 3
F 流體損失率實驗與閃變現象 3
G 標準篩網規格 3
H 粒徑分析結果 3
I 熱阻測試規範總覽 3
J 參數設計 3
K 流體損失率理論模式推導 3
L 儀器設備規格 3
M 協力廠商與設備廠商 3
作者介紹 3
[1] http://www.r-theta.com/products/extrusion/part1.pdf
[2] Ram Viswanath, Vijay Wakharkar, Abhay Watwe, and Vassou Lebonheur,” Thermal performance challenges from silicon to systems,” Intel Technology Journal, Q3 issue, 2000.
[3] Balanced Technology Extended (BTX) Interface Specification Version 1.0a, Intel, September, 2003.
[4] Gauger R. S., Heat Transfer Devices, U. S. Patent2, 350, 348, 1944.
[5] G. M. Grover, US Patent No. 3229759, 1963.
[6] 依日光,熱管技術理論實務,日本技術協會編,台北:復漢出版社,1986。
[7] 郭銘祥,平板式熱管之性能預測與設計,碩士論文,長庚大學,桃園,1999。
[8] 趙晏佑,嵌入式熱管散熱效益之研究,碩士論文,國立成功大學,台南,1999。
[9] 陳明生,小型熱管製造、性能測試與熱輸送現象之研究,碩士論文,台北科技大學,台北,1999。
[10] 卓世傑,銅粉燒結型微熱管之研究,碩士論文,台北科技大學,台北,2000。
[11] 賴衍村,熱管散熱效益之研究,碩士論文,國立成功大學,台南,2000。
[12] 盧俊彰,筆記型電腦散熱系統測試與改良研究,碩士論文,國立清華大學,新竹,2000。
[13] 石灶政,網格組織在熱管內之熱流特性,碩士論文,長庚大學,桃園,2001。
[14] 蔡宗翰,不同形狀對熱管蒸氣流的影響」,碩士論文,國立成功大學,台南,2001。
[15] 卓士淮,加熱部與冷卻部面積對熱管氣相流場之影響數值模擬,碩士論文,國立成功大學,台南,2001。
[16] 王暉雄,熱管散熱模組效能探討,碩士論文,國立成功大學,台南,2001。
[17] 徐富德,CPU Cooler熱阻測試模擬系統之設計與研發,碩士論文,國立清華大學,新竹,2001。
[18] 雲麒錐,電腦CPU散熱裝置的開發,碩士論文,國立台灣科技大學,台北,2001。
[19] 李偉嵐,平板型微熱管之製造與分析,碩士論文,台北科技大學,台北,2002。
[20] 鄭建增,蒸汽式與熱管式散熱模組之熱阻分析,碩士論文,台北科技大學,台北,2002。
[21] 賴榮鄉,二相密閉熱虹吸式散熱器實驗分析,碩士論文,大同大學,台北,2002。
[22] 潘志鴻,筆記型電腦散熱鰭片之改善,碩士論文,國立台灣科技大學,台北,2002。
[23] 林鴻文,微型熱管系統散熱實驗與最大熱傳量之理論模式建立,碩士論文,國立清華大學,新竹,2002。
[24] 竇悅菁,相變化平板式熱傳輸器的發展,碩士論文,國立台灣科技大學,台北,2003。
[25] 蔡霈松,濕式平板式熱傳輸器的發展,碩士論文,國立台灣科技大學,台北,2003。
[26] 黃德麟,新型微熱管,碩士論文,淡江大學,台北,1999。
[27] 康尚文、莊晉東、柯明翰,「金屬微熱管均熱片之研製」,第十九屆機械工程研討會論文集,虎尾,2002。
[28] 邱琇苓,創新雷射二極體之封裝基材,碩士論文,國立臺灣大學,台北,2002。
[29] Y. Cao,” Experiments and Analyses of flat miniature heat pipes,” 1996.
[30] Cao, Y., Gao, M.C., Beam, J.E., and Donovan, B., Experiments and Analyses of Flat Miniature Heat Pipes, AIAA Journal of Thermophysics and Heat Transfer, Vol. 11, No. 2, 1997, pp. 158-164.
[31] Thang Nguyen and Others,”Advanced Cooling System Using Miniature Heat Pipes in Mobile PC,” InterSociety Conference on Thermal Phenomena, Seattle, May 1998, pp. 86-90.
[32] Hong and Andre, ”The use of heat pipes in personal computers,” InterSociety Conference on Thermal Phenomena, May 1998.
[33] Jerome Toth, ”Heat Pipes:The Silent Way to Manage Desktop Thermal Problem,” Inter Society Conference on Thermal Phenomena, May 1998.
[34] Zuo, Z. Jon, Dussinger, peter M., “Heat Pipe Vapor Chamber Cold Plate Modeling, Fabrication and Testing,” Proceedings of the 1998 ASME International Mechanical Engineering Congress and Exposition, pp. 281-286, 2000.
[35] Yusuf, I., Watwe, A., and Ekhlassi, H.,“Integrated Heat Sink Heat-Pipe Thermal Cooling Device,” Proc. 7th Intersociety Conference on Thermal and Thermo- Mechanical Phenomena in Electronic Systems, Vol. II, 2000, pp. 27-30.
[36] Ram, “Thermal Performance Challenges from Silicon to Systems,” Intel Technology Journal Q3, 2000.
[37] Rengasamy Ponnappan,”A Novel Micro-capillary Groove-wick Miniature Heat Pipe,” Intersociety Energy Conversion Engineering Conference, Las Vegas, NV, July 24-28, 2000.
[38] Ioan Sauciuc,”The Design and Testing of the Super Fiber Heat Pipes for Electronics Cooling Applications,” Sixteenth IEEE Semi-Therm Symposium, San Jose, CA, March 2000, pp. 27-23.
[39] JinLiang Wang and Ivan Catton,”Biporous Heat Pipe for High Power Electronic Device Cooling,” Seventeenth IEEE Semi-Therm Symposium, Jose, CA, March 2001, pp. 211-218.
[40] Srikaran Kalahasti and Yogendra K. Joshi,”Performance Characterization of a Novel Flat Plate Micro Heat Pipe Spreader,” IEEE Transactions on Components and Packaging Technologies, Vol. 25, NO. 4, December 2002, pp. 554-560.
[41] Ioan Sauciuc,”Spreading in the Heat Sink Base: Phase Change Systems or Solid Metals,” IEEE Transactions on Components and Packaging Technologies, Vol. 25, NO. 4, December 2002, pp. 621-628.
[42] Hsin-Tang Chien and others,”Disk-Shaped Miniature Heat Pipe (DMHP) With Radiating Micro Grooves for a To Can Laser Diode Package,” IEEE Transactions on Components and Packaging Technologies. 26, No. 3, Sepenmber 2003, pp. 569-574.
[43] Man Lee and Man Wong,”Integrated Micro-Heat-Pipe Fabrication Technology,” Journal of Microelectromechanical Systems, Vol. 12, No. 2, Apr 2003, pp. 138-146.
[44] W. Kinzy Jones,”Micro Heat Pipes in Low Temperature Cofire Ceramic (LTCC) Substrates,” IEEE Transactions on Components and Packaging Technologies. 26, No. 1, March 2003, pp. 110-115.
[45] Charlotte Gillot,”Silicon Heat Pipes Used as Thermal Spreaders,” IEEE Transactions on Components and Packaging Technologies. 26, No. 2, June 2003, pp. 332-339.
[46] Jie Wei,”Measurement of Vapor Chamber Performance,” 19th IEEE Semi-Therm Symposium, 2003.
[47] Zuo, Z. J., North, M. T., and Ray, L., “Combined Pulsating and Capillary Heat Pipe Mechanism for Cooling of High Heat Flux Electronics,” Vol. HTD 364, American Society of Mechanical Engineers, New York, 1999, pp. 237-243.
[48] Furukawa Electric com., Complete Catalog of Heat Diffusion and Cooling Production, Japan: Furukawa Electric com., 2004, pp.8.
[49] “http://www.intel.com/support/processors/pentium4/sb/cs-007999.htm,” Intel Thermal Management Solution ID: CS-007999, Feb 14, 2004.
[50] Ben Broili, ”Pico Balanced Technology Extended (PicoBTX) Thermal and acoustic Design,” Intel co., April 12, 2004, pp.9.
[51] NTFL實驗室標準操作流程MP017,以定壓法完成熱管抽氣封裝之步驟與紀錄。
[52] Kalpakjian, Manufacturing Engineering and Technology, Addison-Wesley Publishing Company, 1998.
[53] NTFL實驗室標準操作流程MP016C,粒徑分佈分析步驟。
[54] NTFL實驗室標準操作流程MP016R,粒徑分佈分析紀錄。
[55] Serope Kalpakjian著,邱雲堯等譯,機械製造,台北:文京出版社,1998。
[56] “Intel Pentium 4 Processor with 512-KB L2 Cache on 0.13 Micron Process Thermal Design Guidelines,” Intel Co., 2002, pp. 20-21.
[57] “Test Method Still-and Forced-Air Junction-to-Ambient Thermal Resistance Measurements of Integrated Circuit Packages,” SEMI G38-87, 1995.
[58] “AMD Thermal, Mechanical, and Chassis Cooling Design Guide,” AMD Co., 2002.
[59] “AMD Athlon™ XP Processor Model 8 Data Sheet,” AMD Co, 2003.
[60] “AMD Athlon 64 Processor Thermal Design Guide,” 26633 Rev. 3.02, AMD Co, Feb. 2003.
[61] “Intel Document Number: 252161-001,” Intel Co, Nov. 2002, pp. 18-55.
[62] “Intel Document Number: 249889-003,” Intel Co, May 2002, P.37.
[63] “Intel Document Number: 298643-005,” Intel Co, Nov. 2002, P.64.
[64] NTFL實驗室標準操作流程MP008,孔隙率測試步驟及紀錄。
[65] NTFL實驗室標準操作流程MP010,滲透率測試步驟及紀錄。
[66] Chi S. W., Heat Pipe Theory and Practice, Washington: Hemisphere Pub. Corp., 1976.
[67] Pete Dussinger, Therma Base Heat Sink Testing Guidelines, Thermacore Company.
[68] J. Bonacci, A. L. Myers, G. Nongbri, and L. C. Eagleton,”The Evaporation and Condensation Coefficient of Water, Ice, and Carbon Tetrachloride,” Chem. Eng. Sci. 31, 1976, pp.609-617.
[69] J. R. Maa,”Evaporation Coefficient of Liquids,” Indust. Eng. Chem. Eund. 6, 1976, pp. 504-518.
[70] Harper, D. R., and W. B. Brown, “Mathematical Equation for Heat Conduction in the Fins of Air Cooled Engine”, NACA Report, No.158, 1922
[71] Sparrow, E. M.,”Heat Transfer in Fluid Flows Which Do Not Follow the Contour of Boundary Walls”, Journal of Heat Transfer, Vol. 110, 1988, pp.1145-1153.
[72] Aparecido, J. B. and Cotta, R. M., “Improved One-Dimension Fin Solutions”, Heat Transfer Engineering, Vol. 11, No. 1, 1990, pp. 49-59.
[73] Razelos, P. and Georgious, E.,”Two-Dimensional Effects and Design Criteria for Convective Extended Surfaces”, Heat Transfer Engineering, Vol.13, No.3, 1992, pp. 38-48.
[74] Razelos, P. and Georgious, E., “Errors due to the Length of Arc Idealiztion in Convective Extended Surfaces”, Heat Transfer Engineering, Vol. 15, No.3, 1994, pp. 19-24.
[75] Kei, S. L. and Roop, L. M.,”Effects of Tip Clearance and Fin Density on the Performance of Heat Sinks for VLSI Packages”, IEEE Trans. Components, Hybrids Manuf. Technol., Vol.12, No.4, 1989.
[76] Lee, Rong S., Huang, Hsin C. and Chen, Wun Y.,“A Thermal Characteristic Study of Extruded-Type Heat Sink in Considering Air Flow Bypass Phenomenon”, Sixth IEEE Semi-Therm Symposium, 1990, pp. 95-102.
[77] Knight, R. W., Goodling, J. S., and Hall, D. J., “Optimal Thermal Design of Forced Convection Heat Sinks─Analytical”, Journal of Electronic Packaging, Vol. 113, No. 3, 1991, pp. 313-321.
[78] Knight, R. W., Goodling, J. S., and Gross, B. E., “Optimal Thermal Design of Air Cooling Force Convection Finned Heat Sinks─Experimental Verification”, IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Vol. 15, No. 5, 1992, pp. 754-760.
[79] Wirtz, R. A., Chen, W. M., and Zhou, R. H., “Effect of Flow Bypass on the Performance of Longitudinal Fin Heat Sinks”, Journal of Electronic Packaging, ASME, Vol. 116, 1994, pp. 206-211.
[80] 陳堯舜,林正,「可攜式電子裝備之散熱設計」,電腦與通訊,Vol. 32,1995。
[81] Chou, F. C., Lukes, J. R., and Tien, C. L., “Heat Transfer Enhancement by Fins in the Microscale Regime”, Journal of Heat Transfer, Vol.121, No 4, 1999, pp. 972-977.
[82] Strassberg D., “Cooling Hot Microprocessor”, EDN, Vol.39, 1994, pp. 40-50.
[83] Mohamial S. Mausuria and Vinod Kamath, “Design Optimization of High- Performance Heat-Sink/Fan Assembly”, Heat Transfer in Electronic System of ASME, Vol. 292, 1994, pp. 195-104.
[84] G. M. Grover, US Patent No. 3229759, 1963.
[85] Namba, K., Kawabata, K., Niekawa, J., and Kimura, Y., “High Performance Heat-Pipe Heat Sinks for Notebook PCS”, Advances in Electronic Packaging, EEP-Vol. 26-2, 1999, pp. 2121-2128.
[86] Take, K., Furukawa, Y., and Ushioda, S., “Fundamental Investigation of Roll Bond Heat Pipes and Heat Spreader Plates for Notebook Computers”, IEEE Transactions on Components and Packaging Technologies, Vol. 23, No. 1, 2000, pp. 80-85.
[87] Yusuf, I., Watwe, A., and Ekhiassi H., “Integrated Heat Sink-Heat Pipe Thermal Cooling Device”, 7th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic System-Itherm 2000, Vol. 2. 2000, pp. 27-30.
[88] “Intel Pentium 4 Processor in the 478-pin Package Thermal Design Guideline”, Intel Co., 2002.
[89] ”Standard Test Methods for Thermal Transmission Properties if Thin Thermally Conductive Solid Electrical Insulation Materials”, ASTM D5470-95, 1995.
[90] “Mechanical Enabling for the Intel Pentium 4 Processor in the 478-pin Package”, Intel Co., 2001.
[91] 王瑕,粉末製造與傳統粉末加工成形,台北:機械技術出版社,1992。
[92] Peterson, G. P., An Introduction to Heat Pipes, John Wiley & Sons, Inc., 1994.
[93] “AMD Athlon MP Processor Model 6 Data Sheet”, AMD Co, 2002.
[94] “Intel Celeron Processor in the 478-pin Package up to 1.70 GHz”, Intel Co, 2002.
[95] 陳永甡,焊接學,台北:文京出版社,1988。
[96] Faghri, A., Heat Pipe Science and Technology, Taylor and Francis Publishers, 1995.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 張國恩(2002)。從學習科技的發展看資訊融入教學內涵。北縣教育,41,16-25。
2. 張美雯(2002)。NETS‧T對生活科技教師運用資訊科技融入教學之意涵。生活科技教育,35卷,3期,p19-24。International Society for Technology in Educational Technology Standards for Teachers, NETS‧T. http: //wwwnet.tmps.tp.edu.tw/ edu/ teacher/ teacher.htm
3. 張雅芳(2001)。資訊融入國中英語教學之個案研究。教育研究資訊,9(5),129-148。
4. 林美和(2001)。知識經濟時代婦女生涯發展與再學習省思。社教雙月刊,106,4 -5。
5. 林素娥 (2000)。何為溝通式教學法。英語教學,24卷3期,頁29-33。
6. 吳明隆(2002)。教師多元角色與實踐。國教天地,148,73-80。
7. 吳青蓉(1999):跨世紀的教學革命:資訊融入教學。竹縣文教,19,16-26。
8. 辛懷梓(2000)。靈活運用「資訊科技─電腦網路」融入英語教學。國民教育,41(1),66-74。
9. 王如哲(2001)。知識管理的理論與應用:以教育領域及其革新為例。台北:五南圖書出版公司。王永昌、張永宗(2002)。創造雙贏的教學策略:合作學習。生活科技教育,35卷,3期,2-11。
10. 陳錦芬(2000)。跨文化、跨學科的K-12英語網路合作教學型態。國民教育,40(3),21-28。
11. 陳明蕾(2000)。教育組織發展成為學習型組織之反省。成人教育,53,35-40。
12. 陳浩然(2002)。淺介培養英語教師應用資訊科技能力於教學的網路資源。英語教學(English Teaching & Learning),26(4),1-18。
13. 彭富源(2001)。將資訊科技融入各科教學的困境與因應。研習資訊(http://www.iest.edu.tw/issue/issue.htm),18(3),44-48。
14. 黃富順(2001a)。成人的經驗學習。成人教育,59,2-13。
15. 黃富順(2001b)。以終身學習迎接知識經濟的挑戰。成人教育,61,26-35。
 
系統版面圖檔 系統版面圖檔