(3.230.76.48) 您好!臺灣時間:2021/04/11 09:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃逸帆
研究生(外文):Y. F. Huang
論文名稱:奈米針尖陣列之製備及其光學特性之研究
論文名稱(外文):Fabrication and optical properties of Nanotip arrays
指導教授:林啟瑞林啟瑞引用關係陳貴賢陳貴賢引用關係
指導教授(外文):C.R. LinK.H. Chen
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:製造科技研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:71
中文關鍵詞:電子迴旋共振氣相沉積系統奈米針尖陣列碳化矽奈米微粒自組遮蔽乾蝕刻抗反射
外文關鍵詞:electron cyclotron resonance chemical vapor deposition(ECR-CVD)nanotip arraysSiC nanoclustersself-masked dry etching (SMDE)anti-reflection
相關次數:
  • 被引用被引用:6
  • 點閱點閱:291
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要利用電子迴旋共振氣相沉積系統,以乾蝕刻方式製備具有高對直性之奈米針尖陣列。反應氣體為矽甲烷、甲烷、氬氣及氫氣;其中矽甲烷與甲烷氣體在反應腔體中形成碳化矽奈米微粒作為奈米遮蔽物,進而阻擋氬及氫電漿的乾蝕刻。以此自組遮蔽乾蝕刻機制,多種材料如:矽、砷化鎵、玻璃…等,皆可製備為具有高深寬比之奈米針尖。
本文中討論奈米針尖材料的光學性質,實驗結果顯示矽和砷化鎵奈米針尖陣列具有絕佳的抗反射特性,並且擁有可調整性,隨著奈米針尖的長度增加而反射率會大大的降低。在波長400 nm∼2700 nm範圍內,最佳的條件下反射率可以低於6.0 %,而且在可見光波域內低於0.01 %。利用嚴格耦合波理論對矽奈米針尖陣列進行計算分析,發現可以調整其對可見光之等效折射率於1.1到3.1之間,即接近空氣與矽基板的折射率。相對於矽奈米針尖陣列,砷化鎵奈米針尖陣列具有較佳的抗反射特性。奈米針尖陣列之形成可使一般玻璃的穿透率,從80 %提升到90 %,並且藉由控制玻璃針尖的長度,可以調變玻璃的穿透率。
此利用自組遮蔽機制之乾蝕刻技術,可以用來製作具有抗反射的奈米結構;其具有低溫、大面積、適用於各種基材等優點,更深具應用於製造優良之抗反射層的潛力。
Well-aligned nanotip arrays were fabricated by electron cyclotron resonance (ECR) plasma process using gas mixtures of silane, methane, argon, and hydrogen. The resultant tips have nanoscale apexes, approximately ~1 nm, with high aspect ratios, nearly ~50, which were achieved by simultaneous SiC nanomask formation and dry etching during ECR plasma process. This self-masked dry etching (SMDE) technique was applied to a variety of substrates such as silicon, gallium arsenic, and glass, indicating its general applicability.
It is found that the reflectance of the graded homogeneous Si and GaAs nanotip array is less than 6.0% at wavelengths from 400 to 2700 nm and shows a minimum of 0.01% at wavelengths from 400 to 900 nm. From the rigorous coupled-wave analysis (RCWA) calculation, the gradient Si nanotip arrays show the adjusted effective-refraction index from 1.1 to 3.1 which were close to those of air ,1.0, and Si ,3.4, respectively.
Compared to the raw glass, glass nanotip arrays exhibits higher transmittance during UV-VIS measurement. Tunable transmittance can be achieved by controlling overall tip length. Longer glass nanotip arrays are found to possess higher transmittance than shorter ones.
中文摘要 ………………………………………………………. i
英文摘要 ………………………………………………………. ii
誌謝…….………………………………………………………. iii
目錄…….………………………………………………………. iv
表目錄….………………………………………………………. vii
圖目錄….………………………………………………………. viii
第一章 緒論……………………….………………………… 1
1.1 前言……………….………………………………… 1
1.2 研究動機………….………………………………… 5
第二章 文獻探討…………….……………………………….. 6
2.1 蛾眼結構抗反射的光學原理….…………………….. 6
2.2 表面尺度效應對光特性之概述……………………… 9
2.2.1 巨觀尺度的表面粗糙度………………….… 9
2.2.2 微觀尺度之表面粗糙度…………………..… 9
2.3 抗反射層之光學理論概述……….…………..… 11
2.3.1 非均質層法之光學理論…………………….. 11
2.3.2 嚴格藕合波理論與等效介質理論….…….. 13
2.4 抗反射層製程概論….……………………………. 19
2.4.1 抗反射層製作方法之分類….………………. 19
2.4.2 新穎的微米/奈米針尖的製作技術………... 20
2.4.3 表面奈米結構之抗反射層製作技術..….…. 25
第三章 實驗流程與步驟…………………………………….. 31
3.1 實驗流程與設計...………………………………….. 31
3.2 實驗儀器簡介………………………………………… 32
3.2.1 電子迴旋共振微波電漿化學氣相沈積系統… 32
3.3 材料特性分析儀器介紹……..….………………….. 34
3.3.1 場發射掃描式電子顯微鏡………………….. 34
3.3.2 能量散佈光譜儀…………………………….. 34
3.4 光學特性分析儀器介紹……..…………………….. 35
3.4.1 紫外光/可見光/紅外光分光光譜儀……….. 35
3.5 實驗步驟……………………………………………… 36
3.5.1 自組裝之乾蝕刻技術製備矽奈米針尖陣列… 36
3.5.1.1 基板的前處理………..………………… 36
3.5.1.2 蝕刻機制……………………..……….… 37
3.5.2 製備奈米針尖陣列之參數…………………… 39
第四章 結果與討論………………………………………….. 40
4.1 矽奈米針尖陣列之特性分析…………………………. 40
4.1.1矽奈米針尖之表面形貌分析.………………… 40
4.1.2矽奈米針尖陣列之反射率光譜分析…………… 42
4.1.3等效梯度折射率之矽奈米針尖分析…………. 46
4.2 砷化鎵奈米針尖陣列之特性分析.………….……… 51
4.2.1砷化鎵奈米針尖之表面形貌分析.………………51
4.2.2砷化鎵奈米針尖陣列之反射率光譜分析……… 54
4.3 玻璃奈米針尖陣列之特性分析.……………………… 58
4.3.1玻璃奈米針尖之表面形貌分析.……………… 58
4.3.2玻璃奈米針尖陣列之穿透率光譜分析………… 59
第五章 結論………………………………………………….. 62
第六章 研究之未來展望……………………………………. 64
參考文獻 ……………………………………………………….. 65
作者簡介 ………………………………………………………… 69
1.1 S. Walheim, et al,〝Nanophase-Separated Polymer Films as High-Performance Antireflection Coatings〞, Science, 283, 1999, pp.520-522.
1.2 S. Bastide, et al, 〝Formation and characterization of porous silicon layers for application in multicrystalline silicon solar cells〞, Solar Energy Materials & Solar Cells, 57, 1999, pp.393-417.
1.3 S Strehlke, et al,〝Optimization of porous silicon reflectance for silicon photovoltaic cells〞, Solar Energy Materials & Solar Cells, 58, 1999, pp.399-409.
1.4 Y. Kanamori, et al, 〝Broadband antireflection gratings fabricated upon silicon substrates〞, Opt. Lett., 24, 1999, pp.1422-1424.
1.5 J. Hiller, et al, 〝Reversibly erasable nanoporous anti-reflection coating from polyelectrolyte multilayers〞, Nature Materials, 1, 2002, pp.59-63.
1.6 M. Ibn-Elhaj and M. Schadt, 〝Optical polymer thin films with isotropic and anisotropic nano-corrugated surface topologies〞, Nature, 410, 2001, pp.796-799.
1.7 H.A. Macleod, Thin-film Optical Filters, 2nd edition, McGraw-Hill, York, 1989, pp.5-156.
1.8 D.Chen, et al,〝Anti-reflection(AR) coating made by sol-gel process: A review〞, Solar Energy Materials & Solar Cells, 68, 2001, pp.313-336.
1.9 W. H. Southwell,〝Gradient-index antireflection coating〞, Opt. Lett., 8, 1983, pp.584-586.
1.10 B. Sheldon, et al, J. Opt. Soc. Am., 72, 1982, p.1049.
1.11 M. J. Minot, J. Opt. Soc. Am., 67, 1997, p.1046.
1.12 C. C. Striemer, and P. M. Fauchet,〝Dynamic etching of silicon for broadband antiflection applications〞, Appl. Phys. Lett., 81, 2002, pp.2980-2982.
2.1 P. B. Clapham, M. C. Hutley, 〝Reduction of Lens Reflexion by the |”Moth Eye” Principle〞, Nature, 244, 1973, pp.281-282.
2.2 M. J. Minot, 〝Single-layer, gradient refractive index antireflection films effective from 0.35 to 2.5μ〞, J. Opt. Soc. Am., 66, 1976, pp.515-519.
2.3 S. J. Wilson, M. C. Hutley, 〝The optical properties of “moth eye’’ antireflection surfaces〞, Optica Acta, 29, 1982, pp.993-1009.
2.4 Harland G. Tompkins, A User’s Guide to Ellipsometry, ACADEMIC PRESS, New York, 1993, pp.95-106.
2.5 RoBert O. Naess, Optics for Technology Students, Prentice Hall, 2001, pp.30-62.
2.6 V. A. Bailery, 〝Reflection of Waves by an Inhomogeneous Medium〞, Phys. Rev., 96, 1954, pp.865-868.
2.7 J. F. Hall, Jr., 〝Reflection Coefficient of Optically Inhomogeneous Layers〞, J. Opt. Soc. Am., 48, 1958, pp.654-655.
2.8 F. Monaco, 〝Reflectance of an Inhomogeneous Thin Film〞, J. Opt. Soc. Am., 51, 1961, pp.280-282.
2.9 W. H. Lowdermilk and D. Milam, 〝Graded-index antireflection surfaces for high-power laser applications〞, Appl. Phys. Lett., 36, 1980, pp.891-893.
2.10 W. H. Southwell, 〝Gradient-index antireflection coatings〞, Opt. Lett., 8, 1983, pp.584-586.
2.11 M. G. Moharam and T. K. Gaylord, 〝Rigorous coupled-wave analysis of planar-grating diffraction〞, J. Opt. Soc. Am., 71, 1981, pp.811-818.
2.12 M. G. Moharam and T. K. Gaylord, 〝Diffraction analysis of dielectric surface-relief gratings〞, J. Opt. Soc. Am., 72, 1982, pp.1385-1392..
2.13 R. C. Enger and K. C. Steven, 〝Optical elements with ultrahigh spatial-frequency surface corrugations〞, Appl. Opt., 22, 1983, pp.3220 - 3228.
2.14 T. K. Gaylord, and M. G. Moharam, 〝Zero-reflectivity high spatial-frequency rectangular-groove dielectric surface-relief gratings〞, Appl. Opt., 25, 1986, pp.4562 - 4567.
2.15 W. H. Southwell, 〝Pyramid-array surface-relief structures producing antireflection index matching on optical surfaces〞, J. Opt. Soc. Am. A, 8, 1991, p.549.
2.16 M. E. Motamedi, W. H. Southwell, and W. J. Gunning, 〝Antireflection surfaces in silicon using binary optics technology〞, Appl. Opt., 31, 1992, pp.4371 - 4376.
2.17 D. H. Raguin and G. M. Morris, 〝Antireflection structured surfaces for the infrared spectral region〞, Appl. Opt., 32, 1993, pp.1154-1167.
2.18 E. B. Granm, M. G. Moharam, and D. A. Pommet, 〝Artificial uniaxial and biaxial dielectrics with use of two- dimensional subwavelength binary gratings〞 J. Opt. Soc. Am. A, 11, 1994, pp.2695-2703.
2.19 S. Walheim, et a.l, 〝Nanophase-Separated Polymer Films as High-Performance Antireflection Coatings〞, Science, 283, 1999, pp.520-522.
2.20 M. Ibn-Elhaj and M. Schadt, 〝Optical polymer thin films with isotropic and anisotropic nano-corrugated surface topologies〞, Nature, 410, 2001, pp.796-799.
2.21 J. Hiller, et al, 〝Reversibly erasable nanoporous anti-reflection coatings from polyelectrolyte multilayers〞, Nature Materials, 1, 2002, pp.59-63.
2.22 V. Boerner, et al., 〝Holographic antiglare and antireflection films for flat panel displays〞, SID03 Digest, 2003, pp.68-71.
2.23 朱文彬、吳平耀,「抗反射膜技術解析」,工業材料,第195期,民國92年3月,第148-155頁。
2.24 李宗銘,「平面顯示器用抗反射塗料技術」,工業材料,第172期,民國90年4月,第179-183頁。
2.25 M. Matsuoka, Y. Yoshida, and M. Moronnuki, J. Chem. Eng. Jpn., 25, 1992, p.735.
2.26 J. R. Ligenza, J. Phys. Chem., 65, 1961, p.2011.
2.27 W. T. Tsang, C. C. Tseng, and S. Wang, 〝Optical waveguides fabricated by preferential etching〞, Appl. Opt., 14, 1975, p.1200.
2.28 E. Bassous and E. F. Baran, J. Electrochem. Soc., 125, 1978, p.1321.
2.29 E. Bassous, H. H. Taub, and L. Kuhn, 〝Ink jet printing nozzle arrays etched in silicon〞, Appl. Phys. Lett., 31, 1977, pp.135-137.
2.30 T. S. Raviand, R. B. Marcus, and D. Liu, 〝Oxidation sharpening of silicon tips〞, J. Vac. Technol. B, 9, 1991, p.2733.
2.31 F. G. Tarntair, W. K. Hong, T. K. Ku, N. J. She, C. F. Chen, and H. C. Cheng, 〝Fabrication and Characterization of Various Carbon-Clad Silicon Microtips with Ultra-Small Tip Radii〞, Jpn. J. Appl. Phys., 39, 2000, p.432.
2.32 E. S. Baik, Y. J. Baik, and D. Jeon, 〝Control of diamond micro-tip geometry for field emitter〞, Thin Solid Films, 377-378, 2000, pp.299-302.
2.33 M. Y. Jung, D. W. Kim, and S. S. Choi, 〝Fabrication of Sub-10nm Si - tip Array Coated with Si3N4 Thin Film For Potential NSOM and Liquid Metal Ion Source Applications〞, Microelectronic Engineering, 53, 2000, pp.399-402.
2.34 H. W. Deckman and J. H. Dunsmuir, 〝Natural lithography〞, Appl. Phys. Lett. 41, 1982, p.377.
2.35 H. Yoshida, T. Urushido, H. Miyake, and K. Hiramatsu, Jpn. J. Appl. Phys., 40, 2001, p.1301.
2.36 F.Y. Meng, W. K. Wong, and I. Bello, 〝Multi-tip cones induced by ion-bombardment〞, Vacuum, 66, 2002, pp.71-76.
2.37 P. A. Lewis, H. Ahmedb, and T. Sato, 〝Silicon nanopillars formed with gold colloidal particle masking〞, J. Vac. Technol. B, 16, 1998, p.2938.
2.38 T. Tada, T. Kanayama, and R. E. Palmer, 〝Fabrication of size-controlled 10-nm scale Si pillars using metal clusters as formation nuclei〞, Microelectronic Engineering, 41-42, 1998, pp.539-542.
2.39 M. Kanechika, N. Sugimoto, and Y. Mitsushima, 〝Study on a condition for forming the high density of silicon needles with high aspect ratio〞, J. Vac. Sci. Technol. B, 20, 2002, p.1843.
2.40 H. C. Lo, D. Das, J. S. Hwang, K. H. Chen, C. H. Hsu, C. F. Chen, and L. C. Chen, 〝SiC-capped nanotip arrays for field emission with ultralow turn-on field〞, Appl. Phys. Lett., 83, 2003, pp.1420-1422.
2.41 C. H. Hsu, H. C. Lo, C. F. Chen, C. T. Wu, J. S. Hwang, D. Das, J. Tsai, L. C. Chen, and K. H. Chen, 〝Generally Applicable Self-Masked Dry Etching Technique for Nanotip Array Fabrication〞, Nano Letters, 4 (3), 2004, p471 — 475.
2.42 S. C. Chiao, J. L. Zhou, and H. A. Macleod, 〝Optimized design of an antireflection coating for textured silicon solar cells〞, Appl. Opt., 32, 1993, p.5557.
2.43 H. Ehrenreich, H. R. Philipp, 〝Interband Transitions in Groups 4, 3-5, and 2-6 Semiconductors〞, Phy. Rev. Lett., 8, 1962, p.59.
2.44 M. Levinshitein and S. Rumyantsev, Handbook series on semiconduction parameters, Vol.1, World Scientific, Singapore , 1996, pp.23-95.
2.45 Y. Kanamori , M. Sasaki, and K. Hane, 〝Broadband antireflectiongratings fabricated upon silicon substrates〞, Opt. Lett., 24, 1999, pp.1422.
2.46 K. Handobas, S, Kirsch, et al, 〝Reflection properties of nanostructure-arrayed silicon surfaces〞, Nanotechnology, 11,2000, pp.161-164.
2.47 Y. Kanamori, K. Hane, 〝100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask〞, App. Phy. Lett., 78, 2001, pp.142-143.
2.48 Y. Zhaoning, and Y. C. Stephen, 〝Fabrication of large area subwavelength antireflection structures on Si using trilayer resist nanoimprint lithography and liftoff〞, J. Vac. Sci. Technol. B, 21, 2003, pp.2874-2877.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔