跳到主要內容

臺灣博碩士論文加值系統

(98.82.140.17) 您好!臺灣時間:2024/09/10 12:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡永恆
研究生(外文):Yung-Heng Tsai
論文名稱:釔安定氧化鋯粉末製備與燒結之研究
論文名稱(外文):Preparation and Sintering of Yttria-Stabilized Zirconia Powder
指導教授:王玉瑞王玉瑞引用關係
指導教授(外文):Yuh-Ruey Wang
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:材料及資源工程系碩士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:98
中文關鍵詞:固態氧化物燃料電池釔安定氧化鋯燒結
外文關鍵詞:SOFCYttria-stablized ZirconiaSintering
相關次數:
  • 被引用被引用:2
  • 點閱點閱:840
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
8mol%釔安定氧化鋯(Yttria-stablized Zirconia,簡稱8YSZ)是固態氧化物燃料電池(Solid Oxide Fuel Cell)電解質常使用的材料之一。這是因為8YSZ具有良好的離子導電率以及與電極的匹配性。電解質材料的燒結情形直接影響著離子導電率的優劣。不同的燒結條件會影響電解質的微結構(例如晶粒尺寸、相結構和燒結相對密度等等),進而影響離子導電率的優劣。
本研究以共沉法製備奈米結晶8YSZ粉末。8YSZ粉末的煆燒溫度在400℃到500℃時為立方相,在煆燒溫度600℃以上開始有少量單斜相產生。在製作生胚時僅能以外加壓力破壞軟凝團,硬凝團依然會存在而影響燒結密度。一階段燒結方面,在1100℃到1300℃屬於燒結的中期階段而在1300℃到1500℃屬於燒結的末期階段,在燒結1300℃以上開始有晶界與孔洞分離的現象。二階段燒結方面,增加第一階段的燒結溫度或持溫時間皆會促進晶粒成長,兩階段燒結的結果並沒有使得燒結密度提升,這是由於製備的8YSZ粉末有凝聚現象,導致生胚的粉末顆粒間有大的孔洞存在,在燒結過程中不易消除,使燒結體皆有大孔洞的存在。
The 8 mol% yttria-stablized zirconia is one of the popular materials employed as electrolyte in solid oxide fuel cell because of its attractive ionic conductivity, stability against the electrode materials. The ionic conductivity varies strongly with the sintering conditions of the electrolyte. Different sintering conditions will result in diverse characteristics in the microstructures of the electrolyte such as grain size, intergranular phases and relative density.
In this study, nanocrystalline 8 mol% yttria-stablized zirconia were prepared by co-precipitation method. Cubic phase of 8YSZ can be obtained while temperature of calcination between 400℃ and 500℃, and after the temperature is over 600℃, few monoclinic phase will be produced. In the processing of green body, only soft agglomerates can be broken by the way of compressive stress, hard agglomerates would existence and influence the density of sintering. For one step sintering, firing between 1100℃ and 1300℃ is the intermediate stage, from 1300℃ to 1500℃ belong to the final stage in which the segregation appearance of grain and pore would be started. For two step sintering, both of increasing sintering temperature of the first stage and duration time enhanced grain growth and failed to raise the density of sintering because of the existence of agglomerates in 8YSZ powder which were kept in green body, and were difficult to densification during sintering, owing to the production of large pore.
摘 要 i
ABSTRACT ii
誌謝 iii
目錄 iv
圖目錄 vi
表目錄 ix
第一章 緒論 1
1.1前言 1
1.2研究目的 3
第二章 基礎理論與文獻回顧 4
2.1燃料電池簡介 4
2.1.1燃料電池之優點及應用 4
2.1.2燃料電池之種類 5
2.2固態氧化物燃料電池 7
2.2.1固態氧化物燃料電池之結構 7
2.2.2固態氧化物燃料電池之反應 8
2.3固態電解質 10
2.4釔安定氧化鋯 14
2.4.1安定劑本質與濃度 15
2.4.2釔安定氧化鋯的導電特性 17
2.5固態燒結 18
2.5.1燒結的驅動力 19
2.5.2基本燒結擴散機構 21
2.5.3燒結三階段 23
2.5.4緻密化與粗化 25
2.5.5頸部成長之燒結路徑模型數學式 26
2.5.6凝聚體對燒結之影響 28
2.5.7孔洞與晶粒成長 31
2.6影響沉澱物粒子大小之因素 36
2.7釔安定氧化鋯之相關文獻 37
第三章 實驗流程與量測 40
3.1藥品規格 40
3.2粉末與試片製作部分使用之儀器 40
3.3實驗流程 41
3.3.1粉末之製備 41
3.3.1.1溶液配製 41
3.3.1.2共沉、洗滌過濾及共沉粉體 42
3.3.1.3煆燒及煆燒後粉末性質分析 42
3.3.1.4球磨及球磨後粉末性質分析 43
3.3.1.5不同分散劑之測試 45
3.3.1.6胚體製備及性質分析 45
3.3.2燒結及性質分析 49
3.3.2.1一階段式燒結 49
3.3.2.2二階段式燒結 49
第四章 結果與討論 51
4.1粉末特性 51
4.1.1起始溶液濃度與球磨時間對8YSZ粉末之影響 51
4.1.2不同的煆燒條件對8YSZ粉末之影響 54
4.1.3粉末粒徑與顯微結構 57
4.1.4 不同分散劑對8YSZ粉末分散之影響 60
4.2生胚特性 64
4.2.1不同的成型條件對生胚密度與燒結之影響 64
4.2.2生胚之顯微結構 66
4.3燒結特性 67
4.3.1不同升溫速率對燒結體之影響 67
4.3.2不同燒結條件對燒結體之影響 71
4.3.2.1一階段燒結 71
4.3.2.2二階段燒結 83
第五章 結論 91
參考文獻 92
[1] 李邦哲譯,「燃料電池」,台灣經濟研究月刊,第72-74頁。
[2] 呂承頤,「燃料電池在太空之應用」,能源、資源與環境,,第三卷,第1期,1990,第2-6頁。
[3] K. Kordesch and G. Simader, “Fuel cells and their applications,” New York, Weinheim, 1996, pp.51-166.
[4] S. C. Singhal, “Science and Technology of Solid Oxide Fuel Cells,” MRS Bulletin, March 2000.
[5] Q. M. Nguyen, “Ceramic Fuel Cell,” J.Am.Ceram. Soc.,76 [3], 1993, pp.563-588.
[6] N. M. Sammes, G. A. Tompsett, H. Nafe and F. Aldinger, “Bismuth Based Oxide Electrolytes-Structure and Ionic Conductivity,” Journal of European Ceramic Society, 19 1999, pp.1801-1826.
[7] H. Inabd and H. Tagawa, “Ceria-Based Solid Electrolytes,” Solid State Ionics, 83, 1996, pp.1-16.
[8] M. C. H. Mckubre, J. R. Macdonald , “Impedance Spectroscopy,” New York, Wiley-Interscience,1987.
[9] J. B. Bauerle, “Study of Solid Electrolyte Polarization by a Complex Admittance Method,” J. Phys. Chem. Solids , 30, 1969, pp.2657.
[10] X. J. Chen, K. A. Khor, S. H. Chan and L. G. Yu, “Influence of Microstructure on The Ionic Conductivity of Yttria-Stabilized Zirconia Electrolyte,” Materials Science and Engineering, A335, 2002, pp.246—252.
[11] 黃璟瓔,以Co-doped Y1-xSrxMn3為固態氧化物燃料電池陰極材料之研究,碩士論文,國立清華大學化學工程學系,新竹,1990。
[12] D. H. Archer, J. J. Alles, W. A. English, L. EliKan, E. F. Sverdrup and R. L. Zahradnik, “Westinghouse Solid-Electrolyte Fuel Cell,” Fuel Cell Systems, pp.332-342.
[13] T. H. Etsell and S. N. Flengas, “The Electrical Properties of Solid Oxide Electrolyte,” Chemical Reveiws, 70 [3], 1970, pp.339-376.
[14] Q. M. Nguyen, “Ceramic Fuel Cell,” J. Am. Ceram. Soc., 76 [3], 1993, pp.563-588.
[15] N. Q. Mihn and T. Takahashi, “Science and Technology of Ceramic Fuel Cells,” Elsevier Science B. V., Amsterdam, The Netherlands., 1995.
[16] P. Huang and A. Petric, ”Superior Oxygen Ion Conductivity of Lanthanum Gallate Doped with Strontium and Magnesium,” J.Electrochem.Soc., 143 [5], 1996, pp.1644.
[17] J. M. Fernandez, M. J. Melendo and A. D. Rodriguez, “Microstructural Evolution and Stability of Tetragonal Precipitates in Y2O3 Partially-Stabilized ZrO2 Single Crystals,” Acta Metall. Mater, Vol.43, No.2, 1995, pp.593-601.
[18] J. A. Kilner and R. J. Brook, ” A Study of Oxygen Ion Conductivity in Doped Nonstoichiometric Oxides,” Solid State Ionics, 6, 1982, pp.237-252.
[19] C. Pascual, J. R. Jurado and P. Duran, “Electrical Behaviour of Doped-Yttria Stabilized Zirconia Ceramic Materials,” J. Mater. Sci., 18, 1983, pp.1315-1322.
[20] D. W. Strickler and W. G. Carlson, “Sintering of Zirconia-Yttria Ceramics Studied by Impedance Spectroscopy,” J. Am. Ceram. Soc., 47 [3], 1964, pp.122-127.
[21] O. Yamamoto, Y. Takeda, R. Kanno, K. Kohno and T. Kamiharai, “Electrical Conductivity of Polycrystalline Tetragonal Zirconia ZrO2-M2O3(M=Sc, Y, Yb),” J. Mater. Sci. Lett., 8, 1989, pp.198-200.
[22] D. Y. Wang and A. S. Nowick, ” Dielectric Relaxation from a Network of Charged Defects in Dilute CeO2:Y2O3 Solid Solutions,” Solid State Ionics, 5, 1981, pp.551-554.
[23] R. Ramamoorthy, D. Sundararaman and S. Ramasamy, “Ionic Conductivity Studies of Ultrafine-Grained Yttria Stabilized Zirconia Polymorphs”, Solid State Ionics, 123, 1999, pp.271-278.
[24] S. P. S. Badwal and M. V. Swain, “ZrO2-Y2O3: Electrical Conductivity of Some Fully Partically Stabilized Single Grains,” J. Mater. Sci. Lett., 4, 1985, pp.487-489.
[25] J. S. Hirchhorn, “Introduction to Powder Metallurgy,” American Powder Metallurgy Institute, 1969, pp.158.
[26] De Laplace P. S., “Mechanigue Celeste.” Suppl to Book 10. Impr. Imperiale Paris, 1806. also English version, translated by bowditch N. VollvChelsea Publishing New York, 1996, pp.685.
[27] T. Young, “Metal Powder Industries Federation Princeton,” Miscellaneous Works, Vol 1, New Jersey: G Pouder, 1980, pp.245.
[28] M. F. Ashby, “A First Report on Sintering Diagrams,” Acta. Met., 22, 1974, pp.275-289.
[29] R. L. Coble, “Sintering Crystalline Solids. I. Intermediate and Final State Diffusion Models,” J. Appl. Phys., 32, 1961, pp.787-792.
[30] 果世駒,粉末燒結理論,北京:冶金工業出版社,1998,第1章。
[31] R. L. Coble, “Intermediate-State Sintering: Modification and Correction of Lattice-Diffusion Model,” J. Appl. Phys., 36, 1965, pp.2327.
[32] W. D. Kingery and M. Berg, “Stidy of the Initial Stages of Sintering Solids by Viscous Flow, Evaporation-Condensation, and Self-Diffusion,” J. Appl. Phys., 1955, 26, pp.1205-1212.
[33] R. L. Coble, “The relationship of Pore and Densification,” J. Am. Ceram. Soc., 34, 1961, pp.787.
[34] G. C. Kuczynski, “Modification and Correction of Neck Growth Model,” Met. Trans, Feb., 1949, pp.169.
[35] A. P. Miokownik , “Figure of Merit for Activated Sintering,” Powder Metall., 28, 1985, pp.151.
[36] J. W. Halloran, “Agglormerates and Agglomeration in Ceramic Processing,’’ in Ultrastructure Processing of Ceramics, Glass and Composites, Eds. L. L. Hench and D. R. Ulrich, Wiley, New York , 1984.
[37] H. Rumpf and H. Schubert, “Adhesion Forces in Agglomeration Processes,’’ in Ceramic Processing before Firing, Eds. G. Y. Onoda, Jr. and L. L. Hench, Wiley, New York , 1978.
[38] D. E. Niesz and R. B. Bennett, “Structure and Properties of Agglomerates,’’ in Ceramic Processing before Firing, Eds. G. Y. Onoda, Jr., and L. L. Hench, Wiley, New York , 1978.
[39] J. G. Li and X. Sun, “Synthesis and Sintering Behavior of a Nanocrystalline α-Alumina Powder,’’ Acta Mater, 48, 2000, pp.3103-3112.
[40] W. H. Rhodes, “Agglomerate and Particle Size Effects of Sintering Yttria-Stabilized Zirconia,” J. Am. Ceram. Soc., 64, 1981, pp.19.
[41] R. T. Tremper and R. S. Gordon, “Agglomeration Effects on the Sintering of Alumina Powders Prepared by Autoclaving Aluminum Metal,’’ in Ceramic Processing before Firing, Eds. G. T. Onoda, Jr. and L. L. Hench, Wiely, New York , 1978.
[42] J. W. Halloran, “Role of Powder Agglomerates in Ceramic Processin-g,”in Advances in Ceramics, Vol. 9, Forming of Ceramics, Eds. J. A. Mange and G. L. Messing, Am. Ceram. Soc, 1984.
[43] R. Pampuch and Haberko, “Agglomerate in Ceramic Micropowders and their Behaviour on Cold Pressing and Sintering,’’ in Material Science Monograp , Vol.16, Ceramic Powder, Edited by P. Vincernzini , 1983.
[44] A. G. Evans, “Considerations of Inhomogeneity effects in Sintering,” J. Am. Ceram. Soc., 65, 1982, pp.497-501.
[45] R. Pampuch, “Advances in Ceramics,” America Ceramic Society Columbus; Claussen, vol 12, 1984, pp.733.
[46] J. Reed et al. “Processing of Crystalline Ceramics,” Plenum Press New York: Palmour III, 1978, pp.171.
[47] R. Pampuch, “Influence of Aggregates on Sintering,” Journal of Solid State Phenom, 1989, 8&9, pp.83.
[48] H. E. Exner, “Powder Metrallurgy and Physical Ceramics,” Freund Publ House, vol 1, 1979, pp.11.
[49] J. W. Ross et al., “Computer Simulation of Sintering in Powder Compact,” Acta Metall., 30, 1982, pp.203-212.
[50] W. D. Kingery and B. Francois, “Sintering of Crystalline Oxides, I. Interactions between Grain Boundaries and Pores,” in Sintering and Related Phenomena. Eds. G. C. Kuczynske, N. A. Hooton, and G. F. Gibbon, Gordon Breach, New York, 1967, pp.471.
[51] R. L. Coble, “Diffusion Sintering in the Solid State,” in Kinetics of High-Temperature Process, Ed. W. D. Kingery, MIT Press, Cambridge, MA, and John Wiley and Sons, New York, 1959, pp.147-163.
[52] F. F. Lange, “Sinterability of Agglomerated Powders,” J. Am. Ceram. Soc., 67 [2], 1984, pp.83-88.
[53] J. E. Burke, “Role of Grain Boundaries in Sintering,” J. Am. Ceram. Soc., 40, 1957, pp.80-85.
[54] R. J. Brook, “Pore-Grain Boundary Interactions and Grain Growth,” J. Am. Ceram. Soc., 34, 1969, pp.56-57.
[55] 賀孝雍,陶雨台譯,分析化學基本原理,台北:曉園出版社,1982,第147-150頁。
[56] I. Abrham and G. Gritzner, “Powder Preparation, Mechanical and Electrical Properties of Cubic Zirconis Ceramics,” Journal of the Eurpean Ceramic Society, 16, 1996, pp.71-77.
[57] R. Ge, Z. Liu, H. Chen, D. Zhang and T. Zhao, “Wet-Milling Effect on the Properties of Ultrafine Yttria-Stabilized Zirconia Powders,” Ceramics International, 22, 1996, pp.123-130.
[58] S. K. Tadokoro and E. N. S. Muccillo, “Synthesis and Characterization of Nanosized Powders of Yttria-Doped Zirconia,” Journal of Alloys and Compounds, 344, 2000, pp.186-189.
[59] F. W. Dynys and J. W. Halloran, “Influence of Aggrates on Sintering,” J. Am. Ceram. Soc., 67, 1984, pp.596-602.
[60] F. F. Lange, “Sinterability of Agglomerated effect ZrO2 Powders,” Mater. Res. Soc. Symp. Proc., [24] , 1984, pp.247.
[61] D. M. Liu and J. T. Lin, “Influence of Ceramic Powders of Different Characteristics on Particle Packing Structure and Sintering Behaviour,” Journal of Materials Science, 34, 1999, pp.1959-1972.
[62] D. M. Liu, J. T. Lin and W. H. Tuan, “Interdependence Between Green Compact Property and Powder Agglomeration and Their Relation to the Sintering Behaviour of Zirconia Powder,” Ceramics International, 25, 1999, pp.551-559.
[63] I. R. Gibson, S. P. Dransfield and J. T. S. Irvine, ”Sinterability of Commercial 8 mol% Yttria-Stabilized Zirconia Powders and the Effect of Sintered Density on the Ionic Conductivity,” Journal of Materoals Science, 33, 1998, pp.4297-4305.
[64] I. Abraham and G. Gritzner, “Mechanical Properties of Doped Cubic Zirconia Ceramics,” Journal of Materoals Science Letters, 12, 1993, pp.995-997.
[65] D. H. Kim and C. H. Kim, “Effect of Heating Rate on Pore Shrinkage in Yttria-Doped Zirconia,” J. Am. Ceram. Soc, 76 [7], 1993, pp.1877-1878.
[66] Y. M. Chiang et al., “Physical Ceramics,” New York, Wesly, chap 2, 1996.
[67] H. Yamamura, “Electrical Conductivity of the System, (Y1-xMx)3NbO7 (M=Ca,Mg) and Y3Nb1-xMxO7 (M=Zr,Ce),” Solid State Ionics, 1999, pp.279-285.
[68] M. I. Mendelson, “Average Grain Size in Polycrystalline Ceramics,” J. Am. Ceram. Soc., 52, 1969, pp.443.
[69] 洪志謀,氧化鋯陶瓷粉末的製作與燒結之研究,碩士論文,國立成功大學化學工程研究所,台南,1988。
[70] D. M. Liu and J. T. Lin, “Influence of Ceramic Powders of Different Characteristics on Particle Packing Structure and Sintering Behaviour,” Journal of Materials Science, 34, 1999, pp.1959-1972.
[71] I. W. Chen and X. H. Wang, “Sintering Dense Nanocrystalline Ceramics without Final-Stage Grain Growth,” Nature, 404, 2000, pp.168-171.
[72] F. F. Lange, A. I. Askay and B. I. Davis, “Processing Related Fracture Orgins: Part 3. Diffraction Sintering of ZrO2 Agglomerates in Al2O3 / ZrO2 Composite,’’ J. Am. Ceram. Soc., 66 [6], 1983, pp.407-408 .
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 謝文英、胡悅倫(1996)。特約實習國民小學實習指導教師遴選標準之研究。新竹師院學報,(9),411-447。
2. 歐用生(1996a)。教師即師資培育者。研習資訊,13(6),10-16。
3. 歐用生(1995)。加強實習教師的輔導。教育實習輔導季刊,1(3),74-77。
4. 郭秋勳(1997)。教育實習目標、功能的探索與啟示。教育研究資訊,5(3),29-46。
5. 洪仁進(1992)。英國師範教育制度化的檢視。現代教育,(28),271-303。
6. 郭昭佑(2002)。教師如何從事課程評鑑--從賦權增能評鑑理念談起。教育資料與研究,44,17-29。
7. 林春如(2000)。綜合活動學習領域教學設計之我見。國教天地,154,30-38。
8. 呂金燮(2003)。創造力教學的本質與陷阱。資優教育季刊,86,頁01-09。
9. 毛連塭(1989)。實施創造思考教育的參考架構。創造思考教育,創刊號,2-9。
10. 陳浙雲(2002)。探究綜合活動課程的幾個問題。北縣教育,42,16-19。
11. 陳品華(2000)。從學習遷移觀點的演變談技職教育新趨勢。教育資料與研究,36,34-39。
12. 黃文慧(2002)。從認真創意初探Edward de Bono思想的基本概念。資優教育季刊,85,11-19。
13. 倪小平(2003)。綜合活動學習領域與教學策略。國教天地,154,39-44。
14. 湯梅英(2000)。實踐參與、體驗意義─綜合活動領域之精神與特色。教育研究,74,51- 60。
15. 楊坤原(2001)。創造力的意義及其影響因素簡介。科學教育月刊,239,3-12。