參考文獻
[1]王立志,“系統化運籌與供應鏈管理”,滄海書局,1999年初版。
[2]李瓊英,長鞭效應下最佳存貨策略的決定與環境變數效果的探討,國立台灣大學商學研究所碩士論文,1999年。[3]春日井博,需求預測入門,方世榮 (校閱),書泉書局,1988年。
[4]徐桂祥,「灰色系統在商情預測上之研究」,雲林技術學院資訊管理技術研究所碩士論文,1997年。[5]徐壽政,長鞭效應之情境分析模式,國立交通大學工業工程與管理研究所碩士論文,1998年。[6]葉怡成,類神經網路模式應用與實作,儒林出版社,1993年。
[7]許乃文,「灰色理論及類神經網路應用於雲林地區地層下陷之研究」,國立成功大學土木工程學系碩士論文,2000年。[8]許峻源,「類神經網路與MARS於資料探勘分類模式之應用」,輔仁大學應用統計研究所碩士論文,2001年。[9]董興國,「我國半導體IC產業之系統動態學模式研究」,私立元智大學管理研究所碩士論文,1997年。
[10]曾中文,拉式供應鏈(s, Q)存貨政策管理之探討,逢甲大學工業工程學研究所碩士論文,2000年。[11]趙嬙,灰色預測理論應用於汽車產業預測之研究-以台灣、大陸市場為例,朝陽科技大學企業管理研究所碩士論文,2003年。[12]鄭穎聰,供應鏈長鞭效應因應政策之研究,國立台北科技大學生產管理研究所碩士論文,2000年。[13]盧儒瓊,預測週期和預測方式對長鞭效應的影響,國立交通大學工業工程與管理研究所碩士論文,2001年。[14]Andrew S. Caplin, “The variability of aggregate demand with (S, s) inventory policies,” Econometrica, Vol.53, No. 6, pp. 347-356, 1985.
[15]Beamon, B. M., “Supply Chain Design & Analysis: Models & Methods”, International Journal of Production Economics, Vol.23, No. 55, pp. 281-294,1998.
[16]Bechtel, C., and Jayaram, J., “Supply Chain Management: A Strategic Perspective,” The International Journal of Logistics Management, Vol. 8, No. 1, pp.15-34 , 1997.
[17]Blackburn,J.D., The quick response movement in the apparel industry : a case study in time-compressing supply chains, in time-based competition : The next Battleground in American Manufacturing, Irwin, Homewood, IL, pp. 133-156, 1991
[18]Blackburn and R.Millen, ”Improved Heuristics for Multi Stage Requirements Planning Systems”, Management Science, Vol.28, No.1, pp.44-58, 1982.
[19] Chu, C. H. and Widjaja, D., “Neural Network System for Forecasting Method Selection,” Decision Support System, Vol.12, Iss.1 , pp. 13-24,1994.
[20]Cooper, M. C. and Ellram, L. M., “Characteristics of Supply Chain Management and the Implications for Purchasing and Logistics Strategy”, The International Journal of Logistics Management, Vol. 4, No. 2, pp. 13-24,1993.
[21]Cybenko, G., “Approximation by Superpositions of a Sigmoidal Functions,” Mathematics of Control, Signals, and Systems,Vol.2, No. 3, pp.303-314, 1989.
[22]De Gooijer, J. G., Ray, B. K., and Krager, H., “Forecasting Exchange Rates Using TSMARS,” Journal of International Money and Finance, Vol.17, Issue 3, pp.513-534, 1998.
[23]Donlebell and O.J. Krasner,“Selecting Environmental Forecasting from Business Planning Requirements ”Academy of Management Review, Vol.19, No. 5, pp.373-383 ,1977.
[24]Ellram, L. M., “The Use of the Case Study Method in Logistics Research”, Journal of Business Logistics, Vol. 17, Iss. 2, pp. 93-138, 1996.
[25]Forrester,Jay W.“Market Growth as Influenced by Capital Investment” Industrial Management Review, Vol. 6, No. 2, pp.345-368, 1968.
[26] Frank Chen, Zvi Drezner, Jennifer K. Ryan, David Simchi-Levi, “Quantifying the Bullwhip Effect in a Simple Supply Chain: The Impact of Forecasting, Lead Times, and Information,” Management Science, Vol. 46, No. 3, pp.233-242, 2000.
[27]Friedman, J. H., “Multivariate Adaptive Regression Splines (with discussion), ” Annals of Statistics, Vol.19, No. 1, pp. 1-141 ,1991.
[28]Friedman, J. H. and Roosen, C. B., “An Introduction to Multivariate Adaptive Regression Splines,” Statistical Methods in Medical Research, Vol.4, No.3, pp.197-217, 1995.
[29]Handfield, R. B., and Nichols, E. L., “Introduction to Supply Chain Management ” ,Prentice-Hall Internation Editions, pp. 345-367, 1999.
[30]Hecht-Nielsen, R., “Neurocomputing”, Menlo Park Editions, pp. 212-240, 1990.
[31]Herbig, P., J. Milewicz and J. E. Golden , "Forecasting: Who, What, When, and How", Journal of Business Forecasting, Vol.12, No.2, pp. 16-21, 1993.
[32]Hornik, K., Stinchcombe, M. and White, H, “Multilayer feedforward networks are universal approximators,” Neural Networks, Vol. 2, Iss. 5 , pp.359-366, 1989.
[33]Hopfield, J. and Tank, D., “Neural Computations of Decisions in Optimization Problems,” Biological Cybernetics, Vol. 51, No.10, pp.141-152,1985.
[34]Houlihan, J. B., “International Supply Chain Management”, International Journal of Physical Distribution and Materials Management, Vol. 15, Iss. 1, pp. 22-38, 1985.
[35]Huan, J. S. and T. L. James,and P. W. Trefor,“Using Neural Networks to Predict Component Inspection Requirement for Aging Aircraft”, Computers Ind, Engng, Vol. 30, No. 2, pp.257-267, 1996.
[36]Johnson, J. C., and Wood, D. F., “Contemporary Logistics”, Prentice-Hall Internation Editions, 6th Ed, pp.124-150, 1996.
[37]Kahn, J., Inventories and the Volatility of Production. The Amer. Econom. Rev., Vol. 77,No. 4, pp. 667-679,1987.
[38]Kalakota, R. and Whinston, A. B., Frontiers of Electronic Commerce, Addison-Wesley Publishing, pp. 67-89, 1996.
[39]Kelle, P., and Milne, A., “The Effect of (s,S) Ordering Policy on the Supply Chain”, Int. J. Production Economics, Vol.59, Iss:1-3, pp. 113-122,1999.
[40]Kuhnert, P. M., Do, Kim-Anh, and McClure, R., “Combining non-parametric models with logistic regression: an application to motor vehicle injury data,” Computational Statistics and Data Analysis, Vol.34, Iss. 3, pp.371-386, 2000.
[41]LaLonde, Bernard, J. and Masters, James M., “Emerging Logistics Strategies: Blueprints for the Next Century”, International Journal of Physical Distribution and Logistics Management, Vol.24, No.7, pp.35-47, 1994.
[42]Lambert, D. M., and Cooper, M. C., “Issues in Supply Chain Management”, Industrial Marketing Management, Vol. 29, Iss. 1, pp. 65-83, 2000.
[43]Larry, M., Efraim, T., and Robert R. T., Neural Network Fundamentals for Financial Analysts. In Robert R. Trippi, and Efraim Turban(ED.), Neural Networks: in Finance and Investing, Chicago, Probus Publishing Company, pp.3-25, 1993.
[44]Lee, H. L., Padmanabhan, V., Whang, S., “Information Distortion in a Supply Chain:The Bullwhip Effect”, Management Science, Vol. 43, Iss. 4, pp. 546-558, 1997.
[45]Lewis, P. A. W. and Stevens, J. G., “Nonlinear Modeling of Time Series Using Multivariate Adaptive Regression Splines(MARS),” Journal of American Statistical Association, Vol.86, No.416, pp. 864-877, 1991.
[46]Lippmann, R. P., “An Introduction to Computing with Neural Networks,” IEEE ASSP Magazine,Vol.56, No.22, pp. 4-22, 1987.
[47]Marshall, G., Grover, F. L., and Henderson, W. G., Hammermeister, K. E., “Assessment of Predictive Models for Binary Outcomes: An Empirical Approach Using Operative Death from Cardiac Surgery,” Statistics in Medicine,Vol.13, Iss 15, pp.1501-1511,1994.
[48]Metters, R., “Quantifying the bullwhip effect in supply chains,” Journal of Operations Management, Vol 15, No. 2, pp. 89-100, 1997.
[49]Model,J.M.,”A Preude to Neural Network : Adaptive and Learning System”, Prentice-Hall, pp. 23-56, 1994.
[50]Moshiri, S. and N. Cameron, “Neural Network versus Econometric Models in Forecasting Inflation”, Journal of Forecasting, Vol.19, No.3, pp.201-217, 2000.
[51]Nguyen-Cong V., Van D. G. and Rode, B. M., “Using Multivariate Adaptive Regression Splines to QSAR Studies of Dihydroartemisinin Derivatives,” Eur. J Med. Chem., Vol.31, Iss 10, pp. 797-803, 1996.
[52]Nguyen, N. and A. Cripps, “Predicting Housing Value:A Comparison of Multiple Regression Analysis and Artificial Neural Networks”, Journal of Real Estate Research, Vol.22, No.3, pp. 313-336, 2001.
[53]Patrovic, D., R. Roy, and R. Petrovic, “Modeling and Simulation of a Supply Chain in an Uncertain Environment,” European Journal of Operational Research, Vol. 109, Iss. 2, pp.299-309, 1998.
[54]Remer,D.S. and Jorgens, C., “Ethylene Economics and Production Forecasting in a Changing Environment ”, Engineering & Process Economics, Vol.3 lss.4, P267-278, 1978
[55]Ross, D. F., “Competing Through Supply Chain Management:Creating Market—Winning Strategies through Supply Chain Partnerships”, Chapman & Hall, pp.239-259, 1998.
[56]Simchi-Levi, D., Kaminsky, P. and Simchi-Levi, E., Designing And Managing The Supply Chain, and Case Studies, Boston, McGraw-Hill International Edition., pp. 198-210, 2000.
[57]Shaaf, M. “Predicting Recession Using the Yield Curve:An Artificial Intelligence and Econometric Comparison”, Eastern Economic Journal, Vol.26, No.2, pp. 171-190, 2000.
[58]Sterman, J. D., Modeling Managerial Behavior: Misperceptions of Feedback in a Dynamic Decision Making Framework. Management Science, Vol. 35, No. 3, pp. 321-339,1989.
[59]Stone, G., Chan, D., Kuhnert, P. M., and Cameron, M., “Some Experience in the Analysis of Large and Complex Datasets,” Computing Science and Statistics,
Proceedings of the Second World Congress of the IASC, Vol.29, No.2, pp. 134-1401997.
[60]Sunil Chopra, and Peter Meindl, “ Supply Chain Management :Strategy,Planning,and Operation”,Prentice Hall,Inc., pp. 234-250, 2001
[61]Tang, Z., Almeida, C. and Fishwick, P. A., “Time Series for Using Neural Networks vs Box-Jenkins Methodology,”Simulation, Vol.57, No.5, pp. 303-310, 1991.
[62]Tang, Z. and Fishwick, P. A., “ Feedforward Neural Nets as Models for Time Series Forecasting,” ORSA Journal on computing, Vol.5, No.4, pp.374-385, 1993.
[63]Thomas, D. J., and Griffin, P. M., “Coordinated Supply Chain Management ”,European Journal of Operational Research, Vol. 94, Iss. 1, pp. 1-15, 1996.
[64]Towill, D. R.,”Time compression and supply chain management-a guided tour”, Supply Chain Management, Vol.1, No.1, pp. 15-27, 1997.
[65]W. L., Fisher, N. I., Friedman, J. H., and Ryan, C. G., ”Statistical Techniques for the Classification of Chromites in Diamond Exploration Samples”. Journal of Geochemical Exploration, Vol.59, Iss.3, pp. 233-249,1997.
[66]Wong, F. S., “Time Series Forecasting Using Backpropagation Neural Networks,” Neurocomputing, Vol.2, Iss. 4, pp. 147-159, 1991.
[67]Zhang, G., Patuwo, B. E., and Hu, M. Y., “Forecasting with artificial neural networks: The state of the art,” International Journal of Forecasting, Vol.14, Iss. 1, pp.78-85, 1998.