跳到主要內容

臺灣博碩士論文加值系統

(44.222.131.239) 您好!臺灣時間:2024/09/09 19:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:雷嘉玲
研究生(外文):Chia-Ling Lei
論文名稱:具有欠撥折扣及可變動前置時間需求量為混合分配之存貨模式
論文名稱(外文):Inventory Model with Back-order Discounts and Mixtures of Distribution for the Demand of Variable Lead Time.
指導教授:吳忠武吳忠武引用關係
指導教授(外文):Jong - Wuu Wu
學位類別:碩士
校院名稱:淡江大學
系所名稱:統計學系
學門:商業及管理學門
學類:會計學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:148
中文關鍵詞:存貨模式前置時間趕工成本訂購量混合分配連續檢查欠撥折扣訂購成本
外文關鍵詞:inventory modellead timecrashing costorder quantitymixtures of distributioncontinuous reviewbackorder discountsordering cost
相關次數:
  • 被引用被引用:5
  • 點閱點閱:235
  • 評分評分:
  • 下載下載:19
  • 收藏至我的研究室書目清單書目收藏:1
在以往有關存貨理論的文獻中,不論是確定性模式(deterministic model)或機率性模式(probabilistic model),大多將前置時間視為已知且不可控制的常數(uncontrollable constant)或隨機變數,並且也將欠撥率視為已知且不可控制的常數。但是近年來,有不少學者開始對於欠撥率是否真的為不可控制的常數或前置時間是否真的為不可控制的隨機變數產生質疑,進而著手進行在連續性檢查訂購策略下之可控制欠撥率及可控制前置時間的相關研究。在此檢查策略之下,已經有學者進一步去探討欠撥率與缺貨數量、欠撥率與欠撥價格折扣,以及前置時間與訂購量間的互動關係。但是以往的文獻中,雖然已考慮到前置時間的控制,但往往都忽略了缺貨數量與欠撥價格折扣兩者同時對於欠撥率的影響,這樣的訂購策略在實務上來說是很不切實際的。所以,在本文中我們將欠撥價格折扣視為決策變數,並且考慮欠撥率為缺貨數量與欠撥價格折扣的函數,而缺貨數量分別為線性遞減函數與指數遞減函數這兩種情況。而一般實務上,在前置時間內,不同的顧客在其需求上亦會有所差異,所以不能只用一個需求分配來滿足顧客在前置時間內的需求。因此,在本文中我們考慮使用混合分配來描述前置時間的需求量。
本文第二章我們結合Pan和Hsiao(2001)與Ouyang和Chuang(2001)所定義的欠撥率函數,並且提出一個廣義的欠撥率函數,同時應用Wu和Tsai(2001)所提到的混合分配之型式,考慮以混合分配F*=pF1+(1-p)F2,來滿足前置時間顧客的需求量,並且在訂購量、欠撥價格折扣及前置時間為決策變數時,發展出一套演算法以決定最適的訂購策略與最小總成本。第三章我們推廣Ouyang et al.(1999)的模式,在連續性檢查之存貨系統中,可藉由投資資金來縮減訂購成本,同於前一章,我們亦考慮了混合常態與混合分配未知但具有已知的一階與二階動差的情況,並各自在訂購量、訂購成本、欠撥價格折扣和前置時間為決策變數時,發展出演算法來求得最適的訂購策略與最小總成本。最後,第四章為結論,對本文各章所建構的存貨模式做歸納整理,同時提出未來的研究方向。
In most of the literature dealing with inventory problems, either in deterministic model or probabilistic model, lead time is usually viewed as a prescribed constant or a stochastic variable and backorder rate is usually viewed as a prescribed constant, which therefore, is not subject to control. But recently, many authors started to present their studies about a continuous review model in which they consider the controllable backorder rate and the controllable lead time. Besides, many authors discussed the relationship between the backorder rate and the amount of shortages, the backorder rate and the backorder discounts offered by the supplier, and the lead time and the order quantity. But they always ignored that the backorder rate can be affected by the amount of shortages and backorder discounts together. This kind of order policy is not reasonable. So, in this article we try to consider the backorder discounts as a decision variable and consider the backorder rate as a function of the amount of shortages and backorder discounts, where the amount of shortages is a linearly decreasing function or a exponential decreasing function. And in many practical situations, we can not use only a single distribution to describe the customers’ demands of the lead time. So, we consider to use a mixtures of distribution to describe the demand of the lead time.
In Chapter 2, we propose a generalized backorder rate by using the definitions of the backorder rate of Pan and Hsiao(2001) and Ouyang and Chuang(2001) , and apply the form of the distribution of the lead time demand presented by Wu and Tsai(2001). Then we use the mixtures of distribution
F*=pF1+(1-p)F2 to describe the demand of the lead time and discuss the situations when the order quantity, backorder discounts and lead time as decision variables. In Chapter 3, we extend the model of Ouyang and Wu(1999) to consider the continuous review inventory systems, where the ordering cost can be reduced by capital investment. Then we use the mixtures of distribution F*=pF1+(1-p)F2 to describe the demand of the lead time and discuss the situations when the order quantity, ordering cost, backorder discounts and lead time as decision variables. Finally, the conclusion and the future research are also given in chapter 4.
第一章 緒論 …………………………………………………………… 1
1-1 研究動機與目的 ………………………………………………… 1
1-2 文獻探討 ………………………………………………………… 3
1-3 本文研究內容 …………………………………………………… 5
第二章 隨機變數前置時間服從混合型分配在具有欠撥價格折扣下
的混合存貨模式 ……………………………………………… 7
2-1符號說明與假設 ………………………………………………… 7
2-2前置時間需求量服從混合型常態分配之存貨模式 …………… 10
2-2-1決策變數為訂購量、欠撥價格折扣與前置時間,
而欠撥率為缺貨數量與欠撥價格折扣的線性函數
之存貨模式 …………………………………………………………… 16
2-2-2決策變數為訂購量、欠撥價格折扣與前置時間,
而欠撥率為缺貨數量與欠撥價格折扣的指數函數
之存貨模式 …………………………………………………………… 21
2-2-3數值範例 ……………………………………………………… 26
2-3前置時間需求量服從的分配未知之存貨模式 ………………… 27
2-3-1決策變數為訂購量、欠撥價格折扣與前置時間,
而欠撥率為缺貨數量與欠撥價格折扣的線性函數
之存貨模式 …………………………………………………………… 28
2-3-2決策變數為訂購量、欠撥價格折扣與前置時間,
而欠撥率為缺貨數量與欠撥價格折扣的指數函數
之存貨模式 ………………………………………………………… 36
2-3-3數值範例 ……………………………………………………… 42
2-4敏感性分析 ……………………………………………………… 43
第三章 隨機變數前置時間服從混合型分配且縮減訂購成本
的混合存貨模式 ……………………………………………………… 49
3-1符號說明與假設 ………………………………………………… 49
3-2前置時間需求量服從混合型常態分配之存貨模式 …………… 50
3-2-1決策變數為訂購量、訂購成本、欠撥價格折扣
與前置時間,而欠撥率為缺貨數量與欠撥價格折扣的
線性函數之存貨模式 ………………………………………………… 51
3-2-2決策變數為訂購量、訂購成本、欠撥價格折扣
與前置時間,而欠撥率為缺貨數量與欠撥價格折扣的
指數函數之存貨模式 ………………………………………………… 58
3-2-3數值範例 ……………………………………………………… 64
3-3前置時間需求量服從的分配未知之存貨模式 ………………… 65
3-3-1決策變數為訂購量、訂購成本、欠撥價格折扣
與前置時間,而欠撥率為缺貨數量與欠撥價格折扣的
線性函數之存貨模式 ………………………………………………… 66
3-3-2決策變數為訂購量、訂購成本、欠撥價格折扣
與前置時間,而欠撥率為缺貨數量與欠撥價格折扣的
指數函數之存貨模式 ………………………………………………… 74
3-3-3數值範例 …………………………………………………… 81
3-4敏感性分析 ……………………………………………………… 82
第四章 結論 ………………………………………………………… 90
參考文獻 ……………………………………………………………… 95
附錄: ………………………………………………………………… 99
中文部份
[1] 吳坤山(1997),「可控制前置時間的欠撥與銷售損失混合存貨模型之研究」,淡江大學管理科學學系博士班博士論文。
[2] 侯文賓(2001),「可控制前置時間之需求量為混合分配之存貨模式」,淡江大學統計學系應用統計學碩士班碩士論文。
英文部份
[1] Azoury, K. S. and Brill, P. H.(1994), “ Analysis of Net Inventory in Continuous Review Models with Random Lead Time ”, European Journal of Operational Research, 59, 383-392.
[2] Ben-Daya, M. and Raouf, A.(1994), “ Inventory models involving lead time as decision variable ”, Journal of the Operational Research Society, 45, 579-582.
[3] Billington, P. J.(1987), “ The classic economic production quantity model with setup cost as a function of capital expenditure ”, Decision Sciences, 18, 25-42.
[4] Candace, A. Y.(1987), “ Planned Lead Times for Serial Production System ”, IIE Transactions, 19, 300-307.
[5] Chiu, H. N.(1995), “ An approximation to the Continuous Review Inventory Model with Perishable Items and Lead Times ”, European Journal of Operational Research, 87, 93-108.
[6] Chuang, B. R., Ouyang, L. Y. and Chuang, K. W.(2004), “ A note on periodic review inventory model with controllable setup cost and lead time ”, Computers & Operations Research, 31, 549-561.
[7] Compaq Visual Fortran, Professional Edition V6.0 Intel Version and IMSL, Compaq Computer Corporation, 2000.
[8] Denizel, M., Erengüc, S., and Benson H. P.(1997), “ Dynamic lot-sizing with setup cost reduction ”, European Journal of Operational Research, 100, 537-549.
[9] Everitt, B. S. and Hand, D. J.(1981)Finite Mixture Distribution(London:Chapman & Hall).
[10] Foote, B., Kebriaei, N., and Kumin, H.(1988), “ Heuristic Policies for Inventory Ordering Problems with Long and Randomly Varying Lead Times ”, Journal of Operations Management, 7, 115-124.
[11] Gallego, G. and Moon, I.(1993), “ The distribution free newsboy problem: Review and extensions ”, Journal of the Operational Research Society, 44, 825-834.
[12] Gallego, G. and Moon, I.(1995), “ Strategic investment to reduce setup times in the economic lot scheduling problem ”, Naval Research Logistics, 42, 773-790.
[13] Hariga, M. and Ben-Daya, M.(1999), “ Theory and Methodology Some Stochastic Inventory Models with Deterministic Variable Lead Time ”, European Journal of Operational Research, 113, 42-51.
[14] Kim, D. H. and Park, K. S.(1985), “ (Q, r)Inventory Model with a Mixture of Lost Sales and Time- Weighted Backorders ”, Journal of the Operational Research Society, 36, 231-238.
[15] Kim, K. L., Hayya, J. C. and Hong, J.D.(1992), “ Setup reduction in economic production quantity model ”, Decision Sciences, 23, 500-508.
[16] Liao, C. J. and Shyu, C. H.(1991), “ An Analytical Determination of Lead Time with Normal Demand ”, International Journal of Operations Production Management, 11, 72-78.
[17] Liberatore, M.(1977), “ Planning Horizons for a Stochastic Lead Time Model ”, Operations Research, 25, 977-988.
[18] Magson, D.(1979), “ Stock Control When the Lead Time cannot be Considered Constant ”, Journal of the Operational Research Society, 30, 317-322.
[19] Monden, Y.(1983), Toyota Production System, Institute of Industrial Engineers, Norcross, Georgia.
[20] Moon, I. And Choi, S.(1998), “ A note on Lead Time and Distributional Assumptions in Continuous Review Inventory Models ”, Computers and Operations Research, 25, 1007-1012.
[21] Naddor, E.(1966)Inventory Systems, John Wiley, New York.
[22] Nasri, F., Affisco, J. F. and Paknejad, M. j.(1990), “ Setup cost reduction in an inventory model with fimite-range stochastic lead times ”, International Journal of Production Economics, 28, 199-212.
[23] Ouyang, L. Y., Chen,C. K., and Chuang, B. R.(1999), “ Lead Time and Ordering Cost Reductions in Continuous Review Inventory Systems with Partials Backorders ”, Journal of the Operational Research Society, 50, 1272-1279.
[24] Ouyang, L. Y. and Chuang, B. R.(2001), “ Mixture inventory model involving variable lead time and controllable backorder rate ”, Computers & Industrial Engineering, 40, 339-348.
[25] Ouyang, L. Y., Chuang, B. R. and Lin, Y. J.(2003), “ Impact of Backorder Discounts on Periodic Review Inventory Model ”, International Journal of Information and Management Sciences, 14, 1-13.
[26] Ouyang, L. Y. and Wu, K. S.(1997), “ Mixture Inventory Model Involving Variable Lead Time with a Service Level Constraint ”, Computers and Operations Research, 24, 875-882.
[27] Ouyang, L. Y. and Wu, K. S.(1998), “ A Minimax Distribution Free Procedure for Mixed Inventory Model Involving Variable Lead Time ”, International Journal of Production Economics, 56-57, 511-516.
[28] Ouyang, L. Y., Yeh, N. C., and Wu, K. S.(1996), “ Mixture Inventory Model with Backorders and Lost Sales for Variable Lead Time ”, Journal of the Operational Research Society, 47, 829-832.
[29] Pan, C. H. and Hsiao, Y. C.(2001), “ Inventory models with back-order discounts and variable lead time ”, International Journal of Systems Science, 32, 925-929.
[30] Porteus, E. L.(1985), “ Investing in reduced setups in the EOQ model ”, Management Science, 31, 998-1010.
[31] Silver, E. A. and Peterson, R.(1985)Decision Systems for Inventory Management and Production Planning, John Wiley, New York.
[32] Tersine, R. J.(1982)Principles of Inventory and Materials Management, North-Holland, New York.
[33] Wu, J. W. and Tsai, H. Y.(2001), “ Mixture Inventory Model with Back Orders and Lost Sales for Variable Lead Time Demand with the Mixtures of Normal Distribution ”, International Journal of Systems Science, 32, 259-268.
[34] Wu, J. W. Lee, W. C. and Tsai, H. Y.(2002), “ A note on Minimax Mixture of Distributions Free Procedure for Inventory Model with Variable Lead Time ”, Quality & Quantity, 36, 311-323.
[35] Zangwill, W. I.(1987), “ From EOQ toward ZI ”, Management Science, 33, 1209-1223.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 林文睿(民82)。四十年來的公共圖書館。中國圖書館學會會報,51,頁33-38。
2. 李德竹(民89)。資訊素養的意義、內涵與演變。圖書與資訊學刊,35,頁3。
3. 宋建成(民70)。近三十年來我國的公共圖書館。教育資料集刊,6,頁345-372。
4. 何文慶(民90)。公共圖書館與九年一貫課程。北縣教育,39,頁71。
5. 宇治鄉毅 著;何輝國 譯(民81)。「近代日本圖書館之變迭─臺灣圖書館篇(上)」。國立中央圖書館臺灣分館館訊,10,頁19。
6. 林文睿(民86)。臺灣圖書館事業之現況與遭遇的困難-公共圖書館。中國圖書館學會會報,58,頁59-61。
7. 林文睿(民87)。從公共圖書館角色扮演論公共圖書館與民眾互動。文化視窗,6,頁12。
8. 林美齡(民88)。臺灣省政府贈書鄉鎮圖書館工作回顧。書苑季刊,39,頁35-44。
9. 馬少娟(民66)。「臺灣區公共圖書館史略(公元1895-1976)」。教育資料科學月刊,11(3)。頁28。
10. 張圍東(民82)。「臺灣總督府圖書館發展史(1915-1945)」。書苑季刊,15,頁32-57。
11. 張慶仁(民91)。邁向學習型圖書館。大學圖書館,6(2)。頁109-110。
12. 陳乃林(民87)。終身學習論析。成人教育,41,頁36-41。
13. 陳文生(民90)。網路科技對公共圖書館教育活動影響之研究。圖書與資訊學刊,37,頁42-43。
14. 陳昭珍(民86)。網路時代公共圖書館的資訊服務。圖書館學與資訊科學,23(1)。頁20-32。
15. 曾堃賢(民76)。「日據時期(1895-1945)臺灣區公共圖書館事業之研究(續)」。教育資料與圖書館學24(3)頁298-299。