跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/12 05:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳少鴻
論文名稱:有限時域差分法電磁波源特性
論文名稱(外文):Electromagnetic characteristics of FDTD sources
指導教授:李慶烈
學位類別:博士
校院名稱:淡江大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
中文關鍵詞:有限時域差分法電磁波源穿透源脈衝響應
相關次數:
  • 被引用被引用:0
  • 點閱點閱:267
  • 評分評分:
  • 下載下載:39
  • 收藏至我的研究室書目清單書目收藏:1
本論文針對有限時域差分法(FDTD)的硬式源和透明電流源的電磁特性作完整的研究。硬式源相關的電荷、電流以及準靜磁場的公式首度被完成證明。吾人發現在電源端,準靜磁場和時間的微分成正比。
透過相關的電荷和電流,透明電流源相關的準靜電場和準靜磁場的公式也是第一次被提出。透明電流源之電磁特性為,在電源端的準靜電場和驅動方程式的時間的積分成正比,且準靜磁場在電源端與時間的微分成正比。因為驅動方程式的作用準靜電荷可能在空間中累積並且形成準靜電場,造成脈波激發時FDTD演算法的直流偏移問題。本論文詳述了直流偏移在更新方程式為高斯脈波函數時行程的原因以及解釋了為何能夠使用雙極脈波來加以避免。
本論文更進一步的探討,所有FDTD電磁波源中,準靜電場與準靜磁場的時間微分成正比,此一關係將導致先所提出的電磁波源模型所提供的輻射能量為零。因此進一步的檢驗電磁源端電場和磁場的關係。吾人應用外加電流源所造成電場和磁場的完整時域公式分析FDTD透明源完整的電磁特性,其中包括了Hertzian電偶極和短電偶極兩種模型來分析此一特性。並且證明了,當利用一透明電流源來激發模擬空間時,電荷的分部型式為均勻分布成平面盤狀電荷,而不是體電荷的分配,當利用透明源激發FDTD問題空間時應被視為一Hertzian電偶極而非一短電偶極。
當應用一透明電場源激發 FDTD問題空間時必須透過兩階段的模擬過程。首先在第一階段紀錄FDTD格子系統的脈衝響應和相關的震盪電荷。接著扣除由格子系統響應所傳回的多餘電場,如此變能夠克服透明電流源的直流偏移問題。在本論文中,詳細探討了透明電場源的運作機制。最後,本論文提出一個新的高效率的雙極化透明場源。
CHAPTER 1 INTRODUCTION……………………………………………1
1.1 Introduction and Literature Survey………………………1
1.2 Chapter Outline…………………………………………..4
CHAPTER 2 FINITE DIFFERENCE TIME DOMAIN METHODS
(FDTD) & SIMULATION SETTINGS………………………7
2.1 Maxwell’s equations……………………………………...7
2.2 Discretization in Time and Space of
Maxwell’s Equations……………………………………..10
2.3 The Cell size and the Courant Stability Condition……….16
2.4 Absorbing Boundary Conditions (ABC)………………....17
2.5 Simulation Settings for this Thesis……………………….17
CHAPTER 3 ELECTROMAGNETIC CHARACTERISTICS
THE HARD FIELD SOURCES……………………………..20
3.1 The Electric Field and Associated Charges………………20
3.2 Formulations of the Magnetic Field at the Source Node…25
3.3 Summary………………………………………………….30
CHAPTER 4 ELECTROMAGNETIC CHARACTERISTICS
OF TRANSPARENT CURRENT SOURCES…………….....31
4.1 Static Charges and Static Fields Due to a
Current Source……………………………………………31
4.2 Magnetic Fields of an ICE near the Source Node………..39
4.3 Summary………………………………………………….45
CHAPTER 5 PHYSICAL MECHANISMS OF
TRANSPERNT FIELD SOURCES……………………………47
5.1 Physical Mechanisms of Transparent Field Source in
Time Domain………………………………………………..47
5.2 Bipolar Transparent Field Source (BTFS)……………….55
5.3 Summary…………………………………………………60
CHAPTER 6
ELECTRODYNAMICS FOR FDTD SOURCES………….……………61
6.1 Difference between the quasi-static formulation and
the FDTD…………………………………………………..61
6.2 E and H fields by a transparent current source of
FDTD methods………………………………………………66
6.3 EM energy from a transparent current source…………….84
6.4 Summary………………………………………………….87
CHAPTER 7 CONCLUSIONS……………………………….………….88
[1] S. Wang, and F.L. Teixeira, “An equivalent electric field source for wideband FDTD simulations of waveguide discontinuities,” IEEE Microwave and Wireless Components letter, pp. 27-29, Jan. 2003.
[2] F. Alimenti, P. Mezzanotte, L. Roselli, and R. Sorrentino, “A revised formulation of modal absorbing and matched modal source boundary conditions for the efficient FDTD analysis of waveguide structures,” IEEE Trans. Microwave Theory Tech., vol. 48, pp. 50-59, Jan. 2000.
[3] A.P. Zhao, A.V. Räisänen, and S.R. Cvetkovic, “A fast and efficient FDTD algorithm for the analysis of planar microstrip discontinuities by using a simple source excitation scheme,” IEEE Microwave and Guided Wave Letters, vol. 5, pp. 341-343, Oct. 1995.
[4] R.M. Makinen, and M.A. Kivikoski, “A stabilized resistive voltage source for FDTD thin-wire models,” IEEE Trans. Antennas Propagat., vol. 51, pp. 1615-1622, July 2003.
[5] R. Makinen, J. Juntunen, and M. Kivikoski, “An accurate 2-D hard-source model for FDTD,” IEEE Microwave and Wireless component, vol. 11, pp. 74-76, Feb. 2001.
[6] C.L. Wagner, and J.B. Schneider, “Divergent fields, charge, and capacitance in FDTD simulations,” IEEE Trans. Microwave Theory Tech., vol 46, pp. 2131-2136, Dec. 1998.
[7] M.E. Potter, M. Okoniewski, M.A. Stuchly, “Extension of FDTD method to non-uniform excitations,” Electronics Letters, vol.34, pp. 2216-2217, Nov. 1998.
[8] G. Bellanca, “High-accuracy assigned power excitation for the FDTD technique,” IEEE Microwave and Guided Wave Letters, pp. 411-413, Dec. 1997.
[9] J. B. Schneider, C. L. Wagner, and O. M. Ramahi, “Implementation of Transparent Sources in FDTD Simulations,” IEEE Trans. Antennas Propagat., vol. 46, pp. 1159-1168, Aug. 1998.
[10] A. Taflove, Computational Electrodynamics: The Finite Difference Time-Domain Method, Boston, MA: Artech House, 1995.
[11] K. S. Kunz and R.J. Luebbers, The Finite Difference Time Domain Method for Electromagnetic. Boca Raton, FL: CRC, 1993.
[12] Ching Lieh Li, Chien Wei Liu, and Shao Hon Chen, “Optimization of a PML Absorber’s Conductivity Profile using FDTD ”, Microwave and Optical Technology Lett., vol.37, pp. 380-383, June 2003.
[13] D.N. Buechler, D.H. Roper, C.H. Durney and D.A. Christensen, “Modeling sources in the FDTD formulation and their use in quantifying source and boundary condition errors,” IEEE Trans. Microwave Theory Tech., vol.43, no.4, pp.810-814, April 1995.
[14] Rolando Pontalti, Jacek Nadobny, Peter Wust, Alessandro Vaccari, and Dennis Sullivan, “Investigation of Static and Quasi-Static Fields Inherent to the Pulsed FDTD Method,” IEEE Trans. Microwave Theory Tech., vol. 50, no. 8, pp. 2022-2025, Aug. 2002.
[15] A.P. Zhao, A.V. Räisänen, “Application of simple and efficient source excitation techniques to the FDTD analysis waveguide and microstrip circuits,” IEEE Trans. Microwave Theory Techn., vol. 44, pp. 1535-1539, Sept. 1996.
[16] D.K. Cheng, Field and Wave Electromagnetics, 2nd, Addison-Wesley.
[17] A. Reineix and B. Jecko, “Analysis of microstrip patch antennas using finite difference time domain method,” IEEE Trans. Antennas Propagat., vol. 37, pp. 1361-1369, Nov. 1989.
[18] K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equation in isotropic media,” IEEE Trans. Antenna and Propagat., vol.14, No.3, pp300-307, May 1966.
[19] G. Mur, “Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic field equations,” IEEE Trans. Electromagnetic Compatibility, vol.EMC-23, pp.377-382, Nov.1981.
[20] Z. S Sacks, D. M. Kingsland, R. Lee, and J. F. Lee, “A perfectly matched anisotropic absorber for use as absorbing boundary condition,” IEEE Trans. Antennas and Propagat. , vol. 43, pp 1460- 1463, Dec. 1995.
[21] Martin, R.G., Bretones, A.R., Garcia, S.G.,” Some thoughts about transient radiation by straight thin wires,” IEEE Antennas and Propagation Magazine, Vol.41, Issue: 3, pp. 24-33, June 1999.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top