( 您好!臺灣時間:2023/10/05 06:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::


論文名稱(外文):Analysis of hypervariable regions in the D-loop of mitochondrial genome
指導教授(外文):Horng-Mo LeeChin-Yuen Tzen
外文關鍵詞:D-loophypervariable regiongenetic diversitylikelihood ratiopolymophismheteroplasmy
  • 被引用被引用:1
  • 點閱點閱:222
  • 評分評分:
  • 下載下載:20
  • 收藏至我的研究室書目清單書目收藏:1
研究所名稱:台北醫學大學生物醫學技術研究所 研究生姓名: 羅梅真 畢業時間: 92 學年度第 2 學期 指導教授: 李宏謨 台北醫學大學 教授 曾嶔元 馬偕醫院 病理科主任
台北醫學大學 兼任副教授
粒線體DNA是細胞內獨立於核染色體外的DNA分子。相較於核染色體DNA,它具有母系遺傳,呈環狀結構,拷貝份數多,及變異性大等特點。因此適合族群演化及刑事法醫鑑識。過去的研究發現粒線體DNA在控制區,即D環上有較高的變異率,D環的長度約1.4 Kb,其上有高變異區(hypervariable region)呈現叢集現象。這些叢集區共分為HVR-I, HVR-II, HVR-III(高度變異區I, II, III)。在許多報告中其叢集的起始點及終止點不同。本實驗的研究計劃即是定義高變異(hypervariable region)區的區間。利用族群基因變異統計計算出HVR-I之起點與終點為nucleotide position (np) 16051-16362其鑑別率最好。基因歧異度(allelic diversity) h =0.992。HVRII之起點與終點為np 52-309CC其鑑別率最好,h =0.983。HVR-III的h值為 0.864,而且我們也算出HVR-IV的h值為0.614。
當D環上有單點異質點 (Heteroplasmy)存在時,尤其在親屬鑑定上容易產生爭議。因此本研究想知道若有異質點存在時其親屬相似度(likelihood ratio)數值如何?我們想要建立一個可信賴的數值,以判定當粒線體DNA 在一個群體中有一點核苷酸不一樣時,其可能為親屬之關係。由公式計算出本實驗中的一個家族(外婆、媽媽、兩個女兒、一個兒子),他們在np 204存在異質點,其likelihood ratio為1.78×105。。我們在外婆及二女兒的DNA序列看不出來具有異質點存在,事實上經由dHPLC 證明他們都是異質點。因此我們可以計算親屬相似度及dHPLC來輔助法醫鑑定工
Analysis of hypervariable regions in the D-loop of mitochondrial genome
Author: Mei-chen Lo
Thesis advised by: Horng-Mo Lee, Ph.D., Chin- Yuan Tzen M.D., Ph.D.
The displacement loop (D-loop) of the mitochondrial DNA (mtDNA), approximately 1.4 kb in length, is a noncoding control region. mtDNA is maternally inherited, and exhibits high degree of homoplasmy. Heteroplasmy has been observed to be an intermediate condition in which new mutations are in the process of segregation to homoplasmy through genetic drift after relatively few generations. The control region consists of three hypervariable regions; HVR-I﹑HVR-II and HVR-III. However, the specific ranges of these HVRs have never been defined. We analyzed the mtDNA HVR-I from 1762 unrelated individuals and precisely defined that the HVR-I. Ranged from nucleotide position 16051 to 16399 for HVR-I with genetic diversity was 0.941-0.999. Ranged from nucleotid position 52 to 309CC for HVR-II with genetic diversity was 0.950-0.993. The values for HVR-III with genetic diversity was 0.864. In this material, HVR-IV was investigated, the values for HVR-IV with genetic diversity was 0.614.
The presence of a heteroplasmic site may complicate sequence analysis for forensic purpose when two samples were compared. We analyzed the hypervariable region of the displacement loop (D-loop) in a family with five individuals, i.e., grandmother, mother, one son and two daughters. The result showed a heteroplasmic site at the np 204, which located in hypervariable region II. The nucleotide at this position was predominately cytosine in some samples and predominately thymine in others. Using Bayesian inference to assess the significance of the mother-offspring pairs, the likelihood ratio was 1.78×105. The ratio is lower than previous report. We conclude that dHPLC analysis is a sensitive and specific method to detect heteroplasmic mtDNA mutation. The chromatogram shows a heteroplasmy at np 204 in this family. This study demonstrated that heteroplasmy is a common occurrence in tissue from normal individuals, and should be considered in forensic cases where two samples appear to differ at a single nucleotide position by direct sequencing.
Taipei Medical university
Graduate Institute of Biomedical technology
Master Thesis
指導教授: 李宏謨博士
Advisor: Horng-Mo Lee, Ph.D.
Chin- Yuan Tzen, M.D. , Ph.D.
Analysis of hypervariable regions in the D-loop of mitochondrial genome
研究生:  羅梅真
Mei-Chen Lo
中華民國 93 年 7 月 14日
1. Brown GC. Control of respiration and ATP synthesis in mammalian mitochondria and cells. Biochem J 1992;284 ( Pt 1):1-13.
2. Piko L, Matsumoto L. Number of mitochondria and some properties of mitochondrial DNA in the mouse egg. Dev Biol 1976;49(1):1-10.
3. Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F and others. Sequence and organization of the human mitochondrial genome. Nature 1981;290(5806):457-65.
4. Cantatore P, Attardi G. Mapping of nascent light and heavy strand transcripts on the physical map of HeLa cell mitochondrial DNA. Nucleic Acids Res 1980;8(12):2605-25.
5. Baasner A, Schafer C, Junge A, Madea B. Polymorphic sites in human mitochondrial DNA control region sequences: population data and maternal inheritance. Forensic Sci Int 1998;98(3):169-78.
6. Ozawa T. Mechanism of somatic mitochondrial DNA mutations associated with age and diseases. Biochim Biophys Acta 1995;1271(1):177-89.
7. Carlioz A, Touati D. Isolation of superoxide dismutase mutants in Escherichia coli: is superoxide dismutase necessary for aerobic life? Embo J 1986;5(3):623-30.
8. Ho YS, Crapo JD. Isolation and characterization of complementary DNAs encoding human manganese-containing superoxide dismutase. FEBS Lett 1988;229(2):256-60.
9. Williams RS. Another surprise from the mitochondrial genome. N Engl J Med 2002;347(8):609-12.
10. Grune T, Reinheckel T, Joshi M, Davies KJ. Proteolysis in cultured liver epithelial cells during oxidative stress. Role of the multicatalytic proteinase complex, proteasome. J Biol Chem 1995;270(5):2344-51.
11. Grune T, Blasig IE, Sitte N, Roloff B, Haseloff R, Davies KJ. Peroxynitrite increases the degradation of aconitase and other cellular proteins by proteasome. J Biol Chem 1998;273(18):10857-62.
12. Schoenberg MH, Buchler M, Schadlich H, Younes M, Bultmann B, Beger HG. Involvement of oxygen radicals and phospholipase A2 in acute pancreatitis of the rat. Klin Wochenschr 1989;67(3):166-70.
13. Berlin V, Haseltine WA. Reduction of adriamycin to a semiquinone-free radical by NADPH cytochrome P-450 reductase produces DNA cleavage in a reaction mediated by molecular oxygen. J Biol Chem 1981;256(10):4747-56.
14. Cantatore P, Roberti M, Loguercio Polosa P, Mustich A, Gadaleta MN. Mapping and characterization of Paracentrotus lividus mitochondrial transcripts: multiple and overlapping transcription units. Curr Genet 1990;17(3):235-45.
15. Jukes TH. Genetic code 1990. Outlook. Experientia 1990;46(11-12):1149-57.
16. Lutz S, Weisser HJ, Heizmann J, Pollak S. Mitochondrial heteroplasmy among maternally related individuals. Int J Legal Med 2000;113(3):155-61.
17. Chinnery PF, Thorburn DR, Samuels DC, White SL, Dahl HM, Turnbull DM, Lightowlers RN, Howell N. The inheritance of mitochondrial DNA heteroplasmy: random drift, selection or both? Trends Genet 2000;16(11):500-5.
18. Bendall KE, Macaulay VA, Baker JR, Sykes BC. Heteroplasmic point mutations in the human mtDNA control region. Am J Hum Genet 1996;59(6):1276-87.
19. Calloway CD, Reynolds RL, Herrin GL, Jr., Anderson WW. The frequency of heteroplasmy in the HVII region of mtDNA differs across tissue types and increases with age. Am J Hum Genet 2000;66(4):1384-97.
20. Linnane AW, Marzuki S, Ozawa T, Tanaka M. Mitochondrial DNA mutations as an important contributor to ageing and degenerative diseases. Lancet 1989;1(8639):642-5.
21. Hayashi J, Ohta S, Kagawa Y, Kondo H, Kaneda H, Yonekawa H, Takai D, Miyabayashi S. Nuclear but not mitochondrial genome involvement in human age-related mitochondrial dysfunction. Functional integrity of mitochondrial DNA from aged subjects. J Biol Chem 1994;269(9):6878-83.
22. Kovalenko SA, Kopsidas G, Kelso J, Rosenfeldt F, Linnane AW. Tissue-specific distribution of multiple mitochondrial DNA rearrangements during human aging. Ann N Y Acad Sci 1998;854:171-81.
23. Slade RW, Moritz C, Heideman A. Multiple nuclear-gene phylogenies: application to pinnipeds and comparison with a mitochondrial DNA gene phylogeny. Mol Biol Evol 1994;11(3):341-56.
24. Laval J. Role of DNA repair enzymes in the cellular resistance to oxidative stress. Pathol Biol (Paris) 1996;44(1):14-24.
25. Agarwal S, Sohal RS. DNA oxidative damage and life expectancy in houseflies. Proc Natl Acad Sci U S A 1994;91(25):12332-5.
26. Dohmen G, Tudzynski P. A DNA-polymerase-related reading frame (pol-r) in the mtDNA of Secale cereale. Curr Genet 1994;25(1):59-65.
27. Lee HC, Wei YH. Mutation and oxidative damage of mitochondrial DNA and defective turnover of mitochondria in human aging. J Formos Med Assoc 1997;96(10):770-8.
28. Gill P, Ivanov PL, Kimpton C, Piercy R, Benson N, Tully G, Evett I, Hagelberg E, Sullivan K. Identification of the remains of the Romanov family by DNA analysis. Nat Genet 1994;6(2):130-5.
29. Ivanov PL, Wadhams MJ, Roby RK, Holland MM, Weedn VW, Parsons TJ. Mitochondrial DNA sequence heteroplasmy in the Grand Duke of Russia Georgij Romanov establishes the authenticity of the remains of Tsar Nicholas II. Nat Genet 1996;12(4):417-20.
30. Mignotte B, Dunon-Bluteau D, Reiss C, Mounolou JC. Sequence deduced physical properties in the D-loop region common to five vertebrate mitochondrial DNAs. J Theor Biol 1987;124(1):57-69.
31. Jacobs HT, Elliott DJ, Math VB, Farquharson A. Nucleotide sequence and gene organization of sea urchin mitochondrial DNA. J Mol Biol 1988;202(2):185-217.
32. Greenberg BD, Newbold JE, Sugino A. Intraspecific nucleotide sequence variability surrounding the origin of replication in human mitochondrial DNA. Gene 1983;21(1-2):33-49.
33. Vigilant L, Pennington R, Harpending H, Kocher TD, Wilson AC. Mitochondrial DNA sequences in single hairs from a southern African population. Proc Natl Acad Sci U S A 1989;86(23):9350-4.
34. Mulligan RM, Maloney AP, Walbot V. RNA processing and multiple transcription initiation sites result in transcript size heterogeneity in maize mitochondria. Mol Gen Genet 1988;211(3):373-80.
35. Lutz S, Weisser HJ, Heizmann J, Pollak S. A third hypervariable region in the human mitochondrial D-loop. Hum Genet 1997;101(3):384.
36. Brown WM, Prager EM, Wang A, Wilson AC. Mitochondrial DNA sequences of primates: tempo and mode of evolution. J Mol Evol 1982;18(4):225-39.
37. Brown WM, George M, Jr., Wilson AC. Rapid evolution of animal mitochondrial DNA. Proc Natl Acad Sci U S A 1979;76(4):1967-71.
38. Shadel GS, Clayton DA. Mitochondrial DNA maintenance in vertebrates. Annu Rev Biochem 1997;66:409-35.
39. Clayton DA. Transcription and replication of mitochondrial DNA. Hum Reprod 2000;15 Suppl 2:11-7.
40. Faith JJ, Pollock DD. Likelihood analysis of asymmetrical mutation bias gradients in vertebrate mitochondrial genomes. Genetics 2003;165(2):735-45.
41. Stoneking M, Sherry ST, Redd AJ, Vigilant L. New approaches to dating suggest a recent age for the human mtDNA ancestor. Philos Trans R Soc Lond B Biol Sci 1992;337(1280):167-75.
42. Parson W, Parsons TJ, Scheithauer R, Holland MM. Population data for 101 Austrian Caucasian mitochondrial DNA d-loop sequences: application of mtDNA sequence analysis to a forensic case. Int J Legal Med 1998;111(3):124-32.
43. Piercy R, Sullivan KM, Benson N, Gill P. The application of mitochondrial DNA typing to the study of white Caucasian genetic identification. Int J Legal Med 1993;106(2):85-90.
44. Lee SD, Shin CH, Kim KB, Lee YS, Lee JB. Sequence variation of mitochondrial DNA control region in Koreans. Forensic Sci Int 1997;87(2):99-116.
45. Seo Y, Stradmann-Bellinghausen B, Rittner C, Takahama K, Schneider PM. Sequence polymorphism of mitochondrial DNA control region in Japanese. Forensic Sci Int 1998;97(2-3):155-64.
46. Fucharoen G, Fucharoen S, Horai S. Mitochondrial DNA polymorphisms in Thailand. J Hum Genet 2001;46(3):115-25.
47. Dimo-Simonin N, Grange F, Taroni F, Brandt-Casadevall C, Mangin P. Forensic evaluation of mtDNA in a population from south west Switzerland. Int J Legal Med 2000;113(2):89-97.
48. Qian YP, Chu ZT, Dai Q, Wei CD, Chu JY, Tajima A, Horai S. Mitochondrial DNA polymorphisms in Yunnan nationalities in China. J Hum Genet 2001;46(4):211-20.
49. Chen MH, Lee HM, Tzen CY. Polymorphism and heteroplasmy of mitochondrial DNA in the D-loop region in Taiwanese. J Formos Med Assoc 2002;101(4):268-76.
50. Tsai LC, Lin CY, Lee JC, Chang JG, Linacre A, Goodwin W. Sequence polymorphism of mitochondrial D-loop DNA in the Taiwanese Han population. Forensic Sci Int 2001;119(2):239-47.
51. Bini C, Ceccardi S, Luiselli D, Ferri G, Pelotti S, Colalongo C, Falconi M, Pappalardo G. Different informativeness of the three hypervariable mitochondrial DNA regions in the population of Bologna (Italy). Forensic Sci Int 2003;135(1):48-52.
52. Nagai A, Nakamura I, Shiraki F, Bunai Y, Ohya I. Sequence polymorphism of mitochondrial DNA in Japanese individuals from Gifu Prefecture. Leg Med (Tokyo) 2003;5 Suppl 1:S210-3.
53. Kasperaviciute D, Kucinskas V. Variability of the human mitochondrial DNA control region sequences in the Lithuanian population. J Appl Genet 2002;43(2):255-60.
54. Budowle B, Wilson MR, DiZinno JA, Stauffer C, Fasano MA, Holland MM, Monson KL. Mitochondrial DNA regions HVI and HVII population data. Forensic Sci Int 1999;103(1):23-35.
55. Imaizumi K, Parsons TJ, Yoshino M, Holland MM. A new database of mitochondrial DNA hypervariable regions I and II sequences from 162 Japanese individuals. Int J Legal Med 2002;116(2):68-73.
56. Vanecek T, Vorel F, Sip M. Mitochondrial DNA D-loop hypervariable regions: Czech population data. Int J Legal Med 2004;118(1):14-8.
57. Pfeiffer H, Forster P, Ortmann C, Brinkmann B. The results of an mtDNA study of 1,200 inhabitants of a German village in comparison to other Caucasian databases and its relevance for forensic casework. Int J Legal Med 2001;114(3):169-72.
58. Poetsch M, Wittig H, Krause D, Lignitz E. Mitochondrial diversity of a northeast German population sample. Forensic Sci Int 2003;137(2-3):125-32.
59. Budowle B, Allard MW, Fisher CL, Isenberg AR, Monson KL, Stewart JE, Wilson MR, Miller KW. HVI and HVII mitochondrial DNA data in Apaches and Navajos. Int J Legal Med 2002;116(4):212-5.
60. Tagliabracci A, Turchi C, Buscemi L, Sassaroli C. Polymorphism of the mitochondrial DNA control region in Italians. Int J Legal Med 2001;114(4-5):224-8.
61. Crespillo M, Luque JA, Paredes M, Fernandez R, Ramirez E, Valverde JL. Mitochondrial DNA sequences for 118 individuals from northeastern Spain. Int J Legal Med 2000;114(1-2):130-2.
62. Pfeiffer H, Brinkmann B, Huhne J, Rolf B, Morris AA, Steighner R, Holland MM, Forster P. Expanding the forensic German mitochondrial DNA control region database: genetic diversity as a function of sample size and microgeography. Int J Legal Med 1999;112(5):291-8.
63. Pfeiffer H, Steighner R, Fisher R, Mornstad H, Yoon CL, Holland MM. Mitochondrial DNA extraction and typing from isolated dentin-experimental evaluation in a Korean population. Int J Legal Med 1998;111(6):309-13.
64. Zupanic Pajnic I, Balazic J, Komel R. Sequence polymorphism of the mitochondrial DNA control region in the Slovenian population. Int J Legal Med 2004;118(1):1-4.
65. Maruyama S, Minaguchi K, Saitou N. Sequence polymorphisms of the mitochondrial DNA control region and phylogenetic analysis of mtDNA lineages in the Japanese population. Int J Legal Med 2003;117(4):218-25.
66. Holinski-Feder E, Muller-Koch Y, Friedl W, Moeslein G, Keller G, Plaschke J, Ballhausen W, Gross M, Baldwin-Jedele K, Jungck M and others. DHPLC mutation analysis of the hereditary nonpolyposis colon cancer (HNPCC) genes hMLH1 and hMSH2. J Biochem Biophys Methods 2001;47(1-2):21-32.
67. ttp://insertion.stanford.edu/melt.html.
68. Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 1989;123(3):585-95.
69. Lutz S, Wittig H, Weisser HJ, Heizmann J, Junge A, Dimo-Simonin N, Parson W, Edelmann J, Anslinger K, Jung S and others. Is it possible to differentiate mtDNA by means of HVIII in samples that cannot be distinguished by sequencing the HVI and HVII regions? Forensic Sci Int 2000;113(1-3):97-101.
70. Hauswirth WW, Laipis PJ. Mitochondrial DNA polymorphism in a maternal lineage of Holstein cows. Proc Natl Acad Sci U S A 1982;79(15):4686-90.
71. Poulton J. Transmission of mtDNA: cracks in the bottleneck. Am J Hum Genet 1995;57(2):224-6.
72. M N. Molecular evolutionary genetics: Columbia University Press, New York Chichester, West Sussex; 1987. 177-179 p.
第一頁 上一頁 下一頁 最後一頁 top