跳到主要內容

臺灣博碩士論文加值系統

(44.222.131.239) 您好!臺灣時間:2024/09/08 20:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:高一鳴
研究生(外文):Yi-Ming Kao
論文名稱:結合MIP-1α基因轉殖之腫瘤細胞疫苗與樹突細胞疫苗以抑制腫瘤生長之研究
論文名稱(外文):Study on the Inhibition of Tumor Growth by MIP-1α-transfected Tumor Cell Vaccine and Dendritic Cell Vaccine
指導教授:劉柯俊老師高淑慧老師
指導教授(外文):Ko-Jiunn LiuShu-Huei Kao
學位類別:碩士
校院名稱:臺北醫學大學
系所名稱:生物醫學技術研究所
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:93
中文關鍵詞:趨化激素腫瘤細胞疫苗樹突細胞疫苗
外文關鍵詞:MIP-1a
相關次數:
  • 被引用被引用:0
  • 點閱點閱:210
  • 評分評分:
  • 下載下載:33
  • 收藏至我的研究室書目清單書目收藏:0
Mouse macrophage inflammatory protein (mMIP) -1α是屬於C-C chemokines的一員,吸引的對象細胞包括巨噬細胞和淋巴球等,進而造成發炎反應;已知MIP-1α的表現能在腫瘤生長處,協同宿主的抗原呈現細胞 (antigen-presenting cells, APCs) 引發具專一性的抗腫瘤細胞毒殺反應;依此特性製作mMIP-1α轉殖的腫瘤細胞疫苗,再結合體外處理的APCs,設計出複合式疫苗,預期對老鼠的腫瘤細胞生長能夠有加強抑制的效果。利用核酸轉殖 (transfection) 的技術,將一個含有mMIP-1α基因的載體送入老鼠的腫瘤細胞,CT26 (BALB/c) 及B16F10 (C57BL/6J) ,並利用酵素聯結免疫吸附分析測試 (ELISA) 篩選出能持續表現mMIP-1α的單株細胞;自老鼠的股骨、脛骨取出骨髓細胞,加入mGM-CSF、mIL-4等細胞激素刺激其中的單核球分化成為樹突細胞 (dendritic cells, DCs)。我們的假設為:先以mMIP-1α轉殖的腫瘤細胞疫苗注射老鼠,使其在注射部位產生發炎反應,隔天再於同一位置注射經體外處理後攜帶有腫瘤抗原的樹突細胞疫苗,預期接受此種複合性疫苗的老鼠更能有效降低或抑制腫瘤細胞的生長,表示mMIP-1α不但能在體內增加週邊DCs浸潤到疫苗注射部位,其所引起的發炎反應也可進一步刺激、活化額外注入的DCs,進一步增強抑制腫瘤生長的免疫反應。
我們的實驗結果顯示,不論是BALB/c或C57BL/6J老鼠,在單獨注射mMIP-1α轉殖的腫瘤細胞疫苗時,對腫瘤細胞的生長都沒有明顯的抑制效果,但是在注射樹突細胞疫苗時,抑制腫瘤生長的效果明顯增強,而在結合兩種疫苗後,發現其效果略勝於單獨注射樹突細胞疫苗;同時我們將兩疫苗注射於同點與不同點的結果相比較,在BALB/c老鼠並沒有看出差異,但在C57BL/6J老鼠的結果發現注射於同一點所產生的抑制能力較強,顯示兩種疫苗之間是有互相加成的效果。結論是,樹突細胞疫苗對腫瘤生長的抑制已經有很好的效果,雖然mMIP-1α轉殖的腫瘤細胞疫苗沒有如預期的結果,但當兩者結合後,仍達到加成的效果;也許未來能以樹突細胞疫苗為主,配合不同條件的mMIP-1α或其他趨化激素轉殖的腫瘤細胞疫苗做研究,期待找出更強的疫苗組合,以達到抑制腫瘤生長的效果。
Mouse macrophage inflammatory protein (mMIP) -1α is a member of the C-C chemokines. It attracts cells including macrophages, lymphocytes and others, and can induce inflammatory responses. It has been reported that the manifestation of MIP-1α can coordinate the antigen presenting cells (APCs) of host to induce specific anti-tumor cytotoxicity in the place where tumor grows.
Our hypothesis is that if we injected mMIP-1α-transfected tumor cell vaccine into mice subcutaneously, we can induce inflammation at the site of injection. If we then inject DC which already carries tumor antigens at the same site, the inflammatory environment might further promote the maturation and activation of these injected, antigen-pulsed DC. We expect that mice treated with this kind of complex vaccines can effectively reduce or suppress the growth of tumor cells. Our results indicate that in both BALB/c and C57BL/6J mice, injection of mMIP-1α-transfected tumor cell vaccine alone did not significantly inhibit tumor growth. Injection of DCs vaccine increased the efficiency of inhibition on tumor growth. When we combined these two vaccines, the efficiency was slightly better than injection with DC vaccine alone. We have found that the efficiency of tumor inhibition was better if the two vaccines were injected at the same site in C57BL/6J mice, but not in BALB/c mice. In conclusion, mMIP-1α-transfected tumor cell vaccine alone did not demonstrate the expected efficiency of tumor inhibition, however, DC vaccine appeared to suppress tumor growth in our systems. After we combined the two kinds of vaccine, the efficiency of tumor inhibition was doubled. These results suggest that we can manipulate DC vaccines and tumor cell vaccines, which are modified with mMIP-1α or other chemokines, in the future to find out a more powerful vaccination strategy for effective inhibition of tumor growth.
目錄
致 謝 I
中文摘要 II
英文摘要 III
目 錄 IV
表圖目錄 V
縮 寫 表 VI
第一章 緒論 1
第二章 文獻回顧 3
1. 樹突細胞 (Dendritic cells, DCs) 3
2. 趨化激素 (Chemokines) 9
3. 腫瘤疫苗 (Tumor vaccine) 13
第三章 實驗儀器與材料 16
1. 實驗細胞株 16
2. 常用儀器 16
3. 常用容液 18
第四章 實驗方法 19
1. 腫瘤細胞的培養 19
2. 建造完成mMIP-1α基因轉殖的細胞株 19
3. 測試mMIP-1α基因轉殖之細胞所產生mMIP-1α的濃度及其生物
活性 22
4. 骨髓衍生之樹突細胞的培養 24
5. 利用流式細胞儀對樹突細胞表面分子的分析 25
6. 輻射劑量測試及細胞存活試驗 26
7. 測試疫苗效果所進行的動物實驗 (Animal model) 27
8. 抑制腫瘤生長機制之研究 29
第五章 實驗結果與分析 32
1. 建造完成mMIP-1α基因轉殖的細胞株 32
2. 測試mMIP-1α基因轉殖之腫瘤細胞所產生mMIP-1α的濃度及其
生物活性 34
3. 測試單獨腫瘤細胞疫苗抗腫瘤生長之效果與可能機轉 35
4. 測試腫瘤細胞疫苗結合樹突細胞疫苗所產生抗腫瘤生長之效果與
可能機轉 38
第六章 討論 42
第七章 參考文獻 48
附圖 VII
表圖目錄
Table 1. 趨化激素之CC家族 60
Table 2. 趨化激素之CXC家族 61
Table 3. 趨化激素的接受體 62
Table 4. 利用流式細胞儀對樹突細胞表面分子的分析所需之抗體組
合 63
Table 5. 結合腫瘤細胞疫苗與樹突細胞疫苗所進行之動物實驗流程及各組注射之內容物 64
Table 6. 進行European releasing assay所需之內容物 65
Table 7. 利用流式細胞儀對實驗動物的脾臟細胞進行分析所需之抗體組合 66
Table 8-1. 利用流式細胞儀對BALB/c實驗老鼠的脾臟細胞進行表面
分子的分析 (表中數字為所佔總細胞數的百分比)
67
Table 8-2. 利用流式細胞儀對C57BL/6J實驗老鼠的脾臟細胞進行表
面分子的分析 (表中數字為所佔總細胞數的百分比)
68
Figure 1. 樹突細胞的生命史 69
Figure 2. 老鼠樹突細胞引導Th1 / Th2細胞活化的模式圖 70
Figure 3. 趨化激素的結構 71
Figure 4. 趨化激素與其接受體作用產生的生物功能 72
Figure 5. 趨化激素刺激樹突細胞、T細胞及B細胞開啟後續免疫反應 73
Figure 6. 趨化激素影響T細胞的極化方向 74
Figure 7. 以電泳實驗回收mMIP-1α的DNA 75
Figure 8. 以電泳實驗回收接合所需的載體pcDNA 3.1 / Zeo 76
Figure 9. 以電泳實驗確認接合成功之plasmid 77
Figure 10. mMIP-1α的濃度測量 78
Figure 11. 利用BALB/c老鼠測試mMIP-1α在體外之生物活性 79
Figure 12. 利用C57BL/6J老鼠測試mMIP-1α在體外之生物活性 80
Figure 13. 利用BrdU incorporation assay測量腫瘤細胞所能承受的輻射劑量 81
Figure 14. 利用MTT assay測量腫瘤細胞所能承受的輻射劑量 82
Figure 15. 測量經過輻射照射後mMIP-1α轉殖之腫瘤細胞於各時間點所分泌mMIP-1α的濃度 83
Figure 16-1. 測試mMIP-1α轉殖的腫瘤細胞疫苗之效果 84
Figure 16-2. 測試mMIP-1α轉殖的腫瘤細胞疫苗之效果 85
Figure 16-3. 測試mMIP-1α轉殖的腫瘤細胞疫苗之效果 86
Figure 17. 測試mMIP-1α轉殖的腫瘤細胞疫苗之效果 87
Figure 18. 骨髓養成的樹突細胞型態 88
Figure 19. 以流式細胞儀分析骨髓養成的DCs其表面分子的表現 89
Figure 20-1. 測試mMIP-1α轉殖的腫瘤細胞疫苗結合DC疫苗所產生的效果 90
Figure 20-2. 測試mMIP-1α轉殖的腫瘤細胞疫苗結合DC疫苗所產生的效果 91
Figure 21. 測試mMIP-1α轉殖的腫瘤細胞疫苗結合DC疫苗所產生的效果 92
Figure 22. 測試BALB/c實驗老鼠之脾臟細胞中,T細胞對CT26細胞的毒殺效果 93
Adema, G.J. et al. (1997) A dendritic-cell-derived C-C chemokine that preferentially attracts naive T cells. Nature, 387, 713-17.
Akbari, O., Panjwani, N., Garcia, S., Tascon, R., Lowrie, D., and Stockinger, B. (1999) DNA vaccination: transfection and activation of dendritic cells as key events for immunity. J. Exp. Med., 189, 169-78.
Ardavin, C., Wu, L., Li, C.L., and Shortman, K. (1993) Thymic dendritic cells and T cells develop simultaneously in the thymus from a common precursor population. Nature, 362, 761-63.
Banchereau, J. and Steinman, R.M. (1998) Dendritic cells and the control of immunity. Nature, 392, 245-52.
Banchereau, J., Briere, F., Caux, C., Davoust, J., Lebecque, S., Liu, Y. J., Pulendran, B., and Palucka, K. (2000) Immunobiology of dendritic cells. Annu. Rev. Immunol., 18, 767-811.
Boczkowski, D., Nair, S.K., Snyder, D., et al. (1996) Dendritic cells pulsed with RNA are potent antigen-presenting cells in vitro and in vivo. J. Exp. Med., 184, 465-72.
Borkowski, T.A., Letterio, J.J., Farr, A.G., and Udey, M.C. (1996) A role for endogenous transforming growth factor β1 in Langerhans cell biology: the skin of transforming growth factor β1 null mice is devoid of epidermal Langerhans cells. J. Exp. Med., 184, 2417-22.
Brocker, T. (1997) Survival of mature CD4 T lymphocytes is dependent on MHC class II expressing dendritic cells. J. Exp. Med., 186, 1223-32.
Brossart, P. and Bevan, M.J. (1997) Presentation of exogenous protein antigens on major histocompatibility complex class I molecules by dendritic cells: pathway of presentation and regulation by cytokines. Blood, 90, 1594.
Brossart, P., Wirths, Brugger, W., and Kanz, L. (2001) Dendritic Cells in Cancer vaccines. Exp. Hematol., 19, 1247-55.
Broxmeyer, H.E., Sherry, B., Cooper, S., Lu, L., Maze, R., Beckmann, M.P., Cerami, A., and Ralph, P. (1993) Comparative analysis or the human macrophage inflammatory protein family of cytokines (chemokines) on proliferation of human myeloid progenitor cells. Interacting effects involving suppression, synergistic suppression, and blocking or suppression. J. Immunol., 150, 3448-58.
Broxmeyer, H.E., Sherry, B., Lu, L., Cooper, S., Carow, C., Wolpe, S.D., and Cerami, A. (1989) Myelopoietic enhancing effects of murine macrophage inflammatory proteins 1 and 2 on colony formation in vitro by murine and human bone marrow granulocyte/macrophage progenitor cells. J. Exp. Med., 170, 1583-94.
Butcher, E.C. and Picker, L.J. (1996) Lymphocyte homing and homeostasis. Science, 272, 60-6.
Caux, C., Ait-Yahia, S., Chemin, K., de Bouteiller, O., Dieu-Nosjean, M.C., Homey, B., Massacrier, C., Vanbervliet, B., Zlotnik, A., and Vicari, A. (2000) Dendritic cell biology and regulation of dendritic cell trafficking by chemokines. Springer Semin. Immunopathol., 22, 345.
Cella, M., Engering, A., Pinet, J., and Lanzavecchia, A. (1997) Inflammatory stimuli induce accumulation of MHC class II complexes on dendritic cells. Nature, 388, 782-7.
Cella, M., Jarrossay, D., Facchetti, F., Alebardi, O., Nakajima, H., Lanzavecchia, A., and Colonna, M. (1999) Plasmacytoid monocytes migrate to inflamed lymph nodes and produce large amount of type I interferon. Nat. Med., 5, 919-23.
Cella, M., Salio, M., Sakakibara, Y., Langen, H., Julkunen, I., and Lanzavecchia, A. (1999) Maturation, activation, and protection of dendritic cells induced by double-stranded RNA. J. Exp. Med., 189, 821-29.
Cella, M., Sallusto, F., and Lanzavecchia, A. (1997) Origin, maturation and antigen presenting function of dendritic cells. Curr. Opin. in Immunol., 9, 10-16.
Cipriani, B., Borsellino, G., Poccia, F., Placido, R., Tramonti, D., Bach, S., Battistini, L., and Brosnan, C.F. (2000) Activation of C-C beta-chemokines in human peripheral blood gammadelta T cells by isopentenyl pyrophosphate and regulation by cytokines. Blood, 95, 39-47.
Cook, D.N., Beck, M.A., Coffman, T.M., Kirby, S.L., Sheridan, J., Prignell, I.B., and Smithies, O. (1995) Requirement of MIP-1α for an inflammatory response to viral infection. Science, 269, 1583 -5.
Cook, D.N., Smithies, O., Strieter, R.M., Frelinger, J.A., and Serody, J.S. (1999) CD8+ T cells are a biologically relevant source of macrophage inflammatory protein-1 alpha in vivo. J. Immunol., 162, 5423-8.
Danforth, J.M., Strieter, R.M., Kunkel, S.L., Arenverg, D.A., Vanotteren, G.M., and Standiford, T.J. (1995) Macrophage inflammatory protein-1 alpha expression in vivo and in vitro: the role of lipoteichoic acid. Clin. Immunol. Immunopathol., 74, 77-83.
De Smedt, T., Pajak, B., Muraille, E., Lespagnard, L., Heinen, E., De Baetselier, P., Urbain, J., Leo, O., and Moser, M. (1996) Regulation of dendritic cell numbers and maturation by lipopolysaccharide in vivo. J. Exp. Med., 184, 1413-24.
Deventer van, W.H., Seroby, S.J., McKinnon, P.K., Clements, C., Brickey, W.J., and Ting, Y.-P.J. (2002) Transfection of macrophage inflammatory protein 1α into B16F10 melanoma cells inhibits growth of pulmonary metastases but not subcutaneous tumors. JI, 169, 1634-39.
Dranoff, G. (1998) Cancer gene therapy: Connecting basic research with clinical inquiry. J. Clin. Oncol., 16, 2548-56.
Edgar G. Englemen (2003) Dendritic cell-based cancer immunotherapy. Semin. in Oncol., 30, 23-29.
Falo, L.D. Jr., Kovacsovics-Bankowski, M., Thompson, K., and Rock, K.L. (1995) Targeting antigen into the phagocytic pathway in vivo induces protective tumour immunity. Nat. Med., 1, 649-53.
Fearon, E.R., Pardoll, D.M., Itaya, T., et al. (1990) Interleukin-2 production by tumor cells bypasses T helper function in the generation of an antitumor response. Cell, 60, 397-403.
Fisher, R.I., Terry, W.D., Hodes, R.J., et al. (1981) Adjuvant immunotherapy or chemotherapy for malignant melanoma: Preliminary report of the National Cancer Institute randomized clinical trial. Surg. Clin. North. Am., 61, 1267-77.
Fong, L., Brockstedt, D., Benike, C., et al. (2001) Dendritic cellbased xenoantigen vaccination to prostate cancer immunotherapy. J. Immunol., 167, 7150-6.
Foti, M., Granucci, F., Aggujaro, D., Liboi, E., Luini, W., Minardi, S., Mantovani, A., Sozzani, S., and Ricciardi-Castagnoli, P. (1999) Upon dendritic cell (DC) activation chemokines and chemokine receptor expression are rapidly regulated for recruitment and maintenance of DC at the inflammatory site. Int. Immunol., 11, 979.
Freeman, S.M., McCune, C., Robinson, W., et al. (1995) The treatment of ovarian cancer with a gene modified cancer vaccine: A phase I study. Hum. Gene. Ther., 6, 927-39.
Fujishima, S., Sasaki, J., Shinozawa, Y., Takuma, K., Kimura, H., Suzuki, M., Kanazawa, M., Hori, S., and Aikawa, N. (1996) Serum MIP-1α and IL-8 in septic patients. Intensive Care Med., 22, 1169.
Geijtenbeek, T.B., Torensma, R., van Vliet, S.J., van Duilnhoven, G.C., Adema, G.J., van Kooyk, Y., and Figdor, C.G. (2000) Identification of DC-SIGN, a novel dendritic cell-specific ICAM-3 receptor that supports primary immune responses. Cell, 100, 575-85.
Graham, G.J., Wright, E.G., Hewick, R., Wolpe, S.D., Wilkie, N.M., Donaldson, D., Lorimore, S., and Pragnell, I.B. (1990) Identification and characterization of an inhibitor of haemopoietic stem cell proliferation. Nature, 344, 442-4.
Greaves, D.R. et al. (1997) CCR6, a CC chemokine receptor that interacts with macrophage inflammatory protein 3α and is highly expressed in human dendritic cells. J. Exp. Med., 186, 837-44.
Hacker, H., Mischak, H., Miethke, T., Liptay, S., Schmid, R., Sparwasser, T., Heeg, K., Lipford, G.B., and Wagner, H. (1998) CpG-DNA- specific activation of antigen-presenting cells requires stress kinase activity and is preceded by nonspecific endocytosis and endosomal maturation. EMBO J., 17, 6230-40.
Hartmann, G., Weiner, G.J., and Krieg, A.M. (1999) CpG DNA: a potent signal for growth, activation, and maturation of human dendritic cells. Proc. Natl. Acad. Sci. USA, 96, 9305-10.
Homey, B. and Zlotnik, A. (1999) Chemokines in allergy. Curr. Opin. Immunol., 11, 626-34.
Hsu, F.J., Benike, C., Fagnone, F., et al. (1996) Vaccination of patients with B cell lymphoma using autologous antigen-pulsed dendritic cells. Nat. Med., 2, 52-8.
Huang, A.Y., Golumbek, P., Ahmadzadeh, M., et al. (1994) Role of bone marrow- derived cells in presenting MHC class I-restricted tumor antigens. Science, 264, 961-5.
Inaba, K., Inaba, M., Romani, N., Aya, H., Deguchi, M., Ikehara, S., Muramatsu, S., and Steinman, R.M. (1992) Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J. Exp. Med., 176, 1693-702.
Inaba, K., Turley, S., Yamaide, F., Lyoda, T., Mahnke, K., Inaba, M., Pack, M., Subklewe, M., Sauter, B., Sheff, D., Albert, M., Bhardwaj, I., and Steinman, R.M. (1998) Efficient presentation of phagocytosed cellular fragments on the major histocompatibility complex class II products of dendritic cells. J. Exp. Med., 188, 2163-73.
Jaffee, E.M., Abrams, R., Cameron, J., et al. (1998) A phase I clinical trial of lethally irradiated allogeneic pancreatic tumor cells transfected with the GM-CSF gene for the treatment of pancreatic adenocarcinoma. Hum. Gene. Ther., 9, 1951-71.
Karpus, W.J., Lukacs, N.W., Kennedy, K.J., Smith, W.S., Hurst, S.D., Barrett, T.A. (1997) Differential CC chemokine-induced enhancement of T helper cell cytokine production. J. Immunol., 158, 4129-36.
Kitajima, T., Arizumi, K., Bergstresser, P.R., and Takashima, A. (1996) A novel mechanism of glucocorticoid-induced immune suppression: The inhibition of T cell-mediated terminal maturation of a murine dendritic cell line. J. Clin. Invest., 98, 142-47.
Knapp, S., Thalhammer, F., Locker, G.J., Laczika, K., Hollenstein, U., Frass, M., Winkler, S., Stoiser, B., WilfingA., and Burgmann, H. (1998) Prognostic value of MIP-1α, TGF-β2, sELAM-1, and sVCAM-1 in patients with Fram-positive sepsis. Clin. Immunol. Immunopathol., 87, 139.
Lanzavecchia, A. and Sallusto, F. (2000) From synapses to immunological memory: the role of sustained T cell stimulation. Curr. Opin. Immunol., 12, 92-8.
Leenen, P.J., Radosevic, K., Voerman, J.S., Salomon, B., van Rooijen, N., Klatzmann, D., and van Ewijk, W. (1998) Heterogeneity of mouse spleen dendritic cells: in vivo phagocytic activity, expression of macrophage markers, and subpopulation turnover, J. Immunol., 160, 2166-73.
Lipscomb, M.F. and Masten, B.J. (2002) Dendritic cells: immune regulators in health and disease. Physiol. Rev., 82, 97.
Liso, A., Stockerl-Goldstein, K.E., Auffermann-Gretzinger, S., et al. (2000) Idiotype vaccination using dendritic cells after autologous peripheral blood progenitor cell transplantation for multiple myeloma. Biol. Blood Marrow Transplant, 6, 621-7.
Lukacs, N.W., Chensue, S.W., Karpus, W.J., et al. (1997) C-C chemokines differentially alter interleukin-4 production from lymphocytes. Am. J. Pathol., 150, 1861-8.
Luster, A.D. (1998) Chemokines: chemotactic cytokines that mediate inflammation. N. Engl. J. Med., 338, 436.
Maldonado-López, R. and Moser, M. (2001) Dendritic cell subsets and the regulation of Th1/Th2 responses. Semin. in Immunol., 13, 275-82.
Maraskovsky, E., Brasel, K., Teepe, M., Roux, E.R., Lyman, S.D., Shortman, K., and McKenna, H.J. (1996) Dramatic increase in the numbers of functionally mature dendritic cells in Flt3 ligand-treated mice: multiple dendritic cell subpopulations identified. J. Exp. Med., 184, 1953-62.
Maric, M., Liu, Y. (1999) Strong cytotoxic T lymphocyte responses to a macrophage inflammatory protein 1alpha-expressing tumor: linkage between inflammation and specific immunity. Cancer Res., 59, 5549-53.
Mayordomo, J.I., Zorina, T., Storkus, W.J., Zitvogel, L., Celluzzi, C., Falo, L.D., Melief, C.J., Ildstad, S.T., Kast, M.W., Deleo, A.B., and Lotze, M.T. (1995) Bone marrow-derived dendritic cells pulsed with synthetic tumour peptides elicit protective and therapeutic antitumour immunity. Nat. Med., 1, 1297-302.
Menten, P., Wuyts, A., and Van Damme, J. (2002) Macrophage inflammatory protein-1. Cytokine & Growth Factor Rev., 13, 455-81.
Mitchell, M.S. (1998) Perspective on allogeneic melanoma lysates in active specific immunotherapy. Semin. Oncol., 25, 623-35.
Mohamadzadeh, M., Jonuleit, H., Kolde, G., Pavlidou, A., Schmitt, E., and Knop, J. (1993) Functional and morphological characterization of 4F7+ spleen accessory dendritic cells. Int. Immunol., 5, 615-24.
Nibbs, R.J.B., Graham, G.J., and Pragnell, I.B. (1998) Macrophage inflammatory protein 1-α. In. Cytokines., 468-88.
Nouri-Shirazi, M., Banchereau, J., Fay, J., and Palucka, K. (2000) Dendritic cell based tumor vaccines. Immunol. Lett., 74, 5-10.
Porgador, A. and Gilboa, E. (1995) Bone morrow-generated dendritic cells pulsed with a class I-restricted peptide are potent inducers of cytotoxic T lymphocytes. J. Exp. Med., 182, 255.
Pulendran, B., Lingappa, J., Kennedy, M.K., Smith, J., Teepe, M., Rudensky, A., Maliszewski, C.R., and Maraskovsky, E. (1997) Developmental pathways of dendritic cells in vivo: distinct function, phenotype, and localization of dendritic cell subsets in FLT3 ligand-treated mice. J. Immunol., 159, 2222-31.
Reis e Sousa, C.R., Hieny, S., Scharton-Kersten, T., Jankovic, D., Charest, H., Germain, R.N., and Sher, A. (1997) In vivo microbial stimulation induces raped CD40 ligand-independent production of interleukin 12 by dendritic cells and their redistribution to T cell areas. J. Exp. Med., 186, 1819-29.
Rescigno, M., Granucci, F., Citterio, S., Foti, M., and Ricciardi- Castagnoli, P. (1999) Coordinated events during bacteria-induced DC maturation. Immunol. Today, 20, 200-3.
Ribas, A., Butterfield, L.H., Glaspy, J.A., and Economou, J.S. (2003) Current developments in cancer vaccines and cellular immunotherapy. J. Clin. Oncol., 21, 2415-32.
Ribas, A., Butterfield, L.H., Glaspy, J.A., et al. (2002) Cancer immunotherapy using gene-modified dendritic cells. Curr. Gene. Ther., 2, 57-78.
Roake, J.A. et al. (1995) Dendritic cell loss from non-lymphoid tissues following systemic administration of lipopolysaccharide, tumour necrosis factor, and interleukin-1. J. Exp. Med., 181, 2237-48.
Schall, T.J., Bacon, K, Camp, R.D., Kaspari, J.W., Goeddel, D.V. (1993) Human macrophage inflammatory protein alpha (MIP-1 alpha) and MIP-1 beta chemokines attract distinct populations of lymphocytes. J Exp Med., 177, 1821-26.
Scheicher, C., Mehlig, M., Zecher, R., and Reske, K. (1992) Dendritic cells from mouse bone marrow: in vitro differentiation using low doses of recombinant granulocyte-macrophage colony-stimulating factor. J. Immunol. Methods, 154, 253-64.
Schrum, S., Probst, P., Fleischer, B., and Zipfel, P.F. (1996) Synthesis of the CC-chemokines MIP-1α, MIP-1β, and RANTES is associated with a type limmune response. J. Immunol., 157, 3598.
Seo, N., Hayakawa, S., Takigawa, M., Tokura, Y. (2001) Interleukin-10 expressed at early tumour sites induces subsequent generation of CD4(+) T-regulatory cells and systemic collapse of antitumour immunity. Immunology, 103, 449-57.
Sherry, B.A., Alava, G., Tracey, K.J., Martiney, J., Cerami, A., and Slater, A.F. (1995) Malaria-specific metabolite hemozoin mediates the release of several potent endogenous pyrogens (TNF, MIP-1α, and MIP-1β) in vitro, and altered thermoregulation in vivo. J. Inflamm., 45, 85.
Sherry, B., Tekamp-Olson, P., Gallegos, C., Bauer, D., Davatelis, G., Wolpe, S.D., et al. (1988) Resolution of the two components of macrophage inflammatory protein 1, and cloning and characterization of one of those components, macrophage inflammatory protein 1β. J. Exp. Med., 168, 2251-9.
Shortman, K., Vremec, D., Corcoran, L.M., Georgopoulos, K., Lucas, K., and Wu, L. (1998) The linkage between T-cell and dendritic cell development in the mouse thymus. Immunol. Rev., 165, 39-46.
Sobol, R.E., Fakhrai, H., Shawler, D., et al. (1995) Interleukin-2 gene therapy in a patient with glioblastoma. Gene. Ther., 2, 164-7.
Soiffer, R., Lynch, T., Mihm, M., et al. (1998) Vaccination with irradiated autologous melanoma cells engineered to secrete human granulocyte-macrophage colony-stimulating factor generates potent antitumor immunity in patients with metastatic melanoma. Proc. Natl. Acad. Sci. USA, 95, 13141-6.
Sondak, V.K., Liu, P.Y., Tuthill, R.J., et al. (2002) Adjuvant immunotherapy of resected, intermediate-thickness, node-negative melanoma with an allogeneic tumor vaccine: Overall results of a randomized trial of the Southwest Oncology Group. J. Clin. Oncol., 20, 2058-66.
Sozzani, S. et al. (1995) Migration of dendritic cells in response to formyl peptides, C5a, and a distinct set of chemokines. J. Immunol., 155, 3292-95.
Sozzani, S., Luini, W., Borsatti, A., et al. (1997) Receptor expression and responsiveness of human dendritic cells to a defined set of CC and CXC chemokines. J. Immunol., 159, 1993-2000.
Sozzani, S., Sallusto, F., Luini, W., et al. (1995) Migration of dendritic cells in response to formyl peptides, C5a, and a distinct set of chemokines. J. Immunol., 155, 3292-5.
Standiford, T.J., Rolfe, M.W., Kunkel, S.L., d. Lynch, J.P., Burdick, M.D., Gillbert, A.R., Orringer, M.B., Whyte, R.I., and Strieter, R.M. (1993) Macrophage inflammatory protein-1α expression in interstitial lung disease. J. Immunol., 151, 2852.
Steinman, R.M. (1991) The dendritic cell system and it’s role in immunogenicity. Annu. Rev. Immunol., 9, 271-96.
Steinman, R.M. and Cohn, Z.A. (1973) Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J. Exp. Med., 137, 1142-62.
Steinman, R.M., Pack, M., and Inaba, K. (1997) Dendritic cells in the T-cell areas of lymphoid organs. Immunol. Rev., 156, 25-37.
Taub, D.D. (1996) C-C chemokines: an overview. In Chemokines in Disease. A. E. Koch and R. M. Striter, eds. R. G. Landes Co., Austin, 27.
Taub, D.D., Conlon, K., Lloyd, A.R., Oppengeim, J.J., and Kelvin, D.J. (1993) Preferential migration of activated CD4+ and CD8+ T cells in response to MIP-1α and MIP-1β. Science, 260, 355.
Taub, D.D., Sayers, T.J., Carter, D.R., and Ortaldo, J.R. (1995) α and β chemokines induce NK cell migration and enhance NK-mediated cytolysis. J. Immunol., 155, 3877-88.
Vremec, D. and Shortman, K. (1997) Dendritic cell subtypes in mouse lymphoid organs: cross-correlation of surface markers, changes with incubation, and differences among thymus, spleen, and lymph nodes. J. Immunol., 159, 565-73.
Wallack, M.K., Sivanandham, M., Balch, C.M., et al. (1998) Surgical adjuvant actime specific immunotherapy for patients with stage III melanoma: The final analysis of data from a phase III, randomized, double-blind, multicenter vaccinia melanoma oncolysate trial. J. Am. Coll. Surg., 187, 69-79.
Whiteside, T.L. and Odoux, C. (2003) Dendritic cell biology and cancer therapy. Cancer Immunol. Immunotherapy
Wilson, H.L. and O’neill, H.C. (2003) Murine dendritic cell development: Difficulties associated with subset analysis. Immunology and Cell Biology, 81, 239-46.
Winzler, C., Rovere, P., Rescigno, M., Granucci, F., Penna, G., Adorini, L., Zimmermann, V.S., Davoust, J., and Ricciardi-Castagnoli, P. (1997) Maturation stages of mouse dendritic cells in growth factor-dependent long-term cultures. J. Exp. Med., 185, 317-28.
Wolpe, S.D., Davatelis, G., Sherry, B., Beutler, B., Hesse, D.G., Nguyen, H.T., et al. (1988) Macrophages secrete a novel heparin-binding protein with inflammatory and neutrophil chemokinetic properties. J. Exp. Med., 167, 570-81.
Wu, L., Li, C.L., and Shortman, K. (1996) Thymic dendritic cell precursors: relationship to the T lymphocyte lineage and phenotype of the dendritic cell progeny. J. Exp. Med., 184, 903-11.
Zlotnik, A. and Yoshie, O. (2000) Chemokines: a new classification system and their role in immunity. Immunity, 12, 121-7.
Zou, W., Borvak, J., Marches, F., Wei, S., Galanaud, P., Emilie, D., and Curiel, T.J. (2000) Macrophage-derived dendritic cells have strong Thl-polarizing potential mediated by β-chemokines rather than IL-12. J. Immunol., 165, 4388.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
1. 吳淑美(1996)。當前國小母語教學教材編纂之探討。東師語文學刊,9,97-109。
2. 朱惠美、施玉惠(1999)。九年一貫「英語」課程簡介。翰林文教雜誌網路版,4,網址:http://www.worldone.com.tw/magazine/04/04_07.htm
3. 羅肇錦(1994)。臺灣客家話的現況與走向。徐正光、彭欽清、羅肇錦主編,客家文化研討會論文集(頁1-19)。臺北市:行政院文化建設委員會策劃主辦,客家雜誌社承辦。
4. 謝國平(1995)。雙語教育與語言規劃。華文世界,75,32-36。
5. 曾金金(2001)。九年一貫課程中的閩南語教材教法。國文天地,17(1),頁8-13
6. 鄧天德(1994)。鄉土教學活動單設計概說。國教月刊,44(3),頁49-54。
7. 蔡志展(1994)。淺談國民小學鄉土教學。教育資料與研究,5,頁15-16。
8. 劉福鎔(1998)。落實鄉土教育──談母語教學的規畫與實施。國教輔導,37(4),28-30。.
9. 張自立、高明智、羅秋昭、歐用生(1996)。國民小學鄉土教學活動概念綱領。教育研究資訊,5 (6),頁1-8。
10. 黃瑞枝(1997)。國小課程要安排母語教學嗎?國教天地,122,頁4-5。
11. 黃美金(1995)。臺灣地區本土語言教材編纂現況之探討。華文世界,75,37-45。
12. 黃東秋(2003)。二十一世紀族語教學的省思--新生代要學習的是「社區語言」不是單一族群的「族語」。原住民教育季刊,29,59-74。
13. 紀肇聲(1998)。談鄉土母語教學。教師之友,39(3),7-9。
14. 施炳華(1996),母語教學的基本認識。教師之友,39(3),1-6。
15. 黃志偉、熊同鑫(2003)。原住民母與教育的論述-多元文化思潮的反思。原住民教育季刊,30,55-76。