跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/11 08:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王慶順
研究生(外文):Ching-Shuen Wang
論文名稱:鋅手指蛋白74之選殖與特性分析
論文名稱(外文):The molecular cloning and characterization of zinc finger protein74 (ZNF74)
指導教授:曾銘仁
指導教授(外文):Ming-Jen Tseng
學位類別:碩士
校院名稱:臺北醫學大學
系所名稱:細胞及分子生物研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:74
中文關鍵詞:鋅手指蛋白
外文關鍵詞:zinc finger protein
相關次數:
  • 被引用被引用:0
  • 點閱點閱:227
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Notch 是個演化上具高度保留,穿過細胞膜一次的受體蛋白,在哺乳類的Notch 受體蛋白有Notch1∼4四種,被認為可調控基因的轉錄、細胞的增生、分化及早期細胞命運的決定,而Notch訊息傳遞的異常或突變會造成某些疾病的發生。當相鄰細胞表現的ligand 與Notch 受體蛋白的細胞外區域結合時,Notch 訊號傳遞系統就被活化,整個細胞內區域在靠近內膜處被蛋白分解脢切斷,而形成活化型Notch (Notch IC, 細胞內區域)。此活化型Notch會轉移至細胞核中,並且和一些可與DNA結合的轉錄因子,如:RBP-Jκ/CBF1,以及其他細胞因子結合,進一步調控標的基因的表現。所以這些參與的因子,對於Notch 訊息傳遞路徑影響甚巨。因此,為了進一步探討Notch 訊息傳遞路徑,本論文首要目標著重於探索參與Notch1 下游訊息傳遞路徑仍未知的結合因子,及初步分析這種結合所產生的生物功能。
本實驗參考葉添順老師與本實驗室先前利用GST-N1IC-ANK repeats之融合蛋白,與K562細胞萃取液混合,進行GST pull down Assay 來分析該細胞中有何蛋白質可與GST-N1IC-ANK融合蛋白做結合,並收集與融合蛋白結合的複合體,用2-D電泳及質譜儀分析此複合體的成員為何。在分析蛋白質體的數據中發現有數個候選蛋白質包括鋅手指蛋白的存在。分析比對之結果發現ZNF74的吻合度最高。ZNF74屬於C2H2 type的鋅手指蛋白。在其N端部份包含了一段稱為Krueppel-associated box (KRAB)的區域,在C端部份包含12個zinc finger motifs。具有KRAB 區域的蛋白主要功能到目前為止所知均具有抑制基因表現之功能,而zinc finger區域則是與特定的DNA序列做結合。因此本實驗有興趣繼續探討ZNF74與Notch 1之訊號傳遞是否有關。在實驗第一部份我們利用專一性引子以反轉錄聚合酶連鎖反應(RT-PCR)證實在K562細胞之中ZNF74基因是以isoform I存在。實驗第二部份,我們利用將HA-ZNF74基因植入表現N1IC的人類細胞HEK293,獲得細胞萃取液後再利用anti-HA或anti-N1IC抗體來進行共同免疫沉澱法(co-immunoprecipitation)反應,結果顯示ZNF74確實可以跟N1IC結合。為了更進一步找出ZNF74蛋白上是利用那個區域與N1IC做結合,我們利用可表現MBP融合的不同短縮型ZNF74之蛋白與表現N1IC或Ankyrin(Ank)的細胞萃取液混合。結果顯示,ZNF74的zinc finger區域與Ank的結合是必需的。實驗最後部份,我們利用SELEX(systematic evolution of ligands by exponential enrichment )來找出ZNF74結合的特定核苷酸序列為何。經過軟體序列比對結果相當複雜並無一致性。因此,根據上述的結果顯示,本實驗仍需要進一步的研究才能夠釐清在K562細胞中ZNF74蛋白參與Notch訊息傳遞下所扮演的生物角色為何。
Notch receptors are evolutionally highly conserved and play important roles in modulating cell fate decisions throughout the development from invertebrate to vertebrate species. Four homologues of Notch receptors have been identified in human and aberrant Notch signaling is associated with a number of human diseases. There is a consensus model of Notch signaling pathway containing multiple proteolytic steps. After ligand binding, Notch receptors are cleaved to release the intracellular domains of Notch receptors. The intracellular domains, the activated form of Notch receptors, are then translocated into nuclei and interact with other transcriptional machineries to regulate the expression of cellular genes.
In the previous data of Dr. Yeh and our lab, the proteomic study of GST-Notch1-Ank domain(GST-N1IC-Ank) pull down associated with cell lysate of erythrleukemia K562 cell, several zinc finger proteins were identified. Here, we wish to identify one of these zinc finger proteins, ZNF74, and characterize its biological function. The ZNF74 belongs to the family of Cys2-His2 type zinc finger proteins, it contains a KRAB repression domain at the amino- terminal region and 12 zinc finger motifs at carboxyl terminus. It has been showed that ZNF74 is localized to nucleus and the KRAB domain exhibits transcription repressor activity, whereas the Cys2-His2 zinc finger motifs recognized DNA sequence.
In this study, we designed to confirm the association between N1IC and ZNF74. The specific primers were synthesized and the RT-PCR result has shown that the ZNF74 transcript is splicing isoform I in the K562 cell. The mammalian expressing vector harboring HA-ZNF74 were transfected into HEK293 cells expressing N1IC, the cell lysate was prepared and immunoprecipitated by anti-HA or anti-N1-C-terminus antibody. The experiment showed that ZNF74 can associate with N1IC. For further dissecting the domains of ZNF74 associate with N1IC, we constructed different N- or C-terminal truncated ZNF74 fused to MBP protein for MBP pull down assay. The data showed that the zinc finger domain of ZNF74 is sufficient for binding with Ankyrin domain (Ank) of N1IC. The last part of this thesis, we tried to use SELEX (systematic evolution of ligands by exponential enrichment ) to find the target oligonucleotides binding sequence of ZNF74 protein. Due to the small sample size, the alignment data were complicated and difficult for interpretation. In conclusion, we still need more efforts to characterize the biological function of ZNF74 in K562 cell and to elucidate it’s relationship with Notch signaling pathway.
中文摘要………………………………………………………………………………i
英文摘要……………………………………………………………………………
目次……………………………………………..
第壹章、緒論…………………………………………………………………………1
一、Notch 訊息傳遞(Notch signaling pathway)…………………………… 1
二、鋅手指蛋白……………………………………………………………………4
第貳章、實驗材料與方法……………………………………………………………8
第一節、細胞培養…………………………………………………………………8
第二節、RNA 的分離(RNA isolation)………………………………………… 8
第三節、反轉錄聚合酶連鎖反應(reverse transcription polymerase
chain reaction)……………………………………………………… 8
第四節、質體之構築與PCR引子之採用…………………………………………9
第五節、瓊脂膠電泳(agarose gel electrophoresis)…………………………9
第六節、透析膜中抽取瓊脂膠內的DNA(DNA elution)…………………………10
第七節、接合反應(Ligation)……………………………………………………11
第八節、勝任細胞(Competent Cell)的製備……………………………………11
第九節、轉形做用(Transformation)……………………………………………12
第十節、微量質體DNA抽取(Plasmid Mini-Preparation)……………………14
第十一節、限制酶鑑定(Restriction Enzyme Digestion)……………………14
第十二節、細胞株的質體植入(Transfection)…………………………………15
第十三節、西方墨點分析法(Western blotting)………………………………15
第十四節、MBP融合蛋白質之表現………………………………………………17
第十五節、融合蛋白的純化………………………………………………………18
第十六節、MBP-fusion protein pull down assay……………………………19
第十七節、共同免疫沉澱法(Co-immunoprecipitation)………………………19
一、protein A sepharose 的製備……………………………………………19
二、protein A sepharose 與目標蛋白之抗體的結合………………………20
三、目標蛋白質的免疫沈澱……………………………………………………20
第十八節、SELEX(systematic evolution of ligands by
exponential enrichment )…………………………………………20
第參章、實驗結果……………………………………………………………………23第一節、以RT-PCR (Reverse transcription polymerase
chain reaction)來證明ZNF74基因是否存在於K562
細胞中………………………………………………………………… 23
第二節、表現質體之構築…………………………………………………………23
(一) 製備ZNF74-MF-3之DNA片段…………………………………………24
(二) 製備ZNF74-NR-M-7之DNA片段…………………………………………24
(三) 製備ZNF74-NR-1之DNA片段……………………………………………24
(四) 製備ZNF74之表現質體…………………………………………………24
(A)ZNF74-isoform-I-Full length之表現質體 ……………………… 24
(B)製備含NLS(Nucleus Localization Sequence)之表現質體…………25
(C)製備GST-ZNF74融合蛋白表現質體……………………………………25
(D)製備短縮型pcDNA-ZNF74-3Z、pcDNA-ZNF74-6Z、
pcDNA-ZNF74-9Z、pcDNA-ZNF74-12Z之表現質體……………………25
(E)製備MBP-ZNF74融合蛋白表現質體……………………………………26
第三節、 鑑定質體之表現 ………………………………………………………26
(一)表現質體在 COS-7 或 HEK293 細胞株中之表現…………………… 26
(二)融合蛋白表現質體在E. coli中之表現……………………………… 27
第四節、 利用共同免疫沉澱方式來證明N1IC與ZNF74之間的結合…………27
第五節、利用MBP 融合蛋白pull down assay來找出N1IC與ZNF74之
結合區域 ………………………………………………………………28
第六節、利用SELEX (systematic evolution of ligands by
exponential enrichment)方法找出 ZNF74及ZNF9 之特定DNA
結合序列 ………………………………………………………………29
第肆章、結果討論……………………………………………………………………31
第一節、ZNF74存在於K562細胞中………………………………………………31
第二節、利用共同免疫沉澱法 (co-immunoprecipitation) 與MBP融合
蛋白pull down assay證明ZNF74與Notch之間有結合關係,且
zinc finger motifs 7~9的位置是相互結合所必需的位置…………32
第三節、利用SELEX (systematic evolution of ligands by
exponential enrichment)所找出zinc finger protein結合核
苷酸之序列經比對(alignment)後的結果分析,序列複雜並無法
加以解釋……………………………………………………………… 33
參考文獻 ……………………………………………………………………………36
附表一、Lists of Primers in this study…………………………………… 46
附表二、Lists of constructed plasmids………………………………………47
附圖一、Schematic diagram of human Notch1 receptor and their variants..49
附圖二、Notch signaling pathway…………………………………………………50
附圖三、Sequences of ZNF74-isoform I. ZNF74 contains two
functional sub-domains: KRAB domain (nt 1-129) and zinc
finge domain (nt 528-1518)……………………………………………51
附圖四、Schematic diagrams of ZNF74 splicing isoforms................ 53
附圖五、Cloning strategy for full length cDNA of ZNF74 isoform I…… 54
附圖六、Step-by-step schematic diagram of construction of plasmids
harboring HA-tagged cDNA of ZNF74-I-full length……………… 55
附圖七、Constructions of different truncated and full length cDNA
fragment of ZNF74 into pGEX-KG for GST fusion
protein expression........................................ 59
附圖八、Constructions of different truncated and full length cDNA
fragment of ZNF74 into pcDNA-HA for mammalian cell expression…60
附圖九、Constructions of different truncated and full length cDNA
fragment of ZNF74 into p-MAL-c2x for MBP fusion
protein expressio……………………………………………………… 61
附圖十、Transient transfection of ZNF74 variants expressed in
HEK293 cell………………………………………………………………62
附圖十一、GST-ZNF74-3Z fusion protein expressed as inclusion body
after IPTG induction in E. coli BL-21…………………………… 63
附圖十二、GST-ZNF74-6Z fusion protein expressed as inclusion body
after IPTG induction in E. coli BL-21……………………………64
附圖十三、GST-ZNF74-9Z fusion protein expressed as inclusion body
after IPTG induction in E. coli BL-21……………………………65
附圖十四、GST-ZNF74-12Z fusion protein expressed as inclusion body
after IPTG induction in E. coli BL-21……………………………66
附圖十五、GST-ZNF74-full length fusion protein expressed as
inclusion body after IPTG induction in E. coli BL-21…………67
附圖十六、MBP-ZNF74 fusion proteins expressed in E. coli TB-1…………68
附圖十七、Identification of ZNF74-N1-rac associated complexs by coimmunoprecipitation with anti-Notch 1 C-terminal
antibody from cell extract of HEK293 cell constitutively expressing N1-rac…………………………………………………… 69
附圖十八、Identification of ZNF74-N1-rac associated complex by coimmunoprecipitation with anti-HA antibody from cell
extracts of HEK293 constitutively expressing N1-rac…………70
附圖十九、MBP fusion protein pull down assay to prove the
association of ZNF74 with N1-rac…………………………………71
附圖二十、Comparison of the functional regions of zinc finger
proteins in this study by alignment analysis…………………73
附圖二十一、PCR amplification of SELEX………………………………………74
Abrink M, Ortiz JA, Mark C, Sanchez C, Looman C, Hellman L, Chambon P, Losson R. Conserved interaction between distinct Kruppel-associated box domains and the transcriptional intermediary factor 1 beta. Proc Natl Acad Sci U S A. 2001;98:1422-6.
Artavanis-Tsakonas S, Matsuno K, Fortini ME. Notch signaling. Science. 1995;268:225-32.
Awls, J. DJ Molkentin. Activated Notch inhibits myogenic activity of the MADS-Box transcription factor myocyte enhancer factor 2C. Mol.Cell.Biol.1999;19:2853-2862.
Axelrod JD, Matsuno K, Artav Blokzijl A, Dahlqvist C, Reissmann E, Falk A, Moliner A, Lendahl U, Ibanez CF. anis-Tsakonas S, Perrimon N. Interaction between Wingless and Notch signaling pathways mediated by dishevelled. Science. 1996;271:1826-32.
Bardwell AJ, Bardwell L, Iyer N, Svejstrup JQ, Feaver WJ, Kornberg RD, Friedberg EC. Yeast nucleotide excision repair proteins Rad2 and Rad4 interact with RNA polymerase II basal transcription factor b (TFIIH). Mol Cell Biol. 1994;14:3569-76.
Bellefroid EJ, Poncelet DA, Lecocq PJ, Revelant O, Martial JA. The evolutionarily conserved Kruppel-associated box domain defines a subfamily of eukaryotic multifingered proteins. Proc Natl Acad Sci U S A. 1991;88:3608-12.
Bellefroid EJ, Sahin M, Poncelet DA, Riviere M, Bourguignon C, Martial JA, Morris PL, Pieler T, Szpirer C, Ward DC. Kzf1 - a novel KRAB zinc finger protein encoding gene expressed during rat spermatogenesis. Biochim Biophys Acta. 1998;1398:321-9.
Blokzijl A, Dahlqvist C, Reissmann E, Falk A, Moliner A, Lendahl U, Ibanez CF. Cross-talk between the Notch and TGF-beta signaling pathways mediated by interaction of the Notch intracellular domain with Smad3. J Cell Biol. 2003; 163:723-8.
Boonchai W, Walsh M, Cummings M, Chenevix-Trench G. Expression of beta-catenin, a key mediator of the WNT signaling pathway, in basal cell carcinoma. Arch Dermatol. 2000; 136:937-8.
Chitnis A, Kintner C. Neural induction and neurogenesis in amphibian embryos. Perspect Dev Neurobiol. 1995;3:3-15.
Chu, J., S. Jeffries, J. E. Norton, A. J. Capobianco, and E. H.Bresnick. Repression of Activator Protein-1-mediated transcriptional activation by the Notch-1 intracellular domain. J. Biol.Chem. 2002; 277:7587-7597
Ciechanover, and A. Israël. Functional Interaction between SEL-10, an F-box Protein, and the nuclear form of activated Notch1 Receptor. J. Biol. Chem. 2001; 276:34371-34378
Crozatier M, Kongsuwan K, Ferrer P, Merriam JR, Lengyel JA, Vincent A. Single amino acid exchanges in separate domains of the Drosophila serendipity delta zinc finger protein cause embryonic and sex biased lethality. Genetics. 1992; 131:905-16.
Fortini ME. Signalling: γ-Secretase-mediated proteolysis in cell-surface-receptor signalling Nature Reviews Molecular Cell Biology .2002; 3:673 — 684
Furukawa, and T. Honjo. Physical interaction between a novel domain of the receptor Notch and the transcription factor RBP-J 46 kappa/Su(H). Curr. Biol. 1995; 5:1416-1423.
Frise, E., J. A. Knoblich, S. Younger-Shepherd, L. Y. Jun, and Y. N.Jun. The Drosophila Numb protein inhibits signaling of the Notch receptor during cell-cell interaction in sensory organ lineage. Proc. Natl.Acad. Sci. USA. 1996; 93:11925-11932.
Gaul U, Jackle H. Analysis of maternal effect mutant combinations elucidates regulation and function of the overlap of hunchback and Kruppel gene expression in the Drosophila blastoderm embryo. Development. 1989; 107:651-62.
Gomes I, Sharma TT, Edassery S, Fulton N, Mar BG, Westbrook CA. Novel transcription factors in human CD34 antigen-positive hematopoietic cells. Blood. 2002; 100:107-19.
Greenwald, I. S., P. W. Sternberg, H. R. Horvitz. The lin-12 locus specifies cell fates in Caenorhabditis elegans. Cell . 1983; 34:435-444.
Greenwald, I. LIN-12/Notch signaling: lessons from worms and flies. Genes Dev. 1998; 12:1751-1762.
Grondin B, Bazinet M, Aubry M. The KRAB zinc finger gene ZNF74 encodes an RNA-binding protein tightly associated with the nuclear matrix.
J Biol Chem. 1996 Jun 28;271:15458-67.
Grondin B, Cote F, Bazinet M, Vincent M, Aubry M. Direct interaction of the KRAB/Cys2-His2 zinc finger protein ZNF74 with a hyperphosphorylated form of the RNA polymerase II largest subunit. J Biol Chem. 1997 Oct 31;272:27877-85.
Gupta-Rossi, N., O. L. Bail, H. Gonen, C. Brou, F. Logeat, E. Six, A.
Henrique D, Tyler D, Kintner C, Heath JK, Lewis JH, Ish-Horowicz D, Storey KG. Cash4, a novel achaete-scute homolog induced by Hensen''s node during generation of the posterior nervous system. Genes Dev. 1997; 11:603-15.
Huelsken J, Birchmeier W. New aspects of Wnt signaling pathways in higher vertebrates. Curr Opin Genet Dev. 2001; 11:547-53.
Iso, T., V. Sartorelli, G. Chung, T. Shichinohe, L. Kedes, and Y. Hamamori. HERP, a New Primary Target of Notch Regulated by Ligand Binding. Mol. Cell. Biol. 2001; 21:6071-6079.
Jeffries S, Robbins DJ, Capobianco AJ. Characterization of a high-molecular-weight Notch complex in the nucleus of Notch(ic)-transformed RKE cells and in a human T-cell leukemia cell line. Mol Cell Biol. 2002; 22:3927-41.
Jehn, B. M., W. Bielke, and W. S. Pear. Protective effects of notch- 1 on TCR-induced apoptosis. J. Immunol. 1999; 162:635-638.
Jones P, May G, Healy L, Brown J, Hoyne G, Delassus S, Enver T. Stromal expression of Jagged 1 promotes colony formation by fetal hematopoietic progenitor cells. Blood. 1998; 92:1505-11.
Kaoru Mitsui, Yoshimi Tokuzawa, Hiroaki Itoh, Kohichi Segawa, Mirei Murakami, Kazutoshi Takahashi, Masayoshi Maruyama, Mitsuyo Maeda, and Shinya Yamanaka. The Homeoprotein Nanog is required for maintenance of pluripotent in mouse epiblast and ES cells. Cell. 2003;113:631-642.
Kim CA, Berg JM. A 2.2 A resolution crystal structure of a designed zinc finger protein bound to DNA. Nat Struct Biol. 1996 Nov;3:940-5.
Kim HK, Siu G. The notch pathway intermediate HES-1 silences CD4 gene expression. Mol Cell Biol. 1998 Dec;18:7166-75.
Kimble J, Simpson P. The LIN-12/Notch signaling pathway and its regulation. Annu Rev Cell Dev Biol. 1997;13:333-61.
Klocke B, Koster M, Hille S, Bouwmeester T, Bohm S, Pieler T, Knochel W. The FAR domain defines a new Xenopus laevis zinc finger protein subfamily with specific RNA homopolymer binding activity. Biochim Biophys Acta. 1994; 1217:81-9.
Klug A, Schwabe JW. Klug A, Schwabe JW. Protein motifs 5. Zinc fingers. FASEB J. 1995; 9:597-604.
Knochel W, Poting A, Koster M, el Baradi T, Nietfeld W, Bouwmeester T, Pieler T. Evolutionary conserved modules associated with zinc fingers in Xenopus laevis. Proc Natl Acad Sci U S A. 1989; 86:6097-100
Kurooka, H., and T. Honjo. Functional interaction between the Mouse Notch1 intracellular region and histone acetyltransferases PACF and GCN5. J. Biol. Chem. 2000; 275:17211-17220.
Ladomery M and Dellaire G. Multifunctional zinc finger proteins in development and disease. Ann Hum Genet. 2002; 66:331-42.
Laity JH, Lee BM, Wright PE. Zinc finger proteins: new insights into structural and functional diversity. Curr Opin Struct Biol. 2001 ; 11:39-46.
Lander ES, Linton LM, et al.; International Human genome sequencing consortium. initial sequencing and analysis of the human genome. Nature. 2001;
15;409(6822):860-921. Erratum in: Nature 2001; 412:565. Nature 2001; 411(6838):720. Szustakowki J [corrected to Szustakowski J].
Laurie, A., Milner, and Anna Bigas. Notch as a mediator of cell fate determination in hematopoiesis: evidence and speculation. Blood. 1999; 93:2431-2448.
Liu M, Kumar KU, Pater MM, Pater A. Identification and characterization of a JC virus pentanucleotide repeat element binding protein: cellular nucleic acid binding protein. Virus Res. 1998 ;58:73-82.
Lo Muzio L, Pannone G, Staibano S, Mignogna MD, Grieco M, Ramires P, Romito AM, De Rosa G, Piattelli A. WNT-1 expression in basal cell carcinoma of head and neck. An immunohistochemical and confocal study with regard to the intracellular distribution of beta-catenin. Anticancer Res. 2002; 22:565-76.
Margolin JF, Friedman JR, Meyer WK, Vissing H, Thiesen HJ, Rauscher FJ 3rd. Kruppel-associated boxes are potent transcriptional repression domains. Proc Natl Acad Sci U S A. 1994; 91:4509-13.
Mark C, Abrink M, Hellman L. Comparative analysis of KRAB zinc finger proteins in rodents and man: evidence for several evolutionarily distinct subfamilies of KRAB zinc finger genes. DNA Cell Biol. 1999; 18:381-96.
Michelotti EF, Tomonaga T, Krutzsch H, Levens D. Cellular nucleic acid binding protein regulates the CT element of the human c-myc protooncogene. J Biol Chem. 1995; 270:9494-9.
Mitsui K, Tokuzawa Y, Itoh H, Segawa K, Murakami M, Takahashi K, Maruyama M, Maeda M, Yamanaka S. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell. 2003 ;113:631-42.
Moosmann P, Georgiev O, Thiesen HJ, Hagmann M, Schaffner W. Silencing of RNA polymerases II and III-dependent transcription by the KRAB protein domain of KOX1, a Kruppel-type zinc finger factor. Biol Chem. 1997; 378:669-77.
Morimura T, Goitsuka R, Zhang Y, Saito I, Reth M, Kitamura D. Cell cycle arrest and apoptosis induced by Notch1 in B cells. J Biol Chem. 2000; 275:36523-31.
Mumm, J., and R. Kopan. Notch signaling: from the outside in. Dev. Biol. 2000; 228:151-165.
Nickoloff BJ, Qin JZ, Chaturvedi V, Denning MF, Bonish B, Miele L. Jagged-1 mediated activation of notch signaling induces complete maturation of human keratinocytes through NF-kappaB and PPARgamma. Cell Death Differ. 2002;9:842-55.
Nielsen AL, Ortiz JA, You J, Oulad-Abdelghani M, Khechumian R, Gansmuller A, Chambon P, Losson R. Interaction with members of the heterochromatin protein 1 (HP1) family and histone deacetylation are differentially involved in transcriptional silencing by members of the TIF1 family. EMBO J. 1999 ; 18:6385-95.
Numoto M, Niwa O, Kaplan J, Wong KK, Merrell K, Kamiya K, Yanagihara K, Calame K. Transcriptional repressor ZF5 identifies a new conserved domain in zinc finger proteins. Nucleic Acids Res. 1993; 21:3767-75.
Oswald, F., B. Tauber, T. Dobner, S. Bourteele, U. Kostezka, G. Adler, S. Liptay, and R. M. Schmid. p300 acts as a transcriptional coactivator for mammalian Notch-1. Mol. Cell. Biol. 2001; 21:7761-7774.
Pan GJ, Pei DQ. Identification of two distinct transactivation domains in the pluripotency sustaining factor nanog. Cell Res. 2003;13:499-502.
Pavletich NP, Pabo CO. Zinc finger-DNA recognition: crystal structure of a
Zif268-DNA complex at 2.1 A. Science. 1991;252:809-17.
Polakis P. Wnt signaling and cancer. Genes Dev. 2000;14:1837-51.
Poncelet DA, Bellefroid EJ, Bastiaens PV, Demoitie MA, Marine JC, Pendeville H, Alami Y, Devos N, Lecocq P, Ogawa T, Muller M, Martial JA. Functional analysis of ZNF85 KRAB zinc finger protein, a member of the highly homologous ZNF91 family. DNA Cell Biol. 1998 Nov;17:931-43.
Ramain P, Khechumian K, Seugnet L, Arbogast N, Ackermann C, Heitzler P. Novel Notch alleles reveal a Deltex-dependent pathway repressing neural fate. Curr Biol. 2001;11:1729-38.
Rangarajan A, Talora C, Okuyama R, Nicolas M, Mammucari C, Oh H, Aster JC, Krishna S, Metzger D, Chambon P, Miele L, Aguet M, Radtke F, Dotto GP. Notch signaling is a direct determinant of keratinocyte growth arrest and entry into differentiation. EMBO J. 2001;20:3427-36.
Ray, W. J., M. Yao, P. Nowotny, J. Mumm, W. Zhang, J. Y. Wu, R. Kopan and A. M. Goate. Evidence for a physical interaction between presenilin and Notch. Proc. Natl. Acad. Sci. USA. 1999;96:3263-3268.
Rebay, I., R. G. Fehon, and S. Artavanis-Tsakonas. Specific truncations of
Drosophila Notch define dominant activated and dominant negative forms of the
receptor. Cell .1993;74:319-329.
Reizis, B and P, Leder. Direct induction of T lymphocyte-specific gene expression by
the mammalian Notch signaling pathway. Genes Dev. 2002; 16:295-300
Reynolds TC, Smith SD, Sklar J. Analysis of DNA surrounding the breakpoints of chromosomal translocations involving the beta T cell receptor gene in human lymphoblastic neoplasms. Cell. 1987; 50:107-17.
Robey E. Notch1 in vertebrates. Curr. Opin. Genet. Dev. 1997; 7:551—557.
Ronchini, C. and A. J. Capobianco. Induction of Cyclin D1 transcription and CDK2
activity by Notch-IC . Mol. Cell.Biol. 2001; 21:5925-5934.
Ryan RF, Schultz DC, Ayyanathan K, Singh PB, Friedman JR, Fredericks WJ, Rauscher FJ 3rd. KAP-1 corepressor protein interacts and colocalizes with heterochromatic and euchromatic HP1 proteins: a potential role for Kruppel-associated box-zinc finger proteins in heterochromatin-mediated gene silencing. Mol Cell Biol. 1999; 19:4366-78.
Schultz DC, Ayyanathan K, Negorev D, Maul GG, Rauscher FJ 3rd. SETDB1: a novel KAP-1-associated histone H3, lysine 9-specific methyltransferase that contributes to HP1-mediated silencing of euchromatic genes by KRAB zinc-finger proteins. Genes Dev. 2002; 16:919-32
Shawber, C. Nofziger, D., Hsieh, J. J.-D., Lindsell, C., Bogler, O., Hayward, D., Weinmaster, G. Notch signaling inhibits muscle cell differentiation through a CBF-1 independent pathway. Development. 1996;122:3765-3773.
Tamura, K., Y. Taniguchi, S. Minoguchi, T. Sakai, T. Tun, T. Thelu J, Rossio P, Favier B. Notch signalling is linked to epidermal cell differentiation level in basal cell carcinoma, psoriasis and wound healing. BMC Dermatol. 2002;2:7
Tan-Pertel HT, Walker L, Browning D, Miyamoto A, Weinmaster G, Gasson JC. Notch signaling enhances survival and alters differentiation of 32D myeloblasts. J Immunol. 2000; 165:4428-36.
Tezuka K, Yasuda M, Watanabe N, Morimura N, Kuroda K, Miyatani S, Hozumi N. Stimulation of osteoblastic cell differentiation by Notch. J Bone Miner Res. 2002; 17:231-9.
Underhill C, Qutob MS, Yee SP, Torchia J. A novel nuclear receptor corepressor complex, N-CoR, contains components of the mammalian SWI/SNF complex and the corepressor KAP-1. J Biol Chem. 2000; 275:40463-70.
Urrutia R. KRAB-containing zinc finger repressor proteins Genome Biology. 2003;
4:231
Varnum-Finney B, Purton LE, Yu M, Brashem-Stein C, Flowers D, Staats S, Moore KA, Le Roux I, Mann R, Gray G, Artavanis-Tsakonas S, Bernstein ID. The Notch ligand, Jagged-1, influences the development of primitive hematopoietic precursor cells. Blood. 1998 ; 91:4084-91.
Venter JC, Adams MD, et al. The sequence of the human genome. Science. 2001 Feb 16;291:1304-51. Erratum in: Science 2001; 292:1838.
Vissing H, Meyer WK, Aagaard L, Tommerup N, Thiesen HJ. Repression of transcriptional activity by heterologous KRAB domains present in zinc finger proteins. FEBS Lett. 1995; 369:153-7.
Wang, J., L. Shelly, L. Miele, R. Boykins, M. Norcross, and E. Guan. Human Notch-1 inhibits NF-kB activity in the nucleus through a direct interaction involving a novel domain. J. Immunol. 2001; 167: 289-295.
Waterston RH, Lindblad-Toh K, et al. Initial sequencing and comparative analysis of the mouse genome. Nature. 2002; 420:520-62.
Williams NM, Spurlock G, Norton N, Williams HJ, Hamshere ML, Krawczak M, Kirov G, Nikolov I, Georgieva L, Jones S, Cardno AG, O''Donovan MC, Owen MJ. Mutation screening and LD mapping in the VCFS deleted region of chromosome 22q11 in schizophrenia using a novel DNA pooling approach. Mol Psychiatry. 2002;7:1092-100.
Wilson-Rawls J, Molkentin JD, Black BL, Olson EN. Activated notch inhibits myogenic activity of the MADS-Box transcription factor myocyte enhancer factor 2C.
Mol Cell Biol. 1999 Apr;19:2853-62.
Witzgall R, O''Leary E, Leaf A, Onaldi D, Bonventre JV. The Kruppel-associated box-A (KRAB-A) domain of zinc finger proteins mediates transcriptional repression. Proc Natl Acad Sci U S A. 1994; 91:4514-8
Wolfe SA, Nekludova L, Pabo CO. DNA recognition by Cys2His2 zinc finger proteins. Annu Rev Biophys Biomol Struct. 2000; 29:183-212.
Yamazaki F, Aragane Y, Kawada A, Tezuka T. Immunohistochemical detection for nuclear beta-catenin in sporadic basal cell carcinoma. Br J Dermatol. 2001 Nov;145:771-7.
Yeh TS, Lin YM, Hsieh RH, Tseng MJ. Association of transcription factor YY1 with the high molecular weight Notch complex suppresses the transactivation activity of Notch. J Biol Chem. 2003; 278:41963-9.
Zhou S, Fujimuro M, Hsieh JJ, Chen L, Miyamoto A, Weinmaster G, Hayward SD. SKIP, a CBF1-associated protein, interacts with the ankyrin repeat domain of NotchIC To facilitate NotchIC function. Mol Cell Biol. 2000 Apr;20:2400-10.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
1. 洪蘭、曾志朗(民90)。兒童閱讀的理念─認知神經心理學的觀點。教育資料與研究雙月刊,38。1-4。
2. 施炳華(民87)。母語教學的基本認識。教師之友,39(3)。1-6。
3. 林麗娟(民85)。多媒體電腦圖像設計與視覺記憶的關係。教學科技與媒體,28。3-12。
4. 林紀慧(民88)。電腦超媒體學習環境與國小學科學習。教學科技與媒體,44。2∼12。
5. 林秀美(民84)。從學習理論談課程軟體設計。視聽教育雙月刊,36(6)。26-32。
6. 沈中偉(民84)。多媒體電腦輔助學習的學習理論基礎研究。視聽教育雙月刊,36(6)。12-25。
7. 李明芬(民85)。訊息設計的省思:跨越媒體的界線。教學科技與媒體,28。19-29。
8. 江文瑜(民84)。台灣母語教學現狀之探討。華文世界,75。59-65。
9. 朱文禎、林淳美(民84)。互動式多媒體電腦輔助學習教材之設計探討─以外語學習為例。高苑學報,4。260∼263。
10. 王文琦、李世忠(民90)。國小四年級自然科網路教材之設計與發展。視聽教育雙月刊,42(5),13∼23。
11. 紀肇聲(民87)。談鄉土語言教學。教師之友,39(3)。7-9。
12. 湯廷池(民86)。母語教育的理論與實際。華文世界。51-61。
13. 黃美金(民84)。臺灣地區本土語言教材編纂現況之探討。華文世界,75。37-45。
14. 黃瑞枝(民86)。國小課程要安排母語教學嗎?國教天地,122。4-5
15. 詹偉佳(民90)。閱讀活動在國小英語教學的應用。教育資料與研究雙月刊,38。8-11。