跳到主要內容

臺灣博碩士論文加值系統

(44.222.131.239) 您好!臺灣時間:2024/09/09 20:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許勝維
研究生(外文):Sheng -Wei Hsu
論文名稱:鎘誘導粒線體DNA缺損細胞經粒線體-鈣離子-calpain路徑進行caspase非依存性細胞凋亡
論文名稱(外文):Cadmium Toxicity toward Caspase-Independent Apoptosis through Mitochondria-Calcium-Calpain Pathway in mtDNA-Depleted Cells
指導教授:施純明施純明引用關係
指導教授(外文):Chwen-Ming Shih
學位類別:碩士
校院名稱:臺北醫學大學
系所名稱:醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:63
中文關鍵詞:細胞凋亡粒線體
外文關鍵詞:CadmiumApoptosisMitochondria
相關次數:
  • 被引用被引用:0
  • 點閱點閱:749
  • 評分評分:
  • 下載下載:72
  • 收藏至我的研究室書目清單書目收藏:0
粒線體 (mitochondria)除了負責細胞內能量生成外,也已被證實是調控細胞凋亡的主要胞器。本論文利用去除粒線體去氧核核糖核酸(mitochondrial DNA, mtDNA)的人類骨癌細胞株 (osteosarcoma cell line),以下稱Rho zero cell (0 cell),以重金屬鎘 (cadmium, Cd),作為細胞凋亡 (apoptosis)誘導物質,探討在粒線體喪失正常生理功能下,鎘毒性及細胞凋亡機轉。以流式細胞技術,首先進行PI (propidine iodine)單染色法及annexinV/PI 雙染色法,分別進行25M Cd之從時(time course)實驗及作用24小時之劑量相關 (dose-dependent)實驗。結果顯示在鎘對0 cell 之細胞毒性具有從時及從量(time and dose-dependent)的關係,25 μM鎘作用24小時約有50%的細胞凋亡比例。使用廣泛性caspase抑制劑 (Z-VAD.fmk)無法防止鎘所造成的細胞凋亡,續以caspase 3之螢光受質 (DEVD-AFC)測定caspase 3活性,亦顯示caspase 3未被活化,由此判定鎘誘導0 cell 進行caspase非依存性 (caspase-independent)細胞凋亡。另外使用粒線體膜電位專一性染劑JC-1偵測粒線體膜電位 (mitochondrial membrane potential, m ),結果指出粒線體膜電位隨時間增加有去極化 (depolarization)現象,由時間先後順序顯示粒線體傷害發生於細胞凋亡之前。但使用共軛焦螢光顯微鏡技術(confocol microscopy)並未發現凋亡因子(pro-apoptotic factors)由粒線體釋放,包括: AIF (apoptosis inducing factor)、Endo G (endonuclease G)、Cyt c (cytochrome c)。同時使用不同的活性氧分子專一性染劑,均無法測得活性氧分子 (reactive oxygen species, ROS)有濃度增加的現象, 顯示0 cell與一般細胞凋亡過程不同。為進一步瞭解鈣離子是否參與調控Cd所造成之細胞凋亡。以Fluo-3 AM染劑觀察細胞內鈣離子 (Ca2+i)的變化,發現相較於控制組,鎘處理30 分鐘後鈣離子有9倍左右的上升,隨即降低至4倍,但作用後2小時反而有11倍的上升,顯示鎘可以導致胞內鈣離子有劇烈波動現象。接著,使用細胞內鈣離子螯合劑(BAPTA-AM)預處理細胞,結果發現可以完全抑制鎘誘導的細胞凋亡,證實鈣離子確實參與細胞凋亡。續以粒線體鈣離子通道抑制劑 (mitochondrial calcium uniporter inhibitor) RR (ruthenium red)處理細胞,實驗結果顯示RR可明顯降低鎘引起的細胞內鈣離子波動,且可以抑制鎘所誘導之細胞凋亡,推測(1) RR阻斷鈣離子進入粒線體,(2)鎘進入粒線體的通道受阻而減低了鎘導致的粒線體傷害,此外,也證明了細胞內鈣離子恆定與細胞凋亡的密切關係。Ca2+i提昇可能會活化其下游與apoptosis相關的蛋白水解酶calpain,以calpain substrate (suc-LLVY-AMC),利用螢光測定儀偵測不同鎘作用時間下的calpain活性,結果發現在鎘作用後2小時後calpain的比活性 (specific activity, RFU/mg/sec)會由控制組的88.05增加至168.05 (p=0.043),但在加入RR作用後calpain比活性則降低至34.10 (p=0.023),進一步以50 μM calpain inhibitor I (ALLN)和50 μM calpain inhibiotor II (ALLM)前處理細胞,發現calpain inhibitor II (ALLM)可以完全阻斷鎘誘導的細胞凋亡,此實驗證明鎘是經由影響細胞內鈣離子而活化calpain進而引發細胞凋亡。綜合上述實驗結果,本論文說明了即使在粒線體功能缺損下,細胞仍可以進行凋亡,另外也說明了鎘是透過粒線體-鈣-calpain路徑誘導細胞進行caspase-independent apoptosis。
Mitochondria were believed to be integrators and coordinators of programmed cell death next to their respiratory function. Using mitochondrial DNA (mtDNA)-depleted osteosacoma cell (0 cell) as a cell model, we investigated the apoptogenic signaling pathway of cadmium (Cd) under a condition of mitochondrial dysfunction. The apoptotic percentage was around a platue of 50.0% after 24-h exposure of 25 μM Cd using flow cytometry co-staining with Annexin V and propidium iodine (PI). Pretreatment of Z-Val-Ala-DL-Asp(OMe)—fluoro -methylketone (Z-VAD.fmk), a broad spectrum of caspase inhibitor, was found fail to prevent apoptosis from suffering of Cd toxicity. Moreover, Cd was unable to activate caspase 3 using a fluromicrotiter plate reader with benzyloxy-carbonyl-Asp-Glu-Val-Asp-7-amino-4- trifluoromethyl -coumarin (DEVD-AFC) as a substrate, indicating that Cd induced caspase-independent apoptosis in mtDNA-depleted cells. JC-1 staining demonstrated that mitochondrial membrane depolarization was a prelude of apoptosis. It was noted, however, that we could not detect the release of cytochome c (cyt c); apoptosis-inducing factor (AIF), and endonuclease G (Endo G) from mitochondria by using confocol microscopy. Additionally, Cd treated were unable to induced intracellular oxidative stress using ROS-specific fluorescence dyes as indicators. The intracellular calcium concentration was oscillated to a 11-fold elevation after 2-h exposure of Cd. More importantly, the apoptogenic activity of Cd was almost abolished by BAPTA-AM, an intracellular calcium chelator. This implied that calcium might play a crucial role in cadmium-induced apoptosis. In addition, mitochondrial calcium uniporter blocker, ruthenium red (RR), could prevent both intracellular calcium oscillation and cell death from cadmium toxicity. This observation suggested that RR could block the calcium influx into mitochondria and/or prevent Cd toxicity toward mitochondria, resulting in escaping of apoptosis from Cd treatment. Moreover, using suc- LLVY-AMC as substrate to detect calpain activity by fluromicrotiter plate reader, we found the calpain specific activity (RFU/mg/sec) was provoked from 88.01 to 168.01 (p=0.043) after 2-h exposure of Cd. Interestingly, RR could reduce the calpain specific activity from 168.01 to 34.10 (p=0.023). Pretreatment of calpain inhibitor I and II (ALLN and ALLM) for 1 h reduced the apoptotic percentage (from 54.8 to 32.6 and from 54.8 to 10.0, respectively). This observation leads us to conclude that, the mtDNA-depleted mitochondria provide an alternative athway for Cd to conducting a caspase-independent apoptosis through mitochondria -calcium-calpain mechanism.
章節目錄---------------------------------------------- 1
中文摘要---------------------------------------------- 3
英文摘要---------------------------------------------- 6
圖表目次---------------------------------------------- 9
縮寫表 ---------------------------------------------- 11
緒論 ---------------------------------------------- 13
實驗材料與方法 --------------------------------------- 23
結果 ---------------------------------------------- 29
討論 ---------------------------------------------- 38
未來實驗方向與展望------------------------------------ 47
參考文獻 --------------------------------------------- 50
Figure ------------------------------------------------ 57
Alnemri E.S., Livingston D.J., Nicholson D.W., Salvesen G., Thornberry N.A., Wong W.W., and Yuan J.. Human ICE/CED-3 protease nomenclature. Cell 87: 171, 1996.
Alvarez-Barrientos A., O''Connor J.E., Nieto Castillo R., Moreno A.B., and Prieto P.. Use of flow cytometry and confocal microscopy techniques to investigate early CdCl2-induced nephrotoxicity in vitro. Toxicology 15: 407-412, 2001.
Bae J.H., Park J.W., and Kwon T.K.. Ruthenium red, inhibitor of mitochondrial Ca2+ uniporter, inhibits curcumin-induced apoptosis via the prevention of intracellular Ca2+ depletion and cytochrome c release. Biochem. Biophys. Res. Commun. 303: 1073-1079, 2003.
Bernardi P., Scorrano L., Colonna R., Petronilli V., and Di Lisa F.. Mitochondria and cell death. Mechanistic aspects and methodological issues. Eur. J. Biochem. 264: 687-701, 1999.
Boehning D., Patterson R.L., Sedaghat L., Glebova N.O., Kurosaki T., and Snyder S.H.. Cytochrome c binds to inositol (1,4,5) trisphosphate receptors, amplifying calcium-dependent apoptosis. Nat. Cell Biol. 5: 1051-1061, 2003.
Borner C., and Monney L.. Apoptosis without caspases: an inefficient molecular guillotine? Cell Death Differ. 6: 497-507, 1999.
Breckenridge D.G., Germain M., Mathai J.P., Nguyen M., and Shore G.C.. Regulation of apoptosis by endoplasmic reticulum pathways. Oncogene 22: 8608-8618, 2003.
Cai J., Yang J., and Jones D.P.. Mitochondrial control of apoptosis: the role of cytochrome c. Biochim. Biophys. Acta. 1366: 139-149, 1998.
Casalino E., Calzarretti G., Sblano C., and Landriscina C.. Cadmium dependent enzyme activity alteration is not imputable to lipid peroxidation. Arch. Biochem. Biophys. 383: 288—295, 2000.
Choi D.W.. Excitotoxic cell death. J. Neurobiol. 23: 1261-1276, 1992.
Choi D.W.. Calcium: still center-stage in hypoxic-ischemic neuronal death.
Trends Neurosci. 18: 58-60, 1995.
Demaurex N., and Distelhorst C.. Apoptosis--the calcium connection. Science 300: 65-67, 2003.
Dey R., and Moraes C.T.. Lack of oxidative phosphorylation and low mitochondrial membrane potential decrease susceptibility to apoptosis and do not modulate the protective effect of Bcl-x(L) in osteosarcoma cells. J. Biol. Chem. 275: 7087-7094, 2000.
Elinder C.G., Lind B., Kjellstrom T., Linnman L., and Friberg L.. Cadmium in kidney cortex, liver, and pancreas from Swedish autopsies. Estimation of biological half time in kidney cortex, considering calorie intake and smoking habits. Arch. Environ. Health. 31: 292-302, 1976.
Ferri K.F., and Kroemer G.. Organelle-specific initiation of cell death pathways. Nat. Cell Biol. 3: E255-263, 2001.
Fleckenstein A., Janke J., Doring H.J., and Leder O.. Myocardial fiber necrosis due to intracellular Ca overload-a new principle in cardiac pathophysiology. Recent. Adv. Stud. Cardiac. Struct. Metab. 4: 563-580, 1974.
Fridovich I.. The biology of oxygen radicals. Science 201: 875-870, 1978.
Gerasimenko J.V., Gerasimenko O.V., Palejwala A., Tepikin A.V., Petersen O.H., and Watson A.J.. Menadione-induced apoptosis: roles of cytosolic Ca2+ elevations and the mitochondrial permeability transition pore. J. Cell Sci. 115: 485-497, 2002.
Griffiths E. J.. Use of ruthenium red as an inhibitor of mitochondrial Ca2+ uptake in single rat cardiomyocyte. FEBS Letter 486: 257-260, 2000.
Gotoh T., Oyadomari S., Mori K., and Mori M.. Nitric oxide-induced apoptosis in RAW 264.7 macrophages is mediated by endoplasmic reticulum stress pathway involving ATF6 and CHOP. J. Biol. Chem. 277: 12343-12350, 2002.
Hinkle P.M., Kinsella P.A., and Osterhoudt K.C.. Cadmium uptake and toxicity via voltage-sensitive calcium channels. J. Biol. Chem.. 262: 16333-16337. 1987.
Jackson A.L., Chen R., and Loeb L.A.. Induction of microsatellite instability by oxidative DNA damage. Proc. Natl. Acad. Sci. U S A. 95: 12468-12473, 1998.
Johnson G.V., and Guttmann R.P.. Calpains: intact and active? Bioessays 19: 1011-1018, 1997.
Kim Y.S., Jhon D. Y., and Lee K. Y.. Involvement of ROS and JNK1 in selenite-induced apoptosis in Chang liver cells. Exp. Mol. Med. 36: 157-164, 2004.
Kim J.Y., Kim Y.H., Chang I., Kim S., Pak Y.K., Oh B.H., Yagita H., Jung Y.K., Oh Y.J., and Lee M.S.. Resistance of mitochondrial DNA-deficient cells to TRAIL: role of Bax in TRAIL-induced apoptosis. Oncogene 21: 3139-3148, 2002.
Kroemer G., and Reed J.C.. Mitochondria control of cell death. Nature Med. 6: 523-519, 2000.
Kruman I.I., and Mattson MP.. Pivotal role of mitochondrial calcium uptake in neural cell apoptosis and necrosis. J. Neurochem. 72: 529-40, 1999.
Lee M. H., Kim J. Y., and Park S. Y., Resistance of ° cells against apoptosis. Ann. N. Y. Acad. Sci. 1001: 146-153, 2004.
Leist M., and Jaattela M.. Four deaths and a funeral: from caspases to alternative mechanisms. Nat. Rev. Mol. Cell. Biol. 2: 589-598, 2001.
Lemarie A., Gossmann D., Morzadec C., Allain N., Fardel O., and Vernhet L.. Cadmium induces caspase-independent apoptosis in liver Hep3B cells: role of calcium in signaling oxidation stress-related impairment of mitochondria and relocation of endonuclease G and apoptosis-inducing factor. Free Radic. Biol. Med. 12: 1517-1531, 2004.
Leonard J.P., and Salpeter M.M.. Agonist-induced myopathy at the neuromuscular junction is mediated by calcium. J. Biol. Chem. 276: 13935-13940, 2001.
Li M., Kondo T., Zhao Q.L., Li F.J., Tanabe K., Arai Y., Zhou Z.C.,and Kasuya M.. Apoptosis induced by cadmium in human lymphoma U937 cells through Ca2+-calpain and caspase-mitochondria- dependent pathways. J. Biol. Chem. 275: 39702-39709, 2000.
Lin M., Xia T., Jiang C.S., Li L.J., Fu J.L., and Zhou Z.C.. Cadmium directly induced the opening of membrane permeability pore of mitochondria which possibility involved in cadmium-triggered apoptosis. Toxicology 194: 19-33, 2003.
Marchetti P., Susin S. S., Decaudin D., Gamen S., Castedo M.,
Hirsch T., Zamzami N., Naval J., Senik A., and Kroemer G..
Apoptosis-associated derangement of mitochondrial function in cells
lacking mitochondrial DNA. Cancer Res. 56: 22033-22038, 1996.
Marsden V.S., and Strasser A.. Control of apoptosis in the immune system: Bcl-2, BH3-only proteins and more. Annu. Rev. Immunol. 21: 71-105, 2003.
Martel J., Marion M., Denizeau F. Effect of cadmium on membrane
potential in isolated rat hepatocytes. Toxicology 60: 161—172, 1990.
Mayer A., Neupert W., and Lill R.. Translocation of apocytoch-
rome c accross the outer membrane of mitochondria. J. Biol. Chem.
270: 12390-12397, 1995.
Mepar C., Mann K., and Hainaut P.. Cadmium induces conformational modifications of wild-type p53 and suppresses p53 response to DNA damage in cultured cells. J. Biol. Chem. 274: 31663-31670, 1999.
Mignotte E. and Vayssiere J. L.. Mitochondria and apoptosis. Eur. J. Biochem. 252: 1-15, 1998.
Miller M.D., Cai J., and Krause K.L.. The active site of Serratia endonuclease contains a conserved magnesium-water cluster. J. Mol. Biol. 288: 975-987, 1999.
Najib S., and Sanchez-Margalet V.. Human leptin promotes survival of human circulating blood monocytes prone to apoptosis by activation of p42/44 MAPK pathway. Cell Immunol. 220: 143-149, 2002.
Nakagawa T., and Yuan J.. Cross-talk between two cysteine protease families. Activation of caspase-12 by calpain in apoptosis. J. Cell Biol. 150: 887-894, 2000.
Newmeyer D.D., and Ferguson-Miller S.. Mitochondria: releasing power for life and unleashing the machineries of death. Cell 12: 481-490, 2003.
Newmeyer D.D., Farschon D.M., and Reed J.C.. Cell-free apoptosis in Xenopus egg extracts: inhibition by Bcl-2 and requirement for an organelle fraction enriched in mitochondria. Cell 79: 353-364, 1994.
Nicotera P., and Orrenius S.. The role of calcium in apoptosis. Cell
Calcium. 23: 173-180, 1998.
Ormerod MG., and Kubbies M.. Cell cycle analysis of asynchronous cell populations by flow cytometry using bromodeoxyuridine label and Hoechst-propidium iodide stain. Cytometry 13: 678-685, 1992.
Orrenius S., Zhivotovsky B., and Nicotera P.. Regulation of cell death: the calcium-apoptosis link. Nat. Rev. Mol. Cell Biol. 4: 552-565, 2003.
Patrick L. Toxic metals and antioxidants: Part II. The role of antioxidants in arsenic and cadmium toxicity. Altern. Med. Rev. 8: 106-128, 2003.
Perrin B.J., and Huttenlocher A.. Calpain. Int. J. Biochem. Cell Biol. 34: 722-725, 2002.
Petit P.X., Lecoeur H., Zorn E., Dauguet C., and Mignotte B.. Alterations in mitochondrial structure and function are early events of dexamethasone-induced thymocyte apoptosis. J. Cell. Biol. 130: 157-167, 1995.
Pinton P., Ferrari D., Rapizzi E., Di Virgilio F., Pozzan T., and Rizzuto R.. The Ca2+ concentration of the endoplasmic reticulum is a key determinant of ceramide-induced apoptosis: significance for the molecular mechanism of Bcl-2 action. EMBO J. 20: 2690-2701, 2001.
Pozzan T., Rizzuto R., Volpe P., and Meldolesi J.. Molecular and cellular physiology of intracellular calcium stores. Physiol. Rev. 74: 595-636, 1994.
Reiter R.J. Oxygen radical detoxification processes during aging: the functional importance of melatonin. Aging (Milano). 7: 340-351, 1995.
Robertson J.D.,and Orrenius S.. Molecular mechanisms of apoptosis induced by cytotoxic chemicals. Crit. Rev. Toxicol. 30: 609-627, 2000.
Ruiz-Carrillo A., and Renaud J.. Endonuclease G: a (dG)n X (dC)n-specific DNase from higher eukaryotes. EMBO J. 6: 401-407, 1987.
Satarug S., Baker J.R., Urbenjapol S., Haswell-Elkins M., Reilly P.E., Williams DJ., and Moore M.R.. A global perspective on cadmium pollution and toxicity in non-occupationally exposed population. Toxicol. Lett. 137: 65-83, 2003.
Scheffler. Mitochondria. Wiley & Sons, Inc. p.1-7 & p197-305, 1999.
Shaikh Z.A, and Smith J.C., The mechanisms of hepatic and renal metallothionein biosynthesis in cadmium-exposed rats. Chem. Biol. Interact. 19 :161-171, 1977.
Shen H. M., Dong S. Y., and Ong C.N.. Critical role of calcium overloading in cadmium-induced apoptosis in mouse thymocytes. Toxicol. Appl. Pharmacol. 171: 12-19, 2001.
Shih C.M., Ko W.C., Wu J.S., Wei Y.H., Wang L.F., Chang E.E., Lo T.Y., Cheng H.H., and Chen CT.. Mediating of caspase-independent apoptosis by cadmium through the mitochondria-ROS pathway in MRC-5 fibroblasts. J. Cell Biochem. 91 :384-397, 2004.
Shih C.M., Wu J.S., Ko W.C., Wang L.F., Wei Y.H., Liang H.F., Chen Y.C., and Chen C.T.. Mitochondria-mediated caspase-independent apoptosis induced by cadmium in normal human lung cells. J. Cell. Biochem. 89: 335-347, 2003.
Skulskii I.A., Korotkov S.M., Glazunov V.V., Ivanova T.I., and Savina
M.V. Effect of cadmium ions on the respiration, cation transport
and morphology of the liver mitochondria in the rat and the lamprey.
Tsitologiia 30: 956—962, 1988.
Smaili S.S., Hsu Y.T., Carvalho A.C., Rosenstock T.R., Sharpe J.C., and Youle R.J.. Mitochondria, calcium and pro-apoptotic proteins as mediators in cell death signaling. Braz. J. Med. Biol. Res. 36: 183-190, 2003.
Susin S.A., Lorenzo H.K., Zamzami N., Marzo I., Snow B.E., Brothers G.M., Mangion J., Jacotot E., Costantini P., Loeffler M., Larochette N., Goodlett D.R., Aebersold R., Siderovski D.P., Penninger J.M., and Kroemer G.. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397: 441-446, 1999.
Suzuki Y., Imai Y., Nakayama H., Takahashi K., Takio K., and Takahashi R.. A serine protease, HtrA2, is released from the mitochondria and interacts with XIAP, inducing cell death. Mol. Cell 8: 613-621, 2001.
Takebayashi S., Jimi S., Segawa M., and Kiyoshi Y. Cadmium induces osteomalacia mediated by proximal tubular atrophy and disturbances of phosphate reabsorption. A study of 11 autopsies. Pathol. Res. Pract. 196: 653-63, 2000.
Tewari M., Quan L.T., O''Rourke K., Desnoyers S., Zeng Z., Beidler D.R., Poirier G.G., Salvesen G.S., and Dixit V.M.. Yama/CPP32 beta, a mammalian homolog of CED-3, is a CrmA-inhibitable protease that cleaves the death substrate poly(ADP-ribose) polymerase. Cell 81: 801-809, 1995.
Thornberry N.A., and Lazebnik Y.. Caspases: enemies within. Science 281: 1312-1316, 1998.
Tsujimoto Y., and Shimizu S.. Bcl-2 family: life-or-death switch. FEBS Lett. 466: 6-10, 2000.
Usai C., Barberis A., Moccagatta L., and Marchetti C.. Pathways of cadmium influx in mammalian neurons. J. Neurochem. 72: 2154-2161, 1999.
Varghese J., Radhika G., and Sarin A.. The role of calpain in caspase activation during etoposide induced apoptosis in T cells. Eur. J. Immunol.. 31: 2035-2041, 2001.
Waalkes H. P.. Cadmium carcinogen in review. J. Inorg. Biochem. 79: 241-244, 2000.
Wang J., Silva J.P., Gustafsson C.M., Rustin P., and Larsson N.G.. Increased in vivo apoptosis in cells lacking mitochondrial DNA gene expression. Proc. Natl. Acad. Sc. 98: 4038-4043, 2001.
Wang Y.F., Chen C.Y., Chung S.F., Chiou Y.H., and Lo H.R.. Involvement of oxidative stress and caspase activation in paclitaxel-induced apoptosis of primary effusion lymphoma cells. Cancer Chemother. Pharmacol. 2004 Jun 12 [Epub ahead of print].
Watjen W., and Beyersmann D. Cadmium-induced apoptosis in C6 glioma cells: influence of oxidative stress. Biometals. 17: 65-78, 2004
Wittman R.,and Hu H.. Cadmium exposure and nephropathy in a 28-year-old female metals worker. Environ. Health. Perspect. 110: 1261-1266, 2002.
Yoneda T., Imaizumi K., Oono K., Yui D., Gomi F., Katayama T., and Tohyama M.. Activation of caspase-12, an endoplastic reticulum (ER) resident caspase, through tumor necrosis factor receptor-associated factor 2-dependent mechanism in response to the ER stress. J. Biol. Chem. 276: 13935-13940, 2001.
Yuan J., Lipinski M., and Degterev A.. Diversity in the mechanisms of neuronal cell death. Neuron 40: 401-413, 2003.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top