跳到主要內容

臺灣博碩士論文加值系統

(98.82.140.17) 您好!臺灣時間:2024/09/10 12:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:范碧琴
研究生(外文):PI-CHIN FAN
論文名稱:應用醫學文獻分類於小兒輸血實證醫學之研究
論文名稱(外文):The Application of Automatic Categorization to Medical Literature in Pediatrics Transfusion for Evidence-Based Medicine
指導教授:蔣以仁蔣以仁引用關係
指導教授(外文):I-JEN CHIANG
學位類別:碩士
校院名稱:臺北醫學大學
系所名稱:醫學資訊研究所
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:93
中文關鍵詞:文件探勘實證醫學自動分類
外文關鍵詞:text miningEvidence-Based Medicineautomatic categorization
相關次數:
  • 被引用被引用:1
  • 點閱點閱:448
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:4
小兒輸血醫學是跨學科領域,臨床醫師在面對輸血決策時所需面對的各種不確定性,往往需要查檢大量的醫學文獻,而醫學文獻即是透過許多嚴謹的臨床實驗所撰寫而成的非結構性資料。本研究在探討運用文獻探勘技術進行文獻自動分類之研究,建立以MeSH為基礎佐以臨床醫師經驗所建立的「使用者導向」分類架構。透過Clever Craft系統的輔助,進行有關小兒輸血的醫學文獻分類,並以視覺化的知識網絡圖呈現文獻相關概念,期盼臨床醫師能透過該小兒輸血文獻探勘系統,在面對病患時能提供快速且精確查檢資料與相關概念分析圖,藉由一些相關文獻的佐證以作出對輸血安全及血品適應症最佳處置。
系統架構中有兩個重要模組:(1)為自動分類的訓練模組(2)為階層式知識分類模組,皆以貝氏(Bayesian)定理為主要方法結構;以其概念將文件向量化對所使用的詞庫進行比對找出字詞關聯性,利用系統中的文件自動分類技術,經臨床專家指導式學習所產生的分類規則,準確進行文獻的分類,提供使用者能在眾多資料中精確得到所需文獻。
本研究採用較高標準,所以並未將所有資料庫非相關文獻納入分母(樣本母數)計算,而是將經由關鍵詞檢索後所製成的資料庫中擷取測試樣本及訓練樣本,經過類目選擇、關鍵詞篩選定詞、樣本數篩選,最後選擇最佳訓練模組為319篇訓練文獻,對該文件探勘系統的自動分類功能重新訓練,並以不同相似度對此100篇測試文獻進行評估,發現當相似度為0.7時,得到平均精確度65.33%,回收率35.05%,並以Kappa值評估自動分類系統與臨床主治醫師判斷結果具有一致性。透過與PubMed比較其檢索功能發現,透過本文件探勘系統可大大降低檢索時的不確定性。
最後,建議目前台灣實證醫學教育,除了醫學教育人員外,應當結合醫學工程、圖書資訊人員,提供良好的自動分類、系統評讀文獻系統以及文件探勘系統,對於非結構性資料與文獻加以彙整,提供臨床醫學更方便、實用的實證醫學步驟。
The pediatrics transfusion is a cross-domain knowledge. When physicians face to the decision of transfusion, they always must to search many medical literatures. Medical literature is a non-structure data as a result by rigorous experiment. This research is focused on an automatic categorization technique of text mining. To build a classification is based on “drawn to user” by MeSH and physicians experience. Using a text mining system-Clever Craft to catalog the medical literature. Then the system generated the knowledge networks to show the relationships between concepts. We hope this system has a high-speed and accurate search with an analysis of concepts that help doctors searching when they face on patients. Using an evidence of medical literature to have the best decision.
There are two models in the system. One is the training model for automatic categorization. The other is the hierarchies-supervised learning model that is based on Bayesian method. It is used the document vector to find the association tuning between the term to term. By the technique of automatic categorization, the classification rule is produced by supervised learning. The rule helps the automatic categorization to be precision that enabled user to find the literatures from the knowledgebase.
The assessment of this research is a high level criterion. The denominator is not included the non-relational literatures from the database. The information extraction is searched the keyword “newborn and fetal and pediatrics and transfusion” from database. Then we extract the testing samples and training samples from the information collection. Through the categories selection, keyword set, sample selection, we try to find the best set that is 319 literatures to be training samples. Then training the automation categorization of this system again. We selection the same testing samples are 100 literatures. We evaluate the different similarity with these test samples. When the similarity is 0.7, the precision value is 65.33%. The recall value is 35.05%. By Kappa test, this research result is coherency between the automatic categorization and experts apprehension. The search interface in this system compares with PubMed, this text mining system can reduce the chanciness.
At last, I want to propose something with the evidence-based medicine education in Taiwan. We should combine the expert by medical educationist and medical engineer and librarian. It provided fine automatic categorization and evidence literatures and text mining system. The information collection can automatic extract the unstructured data and literatures. To provided a simple and fine system in EBM procedure.
目次
標題 i
審定書 ii
上網授權書 iii
國科會授權書 v
誌謝 vi
目次 viii
表次 ix
圖次 x
中文摘要 xii
英文摘要 xiv
第一章 緒論 1
第一節 研究背景 1
第二節 研究目的 6
第三節 研究範圍及限制 6
第四節 名詞解釋 8
第二章 文獻分析 15
第一節 輸血醫學與實證研究 15
第二節 自動文件分類方法概述 18
第三節 文件探勘應用於醫學文件的分類 24
第三章 研究方法 30
第一節 研究設計 31
第二節 使用系統簡介 42
第三節 實驗步驟 45
第四節 實驗方法 48
第四章 研究結果分析 53
第一節 研究結果 53
第二節 知識網絡圖 73
第三節 綜合討論 78
第五章 結論與未來發展方向 81
第一節 結論 81
第二節 建議 83
參考文獻 88
參考文獻
一、 中文文獻
(一)圖書
Joseph D. Sweeney & Yvonne Rizk 原著;羅仕錡譯。臨床輸血醫學。台北:合記,民91。
王省吾。圖書分類法導論。台北市:華岡,民65。
吳明德、薛理桂。圖書選擇與採訪。台北:國立空中大學,民86。
林媽利。輸血醫學。台北:健康世界雜誌,民86。
黃麒祐。IT知識管理導論。台北:文魁資訊,民92。
(二)期刊/論文
何光國。「主題標目結構之評析」。圖書館學與資訊科學,第19卷第2期(民84),頁32-54。
宋瓊玲。「從知識組織的面向探討圖書館資訊服務」。國立中央圖書館臺灣分館館刊,第8卷第1期(民91),頁29-37。
邱子恆。圖書資訊服務業知識資源組織之研究。博士論文,國立台灣大學,民91。
侯永昌、楊雪花。「以模糊理論和遺傳演算法為基礎的中文文件自動分類研究」。模糊系統學刊,第四期(民87),頁45-57。
施政瑋。<以階層式詞義網路為基礎的中文文件分析及其效能評估>。私立東海大學資訊工程與科學研究所,碩士論文,民92。
胡瑞恆。「如何減少手術中輸血」。在中華民國輸血學會會刊。台北市,民國91年12月28日,中華民國輸血學會編,頁1-2。
夏振源。「Surgery Toward Zero Blood Transfusion」。在中華民國輸血學會會刊。台北市,民國91年12月28日,中華民國輸血學會編,頁3-6。
張強。「中國分類主題詞與表的結構及功能評介」。中國圖書館學報,第5期(民94),頁74-77。
許懷仁。<生物醫學文件探勘系統之架構設計與實作>。國立成功大學資訊工程研究所,碩士論文,民91。
陳亞寧。「以知識探索為本之知識組織方法論及研究分析」。圖書與資訊學刊,第39期(民90),頁36-51。
黃慕萱。「線上索引典顯示格式之研究探討」。中國圖書館學會會報,第53期(民83),頁125-136。
蔣永福、李景正。「論知識組織方法」。中國圖書館學會會報,第1期(民90年,頁3-7。
蔡勝南。「二十一世紀的新競爭力:組織的知識創造與管理」。人力發展,第83期(民89),頁32-41。
鄭惠珍。「從<知識組織>內容分析探討分類研究趨勢」。中國圖書館學會會報,69期(民國91年),頁105-120。
(三)網路資源
EBMR實證醫學評論資料庫,Available at: http://www.hint.org.tw/family/
research/ebm-1.htm Accessed Sep 1, 2003
EBM手法實例說明,中國醫藥大學附設醫院實證醫學中心,Available at: http://www.cmuh.org.tw/ebm/ Accessed Sep 2, 2004.
家庭醫學臨床實習:實證醫學的背景,國立台灣大學,Available at: http://ceiba.cc.ntu.edu.tw/fm_intern/class/backgroud.html Accessed Sep 1, 2003
索引典及其於資訊檢索上的探討,台大圖書館研究所,Available at:public.ptl.edu.tw/publish/suyan/36/text_46.html Accessed Sep 1, 2004
資料探勘使用的技術,APOL科技論壇. Available at: http://www.hint.org.tw
/family/research/ebm-1.htm Accessed Sep 1, 2004
實證醫學及知識學習系統,萬芳醫院,Available at: http://www.wanfang.gov.tw/ebm/ Accessed Sep 1, 2003
認識實證醫學,萬芳醫院,Available at: http://www.wanfang.gov.tw/ ebm/concept/introdution.htm. Accessed Sep 3, 2004.
應用蛋白質同源關係預測人類細胞循環調節之蛋白質交互作用網路,智慧型智慧擷取實驗室, Available at: http://ir.csie.ncku.edu.tw/iir/research Achievement.htm Accessed Sep 2, 2003
二、西文文獻
(一)圖書
Fukunaga, K. Introduction to statistical pattern recognition (2nd edition). (New York, 1990).
Holland, J. H. “Adaptation in Natural and Artifical System.” in The university of Michigan Press (Ann Arbot,1975).
Huseman, R. C. and Goodman, J. P. “The emergence and growth of the knowledge economy.” in Leading with knowledge : the nature of competition. in the 21th century. (Thousand Oaks: Sage, 1999).
Liebowitz, J. and Beckman, T. “Collecting and selecting knowledge.” in Knowledge Organizations : what every manager should know. (Boca Raton: St. Lucie, 1998).
McArthur, T. “World of Reference: Lexicography.” in Learning and Language from the Clay Tablet to the Computer ( New York: Cambridge University Press, 1986).
.Mintz, P. D. “Transfusion therapy: clinical principles and practice.” in AABB (Maryland: Bethesda Press, 1999).
Qin, J., Huang, Z. “NanoPort: An Example for Building Knowledge Portals for Scientific Domains.” in Computer Society. (Houston: JCDL, 2003).
Tom, M. “World of Reference: Lexicography” in Learning and Language from the Clay Tablet to the Computer ( New York: Cambridge University Press, 1986).
(二)西文期刊/論文
Apte, C. and Weiss, S. M. “Automated learning of decision rules for text classification.” in ACM Transactions on Information Systems 1994. IBM Research Report RC18879.
Barbara H. Kwasnik. “The role of classification in knowledge representation and discovery.” Library Trends. 48:1(1999):22-36.
Blosseville, M. J. “Automatic Document Classification: Natural Language Processing, Statistical Analysis and Expert System Used Together.” in ACM SIGIR. (Copenhaguen, 1992)
Borko, H. and Bernick, M. “Automatic document classification.” Journal of the ACM 10(1963):131-135.
Chiang J. H. and Yu, H. C. “MeKE: discovering the functions of gene products from biomedical literature via sentence alignment.” Bioinformatics. 19:11(2003):1417-1422.
Collins, A. M. and Qullian, M.R. ”Retrieval time from semantic memory.” Journal of Verbal Leaning and Verbal Behavior 8(1969):221-224.
Christian, B. and Miguel, A. "Automatic Extraction of Biological Information from Scientific Text: Protein-Protein Interactions." in ISMB99 (Valencia: Christos Ouzounts and Alfonso, 1999),60-67.
Dervin, B. and Michael, N. ”Information Needs and Uses.” in Annual Review of Information Science and Technology. 21:2(1986):2-33.
Fabrizio, S. “Machine Learning in Automated Text Categorization”. Journal of the ACM 34:1(2002):1-47.
Feldman, R. ”Mining unstructured data” in ACM SIGIR. (San Diageo:ACM press, 1999),182-192.
Friedman, C. and Hripcsak, G. “Natural language processing in an operational clinical in formation system.” Journal of Natural Language Engineer 1:1(1995):83-108.
Gundersen, M. and Haug, P. “Development and evaluation system.” Computers and Biomedical Reasearch. 29(1996):351-372.
Heaps, H. S. ”A Theory of Relevance for Automatic Document Classification.” Information and Control. 22:3(1973):268-278.
Hoffman, E. “Concept mapping: A tool to bridge the disciplinary divide.” American journal of Obstetrics and Gynecology. 187:3(2002):41-43.
Jacobes, P. S. “Using Statistical Methods to Improve Knowledge-Based News
Categorization.” IEEE Expert. 8:2(1993)13-23.
Maisels, M. J. Watchko, J. F. “Treatment of jaundice in low birth weight infants.” Archives of Disease in Childhood & Neonatal Edition. 88:6(2003):459-463.
Margaret, W. “An Investigation of the Nature of the Relation between Terms in Thesauri.” Journal of Document 31:3(1975):158-184.
Maron, M. E. ”Automatic Indexing an Experimental Inquiry.” Journal of the ACM 8(1961):404-417.
Pavel, B. “Combining NLP and probabilistic categorization for document and term selection for Swiss-Prot medical annotation.” Bioinformatics. 19:1(2003):91-94.
Perez, C. “XplorMed: a tool for exploring MEDLINE abstracts.” Trends Biochemical Sci. 26(2001):573-575
Sackett, D. “Evidence based medicine: what it is and what it isn’t: It’s about imtegrating individual clinical expertise and the best external evidence.” BMJ. 312:7023(1996):71-72.
Sanchez, Elie “Soft computing Perspectives.“ IEEE Expert 1(1995):276-281.,
Saracevic, T. “A Study of Information Seeking and Retrieving. Background and Effectiveness” Journal of the American Society for Information Science 39:3(1988):177-196.
Saracevic, T. “Relevance: A Review of the Literature and a Framework of Thinking on the Notion in Information Science.” Advance in Librarianship. 6(1970):81
-82.
Specht, D. F. “Probabilistic Neural networks.” Neural Networks. 79:3(1990)
:109-118.
Spyns, P. “Natural language processing in medicine: an overview.” Meth Inform Med. 35(1996):285-301.
Stapley & Benoit. “Biobiliometrics: information retrieval and visualization from co-occurrence of gene names in medline abstracts.” in Pacific Symposia in Biocomputing. (In press,2000).
Tanabe, L. and Scherf, L. ”MedMiner and Internet Text-Mining Tool for Biomedical Information with Application to Gene Expression Profiling." BioTechniques 27(1997):1210-1217.
Whitecar, P. W. “Paternal leukocyte alloimmunization as a treament for hemolytic disease of the newborn in a rabbit model.” American Journal of Obstetrics and Gynecology. 187:4(2002):977-980.
Yeh, A. S. “Evaluation of text data mining for database curation: lessons learned from the KDD Challenge Cup.” bioinformatics 19 (2003):331-339.
Zadeh, L. A. “Fuzzy sets.” Information and Control 8(1965):338-353.
(三)網路資源
Alexander, M.A. “Towards knowledge organization with topic maps” Available at: http://www.gca.org/papers/xmleurope2000/papers/s22-02.html
Linear Discriminant Analysis in Document Classification. Available at: http://members.home.net/torkkola Sep 1, 2003
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top