跳到主要內容

臺灣博碩士論文加值系統

(44.222.82.133) 您好!臺灣時間:2024/09/15 22:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊紹民
研究生(外文):Shao-Min Yang
論文名稱:甲醇水蒸汽重組反應器之最適化設計與操作
論文名稱(外文):Optimal Design and Operation of Methanol Steam Reforming Reactors
指導教授:張志雄張志雄引用關係
指導教授(外文):Jhy-Shyong Chang
學位類別:碩士
校院名稱:大同大學
系所名稱:化學工程學系(所)
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:105
中文關鍵詞:甲醇水蒸汽重組
外文關鍵詞:Methanol steam reforming
相關次數:
  • 被引用被引用:6
  • 點閱點閱:345
  • 評分評分:
  • 下載下載:43
  • 收藏至我的研究室書目清單書目收藏:0
本研究首先建立填充床反應器及鈀膜反應器來進行甲醇水蒸汽重組反應模擬器以代表程序系統。在填充床反應器與鈀膜反應器的系統中,當程序模式已知時,由已知的物理模式或以一替代模式,藉由隨機搜尋的方法獲得能產生最佳氫氣產量之操作條件與觸煤量。因為物理模式在隨機搜尋的計算過程中,需耗廢相當長的時間,故可選擇一替代模式來縮短計算時間。當程序未知時,我們以本研究室所提出之接續式擬均勻設計的實驗設計方法得到相似之結果。在所有實例研究中,所使用的控制因子有反應壓力、反應溫度、和水對甲醇的進料莫爾流量比。經由填充床反應器及鈀膜反應器設計與操作最適化成功的驗證了接續式擬均勻設計的有效性,並且上述的結果也顯示以本研究室之接續式擬均勻設計的實驗設計方法可在少量實驗過程中建立可靠的模式。
In this research, the simulations of a packed-bed reactor (PBR) and Pd membrane reactor (PMR) for carrying out the methanol steam reforming were performed first. For both PBR and PMR systems, if the process model is well known, direct random search method was applied to the original physical model or the meta-model to obtain the optimal catalyst loading and operating conditions for achieving a desired hydrogen production rate. Depending the computation time in solving the governing equations, the physical model or the meta-model are optional. If the process is not well known, the experimental design method proposed by our laboratory (the sequential pseudo-uniform design (SPUD) method) was applied to obtain similar results using only limited experimental data generated from the simulator. In all the case studies, the control factors are the reaction temperature, the reaction pressure, and the molar feed ratio of water to methanol. The effectiveness of the proposed sequential pseudo-uniform design (SPUD) method was demonstrated through the successful implementations in both a PBR and a PMR. It is expected that one can build a reliable model from limited experiments designed by the SPUD method.
ACKNOWLEDGMENTS i
ABSTRACT (in English) ii
ABSTRACT (in Chinese) iii
CONTENTS iv
LIST OF FIGURES vii
LIST OF TABLES xiii
NOTATION xv
CHAPTER 1 INTRODUCTION 1
1.1 Literature Survey 3
1.1.1 Related Researches of Methanol-Steam Reforming Reactions 4
1.1.2 Related Researches of Palladium Membrane Reactor 7
1.1.3 The Related Researches of Experimental Design 10
1.2 Organization of the Thesis 12
CHAPTER 2 PROCESS SIMULATIONS AND EXPERIMENTAL DESIGN FOR SYSTEM OPTIMIZATION 13
2.1 Hydrogen Generation from Methanol 13
2.2 Simulation of the Packed-Bed Reactor for the Methanol-Stream Reforming 17
2.2.1 Mass Balances of the Reforming Reactions in PBR 17
2.2.2 Results of the PBR Simulation 19
2.2.3 Further Confirmation of the Simulation Results via the Thermodynamic Equilibrium Limitation 20
2.3 Simulation of the Palladium Membrane Reactor (MR) for the Methanol steam Reforming 23
2.3.1 Mechanism of Hydrogen Permeation through the Pd Membrane 23
2.3.2 Mass Balance Equations of the Reforming Reactions in the PMR 28
2.3.3 Energy Balance Equation of the Reforming Reactions in the PMR 31
2.3.4 Estimation of the Pressure Drop in the PMR 34
2.3.5 Results of the PMR Simulation 38
2.4 Development of the Sequential Pseudo-Uniform Design 38
2.4.1 Artificial Neural Network 45
2.4.2 Random Search 47
2.4.3 Optimization of Products and Process via SPUD Method 47
CHAPTER 3 OPTIMIZATION OF THE REACTOR SYSTEMS 52
3.1 The Objective for Optimizing the Methanol Steam Reforming Reactions in a Packed-Bed Reactor 52
3.1.1 System Optimization of a Packed-Bed Reactor for the Methanol Steam Reforming Reactions 52
3.1.2 Performance Study around the Optimal Design of the PBR 55
3.1.3 Design and Operation of the Methanol Steam Reforming Reactions Carried Out in a PBR based on Design of Experiment (DOE) 61
3.2 The Objective for Optimizing the Methanol Steam Reforming Reactions in a PMR 70
3.2.1 System Optimization of a PMR for the Methanol Steam Reforming Reactions 70
3.2.2 Performance Study around the Optimal Design of the PMR 78
3.2.3 System Optimization of a PMR for the Non-isothermal Methanol Steam Reforming Reactions via the Meta-Model of the Physical Model 83
3.2.4 System Optimization of a PMR for the Isothermal Methanol Steam Reforming Reactions via the Meta-Model of the Physical Model 88
3.2.5 Design and Operation of the Methanol Steam Reforming Reactions in a PMR based on DOE 88
3.2.6 Design and Operation of the Methanol Steam Reforming Reactions in a PMR based on DOE with Different Control Factors 97
CHAPTER 4 CONCLUSION…………………………………………...101
REFERENCES……………… 103
1.Amphlett, J. C.; Evans, M. J.; Jones, R. A.; Mann, R. F.; Weir, R. D. Hydrogen Production by the Catalytic Steam Reforming of Methanol Part 1: Thermodynamics. Can. J. Chem. Eng. 1981, 59, 720.
2.Amphlett, J. C.; Evans, M. J.; Weir, R. D. Hydrogen Production by the Catalytic Steam Reforming of Methanol Part 2: Kinetics of Methanol Decomposition Using Girdier G66B Catalyst. Can. J. Chem. Eng. 1985, 63, 605.
3.Alejo, L.; Lago, R.; Pena, M. A.; Fierro, J. L. G. Partial Oxidation of methanol to produce hydrogen over Cu-Zn-base catalysts. Appl. Catal. A. 1997, 162, 281.
4.Breen, J. P.; Ross, J. R. Methanol reforming for fuel-cell applications: development of ziaconia-containing Cu-Zn-Al catalysts. Catal. Today. 1999, 51, 521.
5.Chang, J. S.; Lin, J. P. Product and Process Development via Pseudo-Sequential Uniform Design. Ind. Eng. Chem. Res. 2004, 43, 4278.
6.Dittmeyer, R.; Hermann, Ch.; Quick, P. Mathermatical simulation of catalytic dehydrogenation of ethylbenzene to styrene in a composite palladium membrane reactor. J. Membr. Sci. 1997, 136. 161.
7.Fang, K. T. Uniform Design: Application of Number-Theoretic Methods in Experimental Design. Acta Math. Appl. Sin. 1980, 3, 363.
8.Fang, K. T. and Ma, Z. X. Orthogonal and Uniform Experimental Design; Hong Kong Baptist University: HK, 2000.
9.Fogler, H. S. Elements of Chemical Reactor Enginering; Prentice-Hall loc: USA, 1992.
10.Goto, S. The effect of direction of hydrogen permeation on the rate through a composite palladium membrane. J. Membr. Sci. 2000, 175, 19.
11.Hagan, M. T.; Demuth, H. B. Neural Network Design; Pws Publishing: Boston, 1995.
12.Harold, M. P.; Nair, B.; Kolios, G. Hydrogen generation in a Pd membrane fuel processor: assessment of methanol-based reaction systems. Chem. Eng. Sci. 2003, 58, 2551.
13.Han, J.; Kim, I.S.; Choi, K.S. High purity hydrogen generator for on-site hydrogen production. Int. J. Hydro. Energy. 2002, 27, 1043.
14.Itoh, N. A Membrane Reactor Using Palladium. AIChE J. 1987, 33, 1576.
15.Itoh, N.; Shindo, Y.; Haray, K. Ideal Flow Models For Palladium Membrane Reactors. Ind. Eng. Chem. Res. 1990, 23, 420.
16.Jang, J. S. R.; Sun, C. T.; Mizutani, E. Neural-Fuzzy and Soft Computing; Prentice-Hall International: USA, 1997.
17.Jiang, J. C.; Trimm, D. L.; Wainwright, M. S.; Cant, N. W. Kinetic study of steam reforming of methanol of copper-based catalysts. Appl. Catal. A. 1993, 93, 245.
18.Johan, A.; Henrik, B.; Magali, B. Steam reforming of methanol over a Cu/ZnO/Al2O3 Catalyst: a kinetic analysis and strategies for suppression of CO formation. J. Power Sources. 2002, 106, 249.
19.Lindstrom, B.; Pettersson, L. J. Steam reforming of methanol over copper-based monoliths:the effects of zirconia doping. J. Power Sources. 2002, 106, 264.
20.Lin, Y. M.; Rei, M. H. Study on the hydrogen production from methanol steam reforming in supported palladium membrane reactor. Cat. Today. 2001, 67, 77.
21.Peppley, B. A.; Amphlett, J. C.; Kearns, L. M.; Ronald F. M. Methanol-steam reforming on Cu/ZnO/Al2O3. Part 1: the reaction network. Appl. Catal. A. 1999, 179, 21.
22.Peppley, B. A.; Amphlett, J. C.; Kearns, L. M.; Ronald F. M. Methanol-steam reforming on Cu/ZnO/Al2O3. Part 2: A comprehensive kinetic model. Appl. Catal. A. 1999, 179, 31.
23.Robert, C. Reid.; John, M. Prausnitz.; Bruce, E. Poling. The Properties of Gases & Liquids; McGraw-Hill:New York, 1987.
24.Taguchi, G. Introduction to Quality Engineering; Asian Productivity Organization: Japan, 1986.
25.Wieland, S.; Melin, T.; Lamm, A. Membrane reactors for hydrogen production. Chem. Eng. Sci. 2002, 57, 1571.
26.林有銘,”薄膜反應器在石化製成上的應用”,第7卷,第11期,218-228頁,1999年。
27.蔡聖權,”甲醇水蒸氣重組在鈀膜反應器的數學與電腦模擬,”碩士論文,台灣大學化學工程研究所,民國91年。
28.陳泓政,”燃料電池用之甲醇重組器氫氣生產研究,”碩士論文,成功大學航空太空工程研究所,民國91年。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top