1.Amphlett, J. C.; Evans, M. J.; Jones, R. A.; Mann, R. F.; Weir, R. D. Hydrogen Production by the Catalytic Steam Reforming of Methanol Part 1: Thermodynamics. Can. J. Chem. Eng. 1981, 59, 720.
2.Amphlett, J. C.; Evans, M. J.; Weir, R. D. Hydrogen Production by the Catalytic Steam Reforming of Methanol Part 2: Kinetics of Methanol Decomposition Using Girdier G66B Catalyst. Can. J. Chem. Eng. 1985, 63, 605.
3.Alejo, L.; Lago, R.; Pena, M. A.; Fierro, J. L. G. Partial Oxidation of methanol to produce hydrogen over Cu-Zn-base catalysts. Appl. Catal. A. 1997, 162, 281.
4.Breen, J. P.; Ross, J. R. Methanol reforming for fuel-cell applications: development of ziaconia-containing Cu-Zn-Al catalysts. Catal. Today. 1999, 51, 521.
5.Chang, J. S.; Lin, J. P. Product and Process Development via Pseudo-Sequential Uniform Design. Ind. Eng. Chem. Res. 2004, 43, 4278.
6.Dittmeyer, R.; Hermann, Ch.; Quick, P. Mathermatical simulation of catalytic dehydrogenation of ethylbenzene to styrene in a composite palladium membrane reactor. J. Membr. Sci. 1997, 136. 161.
7.Fang, K. T. Uniform Design: Application of Number-Theoretic Methods in Experimental Design. Acta Math. Appl. Sin. 1980, 3, 363.
8.Fang, K. T. and Ma, Z. X. Orthogonal and Uniform Experimental Design; Hong Kong Baptist University: HK, 2000.
9.Fogler, H. S. Elements of Chemical Reactor Enginering; Prentice-Hall loc: USA, 1992.
10.Goto, S. The effect of direction of hydrogen permeation on the rate through a composite palladium membrane. J. Membr. Sci. 2000, 175, 19.
11.Hagan, M. T.; Demuth, H. B. Neural Network Design; Pws Publishing: Boston, 1995.
12.Harold, M. P.; Nair, B.; Kolios, G. Hydrogen generation in a Pd membrane fuel processor: assessment of methanol-based reaction systems. Chem. Eng. Sci. 2003, 58, 2551.
13.Han, J.; Kim, I.S.; Choi, K.S. High purity hydrogen generator for on-site hydrogen production. Int. J. Hydro. Energy. 2002, 27, 1043.
14.Itoh, N. A Membrane Reactor Using Palladium. AIChE J. 1987, 33, 1576.
15.Itoh, N.; Shindo, Y.; Haray, K. Ideal Flow Models For Palladium Membrane Reactors. Ind. Eng. Chem. Res. 1990, 23, 420.
16.Jang, J. S. R.; Sun, C. T.; Mizutani, E. Neural-Fuzzy and Soft Computing; Prentice-Hall International: USA, 1997.
17.Jiang, J. C.; Trimm, D. L.; Wainwright, M. S.; Cant, N. W. Kinetic study of steam reforming of methanol of copper-based catalysts. Appl. Catal. A. 1993, 93, 245.
18.Johan, A.; Henrik, B.; Magali, B. Steam reforming of methanol over a Cu/ZnO/Al2O3 Catalyst: a kinetic analysis and strategies for suppression of CO formation. J. Power Sources. 2002, 106, 249.
19.Lindstrom, B.; Pettersson, L. J. Steam reforming of methanol over copper-based monoliths:the effects of zirconia doping. J. Power Sources. 2002, 106, 264.
20.Lin, Y. M.; Rei, M. H. Study on the hydrogen production from methanol steam reforming in supported palladium membrane reactor. Cat. Today. 2001, 67, 77.
21.Peppley, B. A.; Amphlett, J. C.; Kearns, L. M.; Ronald F. M. Methanol-steam reforming on Cu/ZnO/Al2O3. Part 1: the reaction network. Appl. Catal. A. 1999, 179, 21.
22.Peppley, B. A.; Amphlett, J. C.; Kearns, L. M.; Ronald F. M. Methanol-steam reforming on Cu/ZnO/Al2O3. Part 2: A comprehensive kinetic model. Appl. Catal. A. 1999, 179, 31.
23.Robert, C. Reid.; John, M. Prausnitz.; Bruce, E. Poling. The Properties of Gases & Liquids; McGraw-Hill:New York, 1987.
24.Taguchi, G. Introduction to Quality Engineering; Asian Productivity Organization: Japan, 1986.
25.Wieland, S.; Melin, T.; Lamm, A. Membrane reactors for hydrogen production. Chem. Eng. Sci. 2002, 57, 1571.
26.林有銘,”薄膜反應器在石化製成上的應用”,第7卷,第11期,218-228頁,1999年。
27.蔡聖權,”甲醇水蒸氣重組在鈀膜反應器的數學與電腦模擬,”碩士論文,台灣大學化學工程研究所,民國91年。28.陳泓政,”燃料電池用之甲醇重組器氫氣生產研究,”碩士論文,成功大學航空太空工程研究所,民國91年。