跳到主要內容

臺灣博碩士論文加值系統

(98.82.140.17) 您好!臺灣時間:2024/09/08 00:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳柏伸
研究生(外文):Po-Shen Chen
論文名稱:選擇性成長奈米碳管作為三極式場發射顯示器
論文名稱(外文):Triode field emission display with selective growth of carbon nanotubes
指導教授:羅吉宗羅吉宗引用關係
指導教授(外文):Jyi-Tsong Lo
學位類別:碩士
校院名稱:大同大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:62
中文關鍵詞:奈米碳管場發射顯示器
外文關鍵詞:carbon nanotubesTriode field emission display
相關次數:
  • 被引用被引用:0
  • 點閱點閱:154
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本論文的目的是要成長奈米碳管(carbon nanotubes)膜於三極式場發射元件,我們成功以ICP RIE乾蝕刻鉬和二氧化矽層,然後在Mo/SiO2/Si之三極式元件內成長奈米碳管並量測其場發射特性。
閘極提供了較均勻的有效電場,幾乎每一像素都有電子束打螢光粉。一般的情況下大多數的電子在三極式場發射元件實驗時,會被閘極偏向吸收,三極式奈米碳管場發射元件的閘極電壓由0 增到15 V,其起始電場可由三極式測試條件下的7.55降到 5.83 V/μm,但是當電壓增到20 V,其起始電場增加到 6.64 V/μm。
此外,氫電漿後處理能夠有效改善奈米碳管場發射的特性。將三極式奈米碳管場發射元件經由氫電漿蝕刻,測定場發射的閘極電壓由0增到15 V,其起始電場降到3.2 ~ 4.63 V/μm 之間。
The main purpose of this thesis is to grow carbon nanotubes on a field emission triode type device. Molybdenum and SiO2 pattern were etched by inductively coupled plasma (ICP) reactive ion etching (RIE) system,Follow by carbon nanotubes deposited into the Mo/ SiO2/Si triode type device. The field emission properties were then characterized.

Gate voltage provided effective high electric field almost every pixel provide electron beam to the phosphor. In general, most of electrons are deflected to the gate in triode mode operation. The turn on field of carbon nanotubes field emission triodes decreased from 7.55 to 5.83 V/μm when the gate voltage increased from 0 to 15 V. But turn on field increased up to 6.64 V/μm when applying the gate voltage over 20V.

In addition, hydrogen plasma process can improve the field electron emission properties of the carbon nanotubes. The field electron emission properties of the triode carbon nanotube device has been improved by hydrogen plasma post-treatment. The turn on field of carbon nanotubes field emission triodes decreased from 4.63 to 3.2 V/μm when the gate voltage increased from 0 to 15 V.
Abstract (Chinese) ……………………………………………………Ⅰ
Abstract (English) ……………………………………………………Ⅱ
Contents ………………………………………………………………Ⅳ
List of Tables …………………………………………………………Ⅵ
List of Figures ………………………………………………………Ⅶ
Chapter 1. Introduction ………………………………………………1
1-1. Overview ……………………………………………………1
1-2. Theory …………………………………………………………4
1-2.1. Thermionic Emission Theory ……………………………4
1-2.2 Field Emission Theories …………………………………5
1-3 Dry Etching ……………………………………………………8
1-3.1 Inductive Coupled Plasma (ICP) …………………………8
1-3.2 Reactive Ion Etching (RIE) ………………………………9
Chapter 2. Experiments ……………………………………………18
2-1. Mo Layer Evaporation ………………………………………18
2-2. Photolithography ……………………………………………19
2-3. Inductive Coupled Plasma (ICP) Reactive Ion Etching ……20
2-4. Ion-Beam Sputtering Deposition (IBSD) ……………………21
2-5. Microwave Plasma Enhanced Chemical Vapor Deposition (MPCVD) ……………22
2-6. Fabrication of Triodes Field Emission Carbon Nanotubes …23
2-7. Raman Spectra ………………………………………………24
2-8. Scanning Electron Microscopy (SEM) System ……………24
2-9. Field Emission Measurement System ………………………25
Chapter 3. Results and Discussion …………………………………36
3-1. Fabrication and Characterization of Field Emission Triodes ………………36
3-2. Improved Field Emission Properties of Triode-Type Carbon Nanotube Field Emission Arrays by Hydrogen Plasma process ……………………………39
Chapter 4. Conclusion ………………………………………………60
Refence ………………………………………………………………61
[1] Funaki Y, Mochizuki Y, Flat panel display market to reach 10 trillion yen by 2010. Nikkei Microdevices, Flat panel display yearbook, InterLingua, Redondo Beach, California, USA, 1999. p.75

[2] Utsumi, T., IEEE Transaction on Electron Devices, ED 38, (1991) p.2276.

[3] Guey Ren Su, "Application and Characterization of Nitrogen Incorporated Diamond Like Carbon Films on Field Emission Array", TTIT, Master thesis, 1998

[4] K.R. Shoulder, Adv. Computer 2 (1961) 135-293.

[5] C.A. Spindt, J. Appl. Phys. 39 (1968) 3504-3505.

[6] R.N. Thomas, H.C. Nathanson, Appl. Phys. Lett. 21 (1972) 384.

[7] H.F. Gray, Proc. Colloquium on Advances in Electron Emission, 1982, p. 24.

[8] H.F. Gray, the 29th Int. Field Emission Symposium, 1982, p. 111.

[9] H.F. Gray, G.J. Campisi, R.F. Greene, Technical Digest of the Int. Electron Devices Meeting IEDM-86, 776 (1986).

[10] H.F. Gray, G.J. Campisi, Mat. Res. Soc. Symp. Proc., vol. 76 (Materials Research Society, 1987), pp.25-30.

[11] Ghis A, Meyer R, Rambaud P, Levy F, Leroux T. Sealed vacuum devices: fluorescent microtip displays. IEEE Trans Electron Dev 1993; 38:2320.

[12] C.A. Spindt, C.E. Holland, R.D. Stowell, "Recent Progress in Low Voltage Field Emission Cathode Development", J. De Phys., 9 (1984) P.269 278.

[13] F Y Chung, “Study on Electron Filed Emission Characteristics of Diamond Like Carbon Films”, The National Taiwan University of Science and Technology, Ph.D. , 1996.

[14] C.A. Spindt, I. Brodie, L. Humphrey, E.R. Westberg, J. Appl. Phys. 47 (1976) 5248.
.
[15] S.M. Sze, Physics of Semiconductor Devices. New York:Wiley,1981.

[16] G. N. Fursey, "Deviations from the Fowler Nordheim theory and peculiarities of field electron emission from small scale objects", Diamond and Related Materials 1, 1998.

[17] Department of Electrical Engineering, Hiroshima Unitversity. Higashi-Hiroshima 739, Japen Received 22 February 1996. Materials Science and Engineering B41(1996) 35-38

[18] D.G. MaCulloch, S. Prawer, A. Hoffman, Phys. Rev. B 50(1944) 5905

[19] F.Tuinstra, J.L. Koenig J. Chem. Phys. 53 (1970) 1126
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top