跳到主要內容

臺灣博碩士論文加值系統

(44.220.181.180) 您好!臺灣時間:2024/09/09 16:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:莊誌銘
研究生(外文):Chih-Ming Chuang
論文名稱:添加過渡金屬對熱碳還原法合成β-SiC之影響
論文名稱(外文):The effects of transition metals on carbothermal reduction synthesis ofβ-SiC
指導教授:林永仁林永仁引用關係
指導教授(外文):Yung-Jen Llin
學位類別:碩士
校院名稱:大同大學
系所名稱:材料工程學系(所)
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:47
中文關鍵詞:熱碳還原法碳化矽形狀記憶合成
外文關鍵詞:carbothermal reductionshape memory synthesissilicon carbide
相關次數:
  • 被引用被引用:0
  • 點閱點閱:216
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究分為兩部份;第一部份是以熱碳還原法(carbothermal reaction)並加入過渡金屬為添加劑合成β-SiC粉末,探討添加劑的種類與添加量對β-SiC生成溫度及生成粉末特性的影響。實驗結果發現,添加Pd、Mn無法有效降低β-SiC生成溫度,而添加Fe、Co、Ni、Cu有利於在1300℃下生成β-SiC;添加Cu雖然可以於低溫(1300℃)就有β-SiC生成,但因為其熔點較低造成產物結塊使得無法轉化成β-SiC。添加Mn無法於低溫下生成β-SiC,其熔點低於反應溫度很多,造成產物結塊,雖有SiO(g)生成卻無法轉化成β-SiC。
比較添加1wt%Fe、1wt%Co、1wt%Ni、1wt%Cu於1400℃下反應後產物的β-SiC含量發現,添加1wt%Fe、1wt%Co、1wt%Ni於此溫度下之β-SiC含量高於無添加劑於1500℃反應後的產物,由此可知添加1wt%Fe、1wt%Co、1wt%Ni有助低溫生成β-SiC,其β-SiC含量以添加1wt%Fe最高(76.87%),1wt%Co次之(73.14%),1wt%Ni僅30.40%但也接近無添加劑於1500℃反應後的產物(32.07%)。添加1wt%Fe之產物有燒結現象成品仍需經過粉碎及研磨;添加1wt%Co其β-SiC生成量與添加1wt%Fe相近,其粉末除含少量whisker其餘皆是粒子形態且粒徑小(約100~200nm)。添加1wt%Ni之產物大部份以whisker形態存在,由此我們可得知若欲製備β-SiC whisker,Ni應是一極佳的添加劑。第二部份是以形狀記憶合成法(shape memory synthesis)製備具起始碳形態之β-SiC;吾人以活性碳纖維布(activated carbon fabric)為起始碳源,TEOS為矽源;經1500℃持溫8小時於氬氣下進行反應後,製備出碳化矽纖維布(silicon carbide fabric)。
This research is divided into two parts. In the first part, I will use phenolic-resin and Ludox were as the starting materials and add transition metals and use carbothermal reduction to synthsize β-SiC powder. I will discuss the effect of the kinds and the amount of additive on reaction temperature of β-SiC and powder properties. The other part of this research is that I will use activated carbon fabric and TEOS to prepare SiC fabric by shape memory synthesis. I hope that the morphology of SiC preserved the morphology of carbon.
Adding Fe, Co, Ni, Cu enhance β-SiC formation at lower temperature. Adding Fe and Cu caused product to sinter. The product remained as powder when reactants contained Co and Ni. Although reactant with Cu can form β-SiC at 1300℃, the melting point of Cu is lower than reaction temperature, which leads reactants stick together as a cake the reaction surface decreases. Consequently, the reactant can not effectively convert into β-SiC. Adding Mn into reactants can not produce β-SiC at lower temperature. The reason is similar to that of adding Cu. The existence of Mn promoted SiO(g) formation but can not enhance reactants to convert to β-SiC. The yields of adding 1wt% Fe, Co, Ni after reaction at 1400℃ are higher than that of reactants without additives after reaction at 1400℃. The yields of adding 1wt% Fe, Co are even higher than reactants without additives after reaction at 1500℃. It can be seen that adding 1wt% Fe, Co, Ni can promote β-SiC formation at low temperature. The highest yield is by adding 1wt% Fe which is 76.87%. Adding Co has the second highest yield (73.14%) and adding Ni has 30.40% of yield, but it near to reactants without additives after reaction at 1500℃ (32.07%). The product of adding 1wt% Fe was sintered so that it needed to crush and mill. The yield of samples adding 1wt% Co was near to that of sample adding 1wt% Fe. The powder contained few whisker. Its particle size is about 100~200nm. The product of samples adding 1wt% Ni contains a lot of whisker.
After reaction at 1500℃ for 8hr, activated carbon fabric can convert to β-SiC fabric. The product remains the shape of carbon and is flexible. Activated carbon fabric has many micro-pore on surface after activated process. The micro-pore provides many reaction area and promote reaction.
Book List

Abstract………………………………………………………………….Ⅰ
Book List…………………………………………………...………….. Ⅱ
Table List………………………………………………………………..Ⅲ
Figure List………………………………………………………………Ⅳ


Introduction………………………………………………………………1
Literature Review………………………………………………………...3
2-1 The characteristics of SiC…..………………………………………3
2-2 The synthesis of SiC….…….……………………………………….6
2-3 Discussion of thermodynamic on carbothermal reduction of SiO2..10
2-4 The effects of additives on carbothermal reduction……………….14
2-5 Shape memory synthesis…………………………………………..14
Experiment……………………………………………………………...16
3-1 Chemicals……………………………………………………….....16
3-2 Instrument………………………………………………………....16
3-3 Experimental design……………………………………………….17
Results and discussion…………………………………………………..26
Adding transition metals to prepare β-SiC powder
4-1 XRD analysis…………………………………...………………….26
4-2 Weight analysis…………………………………………………….28
4-3 SEM microstructure……………………………………………….28
Preparation of SiC fabric by shape memory synthesis
4-4 XRD analysis……………………………………………………...30
4-5 SEM microstructure……………………………………………….30
Conclusion………………………………………………………………31
Reference………………………………………………………………..46









Table List

Table 1-1 Properties of common structural materials……..……………...1

Table 2-1 Physical properties of β-SiC…………………………………...4

Table 2-2 Comparison of SiC manufacture methods…………………......9

Table 3-1 The weight ratio additives and reactants……………………..25





























Figure List

Fig.2-1 β-SiC structure…………………………………………………...3
Fig.2-2 The flexural strength of various structural materials at high temperature………………………………………………………5
Fig.2-3 Free energy change for reactions (2.10),(2.11) and(2.12)………10
Fig.2-4 Free energy change for reactions (2.11) and(2.14) ~ (2.16)……11
Fig.2-5 Free energy change for Reaction (2.12)and(2.17)~(2.20)……...12
Fig.2-6 Purposed reaction mechanism of SiC from C and SiO2………..13
Fig.2-7 SEM of (a) starting activated charcoal and (b) equivalent final
β-SiC obtained by shape memory synthesis…………………...15
Fig.3-1 Flow chart experimental procedures on the effects of the
transition metals on synthesis of β−SiC……………………….21
Fig.3-2 Flow chart of experimental procedures on the preparation of
β−SiC fabric by Shape Memory Synthesis…………………….22
Fig.3-3 IR spectra of colloidal silica (Ludox), phenolic resin and SiC precursor, which were heat treatment at 300℃,450℃,650℃,750℃,1000℃ for 1hr……………………………………………..23
Fig.3-4 X−ray diffraction patten of β−SiC and CaF2………………...…24
Fig.3-5 Calibration curve of β−SiC…….……………………………….24
Fig.4-1 X-ray diffraction patterns of reactants without additive after
reaction at different reaction temperature……………………...32
Fig.4-2 X-ray diffraction patterns of reactants with 1 wt% additive after
reaction at 1300℃ for 4h………………………….…………....33
Fig.4-3 X-ray diffraction patterns of reactants with 0.5wt%、1 wt%、3wt%
Fe after reaction at 1400℃ for 4h………………………………34
Fig.4-4 X-ray diffraction patterns of reactants with 0.5wt%、1 wt%、3wt%
Co after reaction at 1400℃ for 4h………………………………35
Fig.4-5 The ratio of the β-SiC, carbon and SiO2 in products….………..36
Fig.4-6 Weight loss versus temperature in reactants with different
additives……………………………………………………....37
Fig.4-7 Scanning electron micrograph of reactants without additive after reaction at 1500℃ for 4h………………………………………38
Fig.4-8 Scanning electron micrograph of reactants with 1wt% additives after reaction at 1400℃ for 4h…………………………………38
Fig.4-9 The growth mechanism of SiC whisker………………………...39

Fig.4-10 The profile of products with 1wt%(a) Fe (b)Cu after reaction at
1400℃ for 4h………………………………………………...39
Fig.4-11 Scanning electron micrograph of reactants without additive after reaction at 1500℃ for 4h and after carbon removal…..………40
Fig.4-12 Scanning electron micrograph of reactants with 1wt% additives after reaction at 1400℃ for 4h and after carbon removal……...40
Fig.4-13 Scanning electron micrograph of reactants with 1wt% Mn after
reaction at 1400℃ for 4h………………….………………......41
Fig.4-14 X-ray diffraction patterns of reactants with 0.5wt%, 1wt%, 3wt% Co, Fe after reaction at 1500℃ for 4h……………….....42
Fig.4-15 X-ray diffraction pattern of activated carbon fabric soaked with TEOS and after reactionat 1500℃ for 4h……………….…….43
Fig.4-16 Scanning electron micrograph of activated carbon fabric…….44
Fig.4-17 Scanning electron micrograph of activated carbon fabric after
reaction at 1500℃ for 8h…………………………………......45
Reference

1.Bechtold B.C. and I.B. Cuter,J. Amer. Ceram. Soc. 63,(56),271-275(1980).
2.Blumenthal J.L.,M.J. Santy and E.A. Burns,J. AIAA 4,(6),1053-1057(1966).
3.Gaines J. M. , J. of Crystal Growth.137,187 (1993).
4.Pham-Huu, C.,Keller, N.,Gaby Ehret and Ledoux, M. J.,J. Catal. 200,400-410(2001).
5.Keller, N.,et al.,J. Mater. Sci. 34,3189-3202(1999).
6.Kennedy P. and B. North,British Ceram. Soc. 33,1-15(1983).
7.Kevorkijan V. M.,M. Komac and D. Kolar,J. Mater. Sci. 27,2705-2712(1992).
8.Kevorkijan V. M.,M. Komac and D. Kolar,Ceram.Powder Process.Sci.,Proc.Int.Conf.,2nd 327-333(1989).
9.Khalafaalla S.E. and L.A. Hass,J.Amer.Ceram.Soc.55,(8),414-417(1972).
10.Kikuchi T.,T. Kurosawa and T. Yagihashi,J.Japan Inst. Metals 32,(9),866-972(1968).
11.Krishnarao R.V.,J. Mater. Sci. Letters 12,1268-1271(1993).
12.Kristic V.D.,J. Amer. Ceram. Soc. 75,(1),170-174(1992).
13.Klinger N.,E.L. Strauss and K.L. Komarek,J. Amer. Ceram. Soc. 49,369-375(1966).
14.Kristic V.D.,J. Amer. Ceram. Soc. 75,(1),170-174(1992).
15.Lee J.-G. and I. B. Cutler,Ceramic Bulletin 54,(2),195-195(1975).
16.Ledoux, M. J.,Hantzer, S.,Pham-Huu, C.,Guille, J.,and Desaneaux, M. P.,J. Catal. 144,176-182(1988).
17.Ledoux, M. J.,Guille, J.,Hantzer, S. and Dubots, D.,U.S. Patent No.4,914,070,1990
18.Ledoux, M. J. and Pham-Huu, C.,Catal. Today 15,263-284(1992).
19.Miller P.D.,J.-G. Lee and I.B. Cutler,J. Amer. Ceram. Soc. 62,147-149(1979).
20.Ono K. and Y. Kurachi,J. Mater. Sci. 26,388-392(1991).
21.Ren éC J, Schipers, et al. J. Am. Ceram. Soc. 71,214 (2000).
22.Shimoo T.,J. Japan Inst. Metals 54,(1),41-47(1990).
23.Shimoo T. and F. Mizutaki,J. Japan Inst. Metals 53,(8),838-839(1989).
24.Shimoo T.,F. Mizutaki,S. Ando and H. Kimura,J. Japan Inst. Metals 52,(3),279-287(1988).
25.Shimoo T.,F. Mizutaki,S. Ando and H. Kimura,J. Japan Inst. Metals 52,(10),953-954(1988).
26.Shimoo T. and H. Inagaki,J. Japan Inst. Metals 55,(2),186-193(1991).
27.Tanaka H. and Y. Kurachi,Ceramics International 14,109-115(1988).
28.Van Dijen F.K.,R. Metselaar,J. European Ceramic Society 7,177-184(1991).
29.Viscomi F. and D.L. Himmel,J. Metals,21-24,June(1978).
30.Weimer A.W.,K.J. Nilsen,G.A. Cochran and R.P.roach,J.AIChE 39,(3)493-503,(1993).
31.West, A.R.,Solid state chemistry and its applications,John Wiley&Sons,New York,New York(1989).
32.林博文,「碳化矽的製程與應用之展望」,精密陶瓷科技,第395~411頁,民國76年。
33.林博文,陶瓷技術手冊(下),中國粉末冶金協會,第746~776頁,民國82年。
34.賴耿陽,構造材料用陶瓷,復漢出版社,第81~89頁,民國72年。
35.曾嘉平,莫萊石碳化矽及氧化鋁/碳化矽奈米複合材料之反應合成,碩士論文,大同大學民國88年。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top