跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.138) 您好!臺灣時間:2024/09/20 15:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳虹伶
研究生(外文):Hung-Ling Chen
論文名稱:電漿處理與添加劑對高密度聚乙烯/碳黑複合材料PTC與NTC行為影響之研究
論文名稱(外文):Effect of Plasma Treatment and dditives on PTC and NTC Behavior of High Density Polyethylene/Carbon black composites
指導教授:黃繼遠
指導教授(外文):Chi-Yuan Huang
學位類別:碩士
校院名稱:大同大學
系所名稱:材料工程學系(所)
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:127
中文關鍵詞:負溫度係數正溫度係數電漿高密度聚乙烯碳黑
外文關鍵詞:carbon blackHDPENTCplasmaPTC
相關次數:
  • 被引用被引用:1
  • 點閱點閱:459
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討碳黑加量、電漿處理、60Coγ-ray輻射劑量對高密度聚乙烯/碳黑複合材料之正溫度係數(Positive Temperature Coefficient, PTC)與負溫度係數(Negative Temperature Coefficient, NTC)效應的影響。另一方面也研究了高密度聚乙烯/碳黑材料的表面型態、斷面型態以及動態機械性質。研究中發現,電漿處理能輕微的消除複合材料NTC效應,而添加DCP與使用60Co γ-ray輻射交聯都是提升PTC效應的有效方法,且利用動態機械分析觀察也得到相同的結果。當複合材料組成為PHDPE(40W,30min)/CB(40wt%)DCP(2phr)/5M-rad時, PTC強度可達到7個Order,並且經過了10次的熱循環測試,此組成材料具有相當好的回覆性。而PHDPE(40W,30min)/CB(40wt%)/ DCP(2phr)/10M-rad的組成PTC強度可達到8個Order。在經濟上的考量下,這二組材料都可被用來當作PTC元件。
In this investigation, the effect of carbon black content, plasma treatment, 60Co γ-ray irradiate dose and additives on the positive temperature coefficient(PTC) behavior and negative temperature coefficient(NTC) behavior of high density polyethylene/carbon black(HDPE/CB) composites were studied. On the other hand, the surface morphology observations, the fracture surface morphology observations and the dynamic mechanical properties of HDPE/CB composite were also studied. It was found that the plasma pretreated was slightly decreased the NTC effect. On the other hand, adding dicumyl peroxide(DCP) and irradiation by 60Coγ-ray irradiation were good methods for increasing the PTC intensity. Used the dynamic mechanical analysis were processed the same result. In this investigation, the composites of PHDPE(40W.30min)/CB(40wt%)/DCP(2phr)/5M-rad possessed 7 order of PTC intensity. After 10 times thermal cycle measurement the reproducibility of PHDPE(40W.30min)/CB(40wt%)/
DCP(2phr)/5M-rad was very good. PHDPE(40W.30min)/CB(40wt%)/
DCP(2phr)/10M-rad possessed 8 order of PTC intensity. These two composites could be used PTC element under economical consideration.
List of Figures…………………………………………………………….I
List of Schemes and Tables…………………………………………….VII
Abstract (Chinese)…………………………………………………….VIII
Abstract (English)…………………………………………………..…. IX

Chapter 1: Introduction………………………………….………………..1
Chapter 2: Theories and Literatures Review……………………………..5
2.1: Compatibilization of Polymer blends…………………………..5
2.2: Conductive Filler……………………………………………….6
2.3: Carbon Black…………………………………………………...7
2.3.1 Manufacture and Characteristics………………………...7
2.3.2 Classification and Grade…………………………………8
2.4: Conductive polymeric composites….………………...….....9
2.5:Cross-linked polyethylene and Cross-linked by Organic
Peroxide………………………………………………………..10
2.6: Plasma………………………………………………………....11
2.7: Dynamic Mechanical Analysis………………………………..12
2.8: PTC effect…………………………………………………......15
2.9: Polymer PTC composites…………………………………......17
2.10: Conductive mechanism………………….………..…………19
Chapter 3: Experiment…………………………………………………..31
3.1: Experimental Flowchart………………………………………31
3.2: Materials………………………………………………………32
3.2.1: Matrix………………………………………..………...32
3.2.2: Conductive filler……………………………………….32
3.2.3: Processing additives…………………………………...32
3.2.5: Copper foil…………………………………………......33
3.3: Method……………………………………………………….34
3.3.1: Argon plasma treatment…..............................................34
3.3.2: Compounding process………………............................34
3.3.3: Compression molding………………………………….34
3.3.4: Irradiate by 60Coγ-ray…………..………………….....35
3.3.5: Electric resistance measurement…………………….....35
3.3.5: Scanning electron microscopy…………………………35
3.3.7:Dynamic mechanical measurements…………………...36
3.3.8 Gel extraction…………………………………………..36
3.3.9 Thermal cycles………………………………………….37
Chapter 4: Results and Discussion……………………………………...46
4.1. Effect of plasma treatment on PTC effectiveness…………….46
4.2: Effect of different cross-linking agent content on PTC and NTC effectiveness……………………………………………….…48
4.3. Influence of radiation cross-linking on the PTC effect and NTC effect………………………………………………………….50
4.4. Surface morphology observation by scanning electron microscopy................................................................................54
4.5 Dynamic mechanical properties of HDPE/CB composites.…...57
4.6 Relation between Degree of cross-linking and radiation dose…60
4.7 Reproducibility of electrical resistance was passing through thermal cycle…………………………………………………...61

Chapter 5: Conclusion..…….……………………………………….…105
Reference……..……………………………………………………..…107

List of Figures

Figure 2.1 Summary of the factors contributing to end-use properties in
melt compounded blends, highlight the role of compatibilisers
………………………………………………………………21
Figure 2.2 The conductive mechanism of conductive filler…………….24
Figure 2.3 Typical coupling systems for plasma generation…………....28
Figure 2.4 Scheme of direct irradiation method………………………...29
Figure 2.5 Dynamic Mechanical properties of composites…………......29
Figure 2.6 The characteristic of PTC effect……………………………..30
Figure 2.7 The PTC effect work principle………………………………30
Figure 3.1 The schematic diagram of the self-designed rotary plasma equipment………………………………………………….40
Figure 3.2 The photograph of Ultra-Centrifugal Mill (Retsch ZM-1000)
………………………………………………….…………..41
Figure 3.3 The photograph of Brabender Plasti-Corder Torque Reometer (PLE-330) instrument………………………..……………..41
Figure 3.4 The photograph of Compression Molding Machine (Hyengy Hydraulic Industry Co.,Ltd.)………………………………42
Figure 3.5 The photograph of resistance measurement instrument, comprising a computer, a multi-meter (KELTHLEY 7002 switch system and 2400 source meter), and a programmable oven (DELTA 9039)………………………………………43
Figure 3.6 The test specimen of volume resistance measured………….44
Figure 3.7 The photograph of SEM(JEQL JSM-6300) instrument……..44
Figure 3.8 The photograph of DMA (2980) instrument………………...45
Figure 3.9 The test specimen of thermal cycles………………………...45
Figure 4.1 Resistance as a function of temperature for HDPE/CB composites with various CB contents………………………60
Figure 4.2 Resistance as a function of temperature for PHDPE/CB composites with various CB contents…………………..……61
Figure 4.3 Resistance of PHDPE/CB composites with adding 0.5phr DCP
with various CB content at different temperature…………..62
Figure 4.4 Resistance of PHDPE/CB composites adding 1.0phr DCP with various CB content at different temperature………………63
Figure 4.5 Resistance of PHDPE/CB composites adding 2.0phr DCP with various CB content at different temperature………………64
Figure 4.6 Resistance of PHDPE/CB composites adding 4.0phr DCP with various CB content at different temperature………………65
Figure 4.7 Resistance of PHDPE/CB composites adding 1.0phr DCP and 1.0phr MA with various CB content at different temperature
………………………………………………………………66
Figure 4.8 Resistance of PHDPE/CB composites adding 2.0phr DCP and 2.0phr MA with various CB content at different temperature
……………………………………………………………..67
Figure 4.9 Resistance of PHDPE/CB composites adding 0.5phr DCP, 60Coγ- ray irradiation dose was 5M-rad with various CB content at different temperature……………………………68
Figure 4.10 Resistance of PHDPE/CB composites adding 0.5phr DCP, 60Coγ- ray irradiation dose was 10M-rad with various CB content at different temperature……………………………69
Figure 4.11 Resistance of PHDPE/CB composites adding 0.5phr DCP, 60Coγ- ray irradiation dose was 20M-rad with various CB content at different temperature……………………………70
Figure 4.12 Resistance of PHDPE/CB composites adding 1phr DCP, 60Coγ- ray irradiation dose was 5M-rad with various CB content at different temperature……………………………………71
Figure 4.13 Resistance of PHDPE/CB composites adding 1phr DCP, 60Coγ- ray irradiation dose was 10M-rad with various CB content at different temperature…………………………...72
Figure 4.14 Resistance of PHDPE/CB composites adding 1phr DCP, 60Coγ- ray irradiation dose was 20M-rad with various CB content at different temperature……………………………73
Figure 4.15 Resistance of PHDPE/CB composites adding 2phr DCP, 60Coγ- ray irradiation dose was 5M-rad with various CB content at different temperature…………………………..74
Figure 4.16 Resistance of PHDPE/CB composites adding 2phr DCP, 60Coγ- ray irradiation dose was 10M-rad with various CB content at different temperature……………………………75
Figure 4.17 Resistance of PHDPE/CB composites adding 2phr DCP, 60Coγ- ray irradiation dose was 20M-rad with various CB content at different temperature……………………………76
Figure 4.18 Resistance of PHDPE/CB composites adding 4phr DCP, 60Coγ- ray irradiation dose was 5M-rad with various CB content at different temperature……………………………………77
Figure 4.19 Resistance of PHDPE/CB composites adding 4phr DCP, 60Coγ- ray irradiation dose was 10M-rad with various CB content at different temperature……………………………78
Figure 4.20 Resistance of PHDPE/CB composites adding 4phr DCP, 60Coγ- ray irradiation dose was 20M-rad with various CB content at different temperature……………………………79
Figure 4.21 Resistance of PHDPE/CB composites adding 1phr DCP, 1phr MA, 60Coγ- ray irradiation dose was 5M-rad with various CB content at different temperature……………………….80
Figure 4.22 Resistance of PHDPE/CB composites adding 1phr DCP, 1phr MA, 60Coγ- ray irradiation dose was 10M-rad with various CB content at different temperature……………………….81
Figure 4.23 Resistance of PHDPE/CB composites adding 1phr DCP, 1phr MA, 60Coγ- ray irradiation dose was 20M-rad with various CB content at different temperature……………………….82
Figure 4.24 Resistance of PHDPE/CB composites adding 2phr DCP, 2phr MA, 60Coγ- ray irradiation dose was 5M-rad with various CB content at different temperature……………………….83
Figure 4.25 Resistance of PHDPE/CB composites adding 2phr DCP, 2phr MA, 60Coγ- ray irradiation dose was 10M-rad with various CB content at different temperature……………………….84
Figure 4.26 Resistance of PHDPE/CB composites adding 2phr DCP, 2phr MA, 60Coγ- ray irradiation dose was 20M-rad with various CB content at different temperature……………………….85
Figure 4.27 Resistance of HDPE/CB composites adding 2.0phr DCP with various CB content at different temperature………………86
Figure 4.28 Resistance of HDPE/CB composites adding 2phr DCP, 60Coγ- ray irradiation dose was 5M-rad with various CB content at different temperature……………………………………87
Figure 4.29 Resistance of HDPE/CB composites adding 2phr DCP, 60Coγ- ray irradiation dose was 10M-rad with various CB content at different temperature……………………………88
Figure 4.30 Resistance of PHDPE/CB composites adding 2phr DCP, 60Coγ- ray irradiation dose was 20M-rad with various CB content at different temperature……………………………89
Figure 4.31 shows the morphology of various samples(HDPE/CB40) that was fractured in liquid N2………………………………….90
Figure 4.32 shows the morphology of various samples that was fractured in liquid N2 which different additive with irradiated dose (5M-rad) and plasma pretreated…………………………...91
Figure 4.33 The matte side of copper foil which tears off specimen which irradiated dose was 5-Mrad and with or without plasma pretreated…………………………………………………..92
Figure 4.34 The matte side of copper foil which tears off specimen (PHDPE/CB40) which irradiated dose was 10M-rad and 20M-ray with plasma pretreated…………………………...93
Figure 4.35 The matte side of copper foil which tears off specimen in different agent which irradiated dose was 5-Mrad and with plasma pretreated…………………………………………..94
Figure 4.36 Reproducibility of electrical resistivity was passing through thermal cycle 10 times……………………………………..95
Figure 4.37 The relation between gel(wt%) and radiation dose M-rad…96
Figure 4.38 The temperature dependence of the storage modulus of composites with difference amount of additives…………..97
Figure 4.39 The temperature dependence of the loss modulus of composites with difference amount of additives…………..98
Figure 4.40 The temperature dependence of the storage modulus of CB40D2 with various doses of 60Coγ-ray irradiation……99
Figure 4.41 The temperature dependence of the loss modulus of CB40D2
with various doses of 60Coγ-ray irradiation…………….100
Figure 4.42 The temperature dependence of the storage modulus of PCB40D2 with various doses of 60Coγ-ray irradiation…101
Figure 4.43 The temperature dependence of the loss modulus of PCB40D2 with various doses of 60Coγ-ray irradiation…102









List of Schemes and Tables

Table 2.1 Classification of conductive filler……………………..……...22
Table 2.2 Electrical conductive of metals, conductive plastics and various insulation materials at 25°C……………………..……………23
Table 2.3 Manufacturing Methods and Characteristics of Rubber-Grade Carbon Blacks………………………………………………..25
Table 2.4 Classification of Carbon Blacks……………………………...26
Table 2.5 Application for conductive polymeric composites…………...27
Table 3.1 The physical properties of HDPE (LH606)…………………..38
Table 3.2 The typical properties of CB (N-660)………………………...38
Table 3.3 The physical properties of add agents………...........................38
Table 3.4 The typical properties of copper foil………………………….39
Table 3.5 Abbreviations of specimens…………………………………..39
References

1.Zhang. M. Q., Zeng, H. M. In Handbook of Thermoplastics, Olabisi, O., Ed., Dekker, New York, p.873~891(1997).
2.Strumpler, R., Glatz-Reichenbach, J. J Electroceram, 3, p.929-946(1999).
3.Yu. G., Zhang, H. Q.,Zeng, H. M. J Appl Polym Sci, 70, p.599~566(1998).
4.Strumpler, R., Maidorn, G. Rhyner J. J Appl Phys, 81, p.6786~6894(1997).
5.Zhang, M. Q., Yu, G., Zeng, H. M., Zhang, H. B. Hou, Y. H. Macromolecules, 31, 6724–6726(1998).
6.Yu. G., Zhang, M. Q., Zeng, H. M., Hou, Y. H., Hou, Y. H., Zhang, H. B. Polym Eng Sci 39, p.1678–1688(1999).
7.E. Frydman. UK patent specification, 604695, 8 July 1948.
8.F. Kohler. US patents, 3243753, 29 March 1966.
9.R. D. Sherman, L. M. Middleman, and M. Jacobs, Polym. Eng. Sci., 23, 36 (1983).
10.M. Sumita and H. Abe, J. Macromol. Sci-Phys., B25 (1, 2), 171 (1986).
11.B. Wessling, Synth. Met., 27, A83 (1988)
12.J. Meyer, polym. Eng. Sci., 13, 162 (1973)
13.Narkis M, Ram A, Stenin Z J.Appl Polym Sci 25:171(1980)
14.J. G. Bonner, P. S. Hope In: M. J Folkes, P. S. Hope, editors. Polymer blends and alloys. London: Blackie, 1993 [Chapter 3].
15.Narkis M, Ram A, Stenin Z (1980) J Appl Polym Sci 25:171
16.薛陽俊,導電塑膠製作與應用, 高分子期刊, p.60~66
17.K. Kinoshita, in Electrochemical and Physicochemical properties of Carbon, pp. 3〜8, 1988.
18.H. J. Golding, Research/Development, 46 (1973).
19.Ye.P. Mamunya et al. European polymer journal 38, 1887 (2002)
20.H.A. Khonakdar et al. Polymer 44 (2003)
21.T.-K. Kang, C.-S. Ha Polymer Testing 19 (2000)
22.Inagaki N. Plasma surface modification and plasma polymerization, Tech nomic published, 1996.
23.謝國煌,陳原振,曾勝茂。科儀新知第十八卷第四期。86, 2.
24.Soo-Jin Park, Journal of colloid and Interface Science 255, 145 (2002)
25.F. Kohler. US patents, 3243753, 29 March, 1966.
26.Ohe K, Nation Y, “A new resistor having an anomalously large positive temperature coefficient”. Japn. J. Appl. Phys., Vol. 10(1), pp. 99〜108, 1971.
27.C. Klason, J. Kubat, “Anomalous behavior of electrical conductivity and thermal noise in carbon black-containing polymers at Tg and Tm”. J. Appl. Polym. Sci. , Vol. 19, pp. 831〜845, 1975.
28.賈文陶,陳欣方,李淑準,劉雅言。高分子材料與工程。1998,3.
29.Smith P, Lemstra PJ, Kalb B, Pennings AJ (1979) Polym. Bull. 1:733.
30.Smith P, Lemstra PJ (1980) J. Mater. Sci. 15:505.
31.Smith P, Lemstra PJ, Pippers JPL, Kiel AM (1981) Colloid Polym. Sci. 258:1070.
32.Matsuo M, Inoue K, Abumiya N (1984) Sen’I Gakkaishi 40:275.
33.Matsuo M, Sawatari C, Iida M, Yoneda M (1985) Polym. J. 17:1197.
34.Matsuo M, Sawatari C (1986) Macro-molecules 19:2036.
35.J. deBoer, H. J. van den Berg, Pennings AJ (1984) Polym. 25:513.
36.C. Xu, Y. Bin, Y. Agari, “Morphology and electric conductivity of cross-linked polyethylene-carbon black blends prepared by gelation/crystallization from solutions”, Colloid Polym. Sci. 276:669-679 (1998).
37.J. Feng, C. M. Chan, “Double positive temperature coefficients of carbon black-filled polymer blends containing two semicrystalline polymers”, Polym. 41 (2000) 4559-4565.
38.W. Jia, X. Chen, “PTC Effect of Polymer Blends Filled with Carbon Black”, Changchun 130023, China.
39.B. F. Xi, L. L. Xing, K. Chen, “Research on the PTC properties of Polyethylene/Carbon black composites”, Tbyohashi, Japan, Sept, 27-30, 1998.
40.林建中, 高分子材料性質與應用, 高立圖書有限公司, 中華民國87年10月20日初版發行
41.林建榮, 淺談過載保護用高分子正溫度係數熱敏電阻, 工業材料154期, October p.90~93(1999)
42.Frank Owen, Electronic Techniques, 213 (2002)
43.C. Y. Huang, Y. C. Feng, “The investigation of grafting acrylic acid onto the surface of argon plasma pretreated high density polyethylene”, Surf. Coat. Tech., Snbmitted.
44.M. Takayanagi, MJ. Matsuo, Macromol. Sci. Phys.,B1:407(1967)
45.YP. Khanna, EA. Turi, TJ. Taylor, VV. Vickroy, RF. Abbott, Macromolecules, 18:1302(1985)
46.JD. Hoffman, G. Williams, E. Oassaglia (1966) J. Polym. Sci. Part C 14:173.
47.鄭仁智, 吳宗明, 義守大學材料科學工程學系碩士論文, 聚乙酸內酯/聚乙烯醇縮丁醛導電奈米複合材料之結晶型態與電性研究, July, 2001.
48.W. R. Smith, Encyclopedia and Chemical Technology, 2nd ed., Vol. 4, Interscience, New York, 1964, p. 243.
49.E. M. Dannenberg, in Kirk-Othmer Encyclopedia of Chemical Technology, 3ed ed., Vol. 4, Wiley, New York, 1978, p. 631.
50.M. Bregazzi, Electrochem. Technol., 5, 507 (1967).
51.C. L. Mantell, Carbon and Graphite Handbook, Interscience, New York, 1968, p. 76.
52.K. V. Kordesch, “Survery of Carbon and Its Role in Phosphoric Acid Fuel Cells, ”Final Report, BNL 51418, prepared for Brookhaven National Laboratory (December 1979).
53.J. H. Je and J. Y. Lee, Carbon, 22,318 (1984).
54.J. E. Lewis, in petroleum Derived Carbons, J. D. Bacha, J. W. Newman, and J. L. White, Eds. (ACS Symposium Series 303), American Chemical Society, Washington, DC, 1986, p. 269.
55.J. Lahaye and G. Prado, in Chemistry and Physics of Carbon, Vol. 14, P. L. Walker and P. A. Thrower, Eds., Dekker, New York, 1977, p. 167.
56.J. Lahaye and G. Prado, in Petroleum Derived Carbons, M. L. Deviney and T. M. O’Grady, Eds. (ACS Symposium Series 21), American Chemical Society, Washington, DC, 1976, p. 335.
57.Chan C. M., polymer surface modification and characterization, Hanser/ Gardner, New York , 1994, Chapter 1.
58.H. L. Spell and C. P. Christenson, TAPPI 62, 77 (1979).
59.J. A. Lanauze and D. L. Myers, J. Appl. Polym. Sci. 40, 595(1990).
60.M. Stradal and D. A. I. Going, Polym. Eng. Sci. 17, 38 (1977)
61.P. Gatenholm, C. Bonnerup. And E. Wallstrom, J. Adhesion Sci. Technol. 4, 817 (1990).
62.M. Strobel, C. Dunatov, J. M. Strobel, C. S. Lyon, S. J. Perron, and M. C. Morgen, J. Adhesion Sci. Technol. 3, 321(1989)
63.A. R. Blythe, D. Briggs, C. R. Kendall, D. G. Rance, and V. J. I. Zichy, Polymer 19, 1273(1978).
64.M. Stradal and D. A. I. Goring, J. Adhesion 8, 57 (1976).
65.J. F. Carley and P. T. Kitze, Polym. Eng. Sci 20, 330 (1980).
66.T. Hjertberg, B. A. Sultan, and E. M. Sorvik, J. Appl. Polym. Sci. 37, 1183 1989).
67.D. Briggs, J. Adhesion, 13, 287 (1982).
68.D. Briggs, D. G. Rance. C. R. Kendall, and A. R. Blythe, Polymer 21, 895 (1980).
69.D. Briggs and C. R. Kendall, int. J. Adhesion Adhesives 2, 13(1982).
70.D. Briggs and C. R. Kendall, Polymer 20, 1053(1979).
71.D. R. Fitchmun, S. Newman, and R. Wiggle, J. Appl. Polym. Sci. 14, 2441 (1970).
72.K. W. Lee And T. J. McCarthy, Macromolecules 21, 2318(1988)
73.K. W. Lee And T. J. McCarthy, Macromolecules 21, 3353(1988)
74.A. J. Dias and T. J. McCarthy, Macromolecules 20, 2068(1987).
75.C. A. Costello and T. J. McCarthy, Macromolecules 20, 2819(1987)
76.R. C. Bening and T. J. McCarthy, Macromolecules 23, 2648(1990).
77.A. J. Dias and T. J. McCarthy, Macromolecules 17, 2529(1984).
78.J. V. Brennar, and T. J. McCarthy, Polym. Prepr. 30. 152(1989).
79.P. Bodo and J.-E. Sundgren, J. Vac. Sci. Technol. A2, 1498(1984)
80.P. Bodo and J.-E. Sundgren, J. Appl. Phys. 60, 1161(1986).
81.B. J. Bachman and M. J. Vasile, J. Vac. Sci. Technol. A7, 2709(1989).
82.L. J. Matienzo, F. Emmi, D. C. Van Hart, and T. P. Gall, J. Vac. Sci. Technol.A7, 1784(1989).
83.K. S. Sengupta and H. K. Birnbaum, J. Vac. Sci. Technol. A9,2928(1991).
84.T. S. Oh, S. P. Kowalczyk, D. J. Hunt, and J. Kim , J. Adhesion Sci. Technol. 4, 119(1990).
85.M. J. Vasile and B. J. Bachman, J. Vac. Sci. Technol. A7, 2992(1989).
86.K. W. Paik and A. L. Ruoff, J. Adhesion Sci. Technol. 4, 465(1990).
87.S. Contarini, J. A. Schultz, S. Tachi, Y. S. Jo, and J. W. Rabalais, Appl. Surf. Sci. 28, 291(1978).
88.W. Kesting, T. Bahner, and E. Schollmever, Appl. Surface Sci. 46, 326(1990).
89.L. M. Kukreja, J. Appl. Polym. Sci. 42, 115(1991).
90.M. Narkis, A. Ram, and F. Flashner, Polym. Eng. Sci., 18, 649 (1978).
91.M. Narkis, A. Ram, and Z. Stein, Polym. Eng. Sci., 21, 1049 (1981).
92.G. Klason and J. Kubat, J. Appl. Polym. Sci., 22, 163 (1978).
93.C. Y. Huang, Y. C. Feng, “The investigation of grafting acrylic acid onto the surface of argon plasma pretreated high density polyethylene”, Surf. Coat. Tech., Snbmitted.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top