跳到主要內容

臺灣博碩士論文加值系統

(44.212.99.248) 您好!臺灣時間:2023/01/28 12:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王茂安
研究生(外文):Mao-An Wang
論文名稱:藉由輸入輸出模式所描述不確定非線性系統的適應模糊控制
論文名稱(外文):ADAPTIVE FUZZY CONTROL OF UNCERTAINNONLINEAR SYSTEMS REPRESENTED BY INPUT-OUTPUT MODELS
指導教授:江江盛
指導教授(外文):Chiang-Cheng Chiang
學位類別:碩士
校院名稱:大同大學
系所名稱:電機工程學系(所)
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:55
中文關鍵詞:適應控制非線性系統未模式化動態高增益觀察器
外文關鍵詞:adaptive controlhigh-gain observernonlinear systems
相關次數:
  • 被引用被引用:0
  • 點閱點閱:93
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:1
本論文中針對一個具有未模式化動態的輸入輸出模式,所描述的一個單輸入單輸
出的未知非線性系統,提出一個適應模糊控制方法。在這個具有未模式化動態與不確
定非線性項的非線性系統裡面,我們提出一個適應模糊控制方法是使用模糊近似器去
近似未知的非線性函數。這個方法不需要假設對於回授中非線性系統的所有變數都是可以得到的,而且也不需要未知的參數去滿足線性相依條件。以這個提出的控制方法,在存在於未模式化動態與有界的雜訊中,閉迴路系統中的所有變數都是有界的。設計過程簡單,首先,我們先假設於回授中的系統輸出與輸出的微分是可以得到的,而且設計適應模糊控制器當作是狀態回授控制器。然後我們在主要領域外面飽和這個控制器,而且使用一個高增益的觀察器去估測輸出的微分。我們證明這個設計的的輸出回授適應模糊控制,在狀態回授控制之下能達到補償這個性能。最後,給一些模擬結果去證明所提出方法的適用性。
In this thesis, an adaptive fuzzy control scheme is developed for a single-input -single-output unknown nonlinear system which can be represented by an input-output model with unmodeled dynamics. We propose the adaptive fuzzy control schemes, and the fuzzy approximator is used to approximate the unknown nonlinear functions in the nonlinear system with unmodeled dynamics and uncertain nonlinearity. This scheme does not need the assumption that all the states of the nonlinear system are available for feedback and unknown parameters to satisfy the linear dependence condition. With the proposed control scheme, all the variables in the closed-loop system are bounded in the presence of unmodeled dynamics and bounded disturbances. The design process is simple. First we assume that the output and its derivatives are available for feedback and design the adaptive fuzzy controller as a state feedback controller. Then we saturate the controller outside a domain of interest and use a high-gain observer to estimate the derivative of output. We prove that the proposed output feedback adaptive fuzzy control can recover the performance achieved under the state feedback controller. At last, some simulation results are given to demonstrate the applicability of the proposed method.
ABSTRACT (IN CHINESE) Ⅰ
ABSTRACT (IN ENGLISH) Ⅱ
ACKNOWLEDGEMENT ( IN CHINESE) Ⅲ
CONTENTS Ⅳ
LIST OF FIGURES Ⅴ
CHAPTER 1 INTRODUCTION 1
CHAPTER 2 DESCRIPTION AND ANALYSIS OF FUZZY LOGIC SYSEMS 5
2.1 System Description for a nth Order Nonlinear System 5
2.2 Description of Fuzzy Logic Systems 9
CHAPTER 3 ROBUST ADAPTIVE FUZZY CONTROLLER DESIGN
OF UNCERTAIN NONLINEAR SYSTEMS WITH
UNMODELED DYNAMICS 12
3.1 State Feedback Robust Adaptive Control 12
3.2 Output Feedback Adaptive Control 22
CHAPTER 4 RESULTS OF SIMULATION 28
4.1 An Inverted Pendulum System 28
4.2 An Illustrative Example and Simulation Result 42
CHAPTER 5 CONCLUSIONS AND FURTHER RESEARCHES 51
5.1 General Conclusion 51
5.2 Further Researches 51
REFERENCES
[1]L. X. Wang, “ Stable adaptive fuzzy control of nonlinear system”, IEEE Transactions on Fuzzy Systems, vol. 1, no. 2, pp. 146-155, May 1993.
[2]L. X. Wang, “Stable adaptive fuzzy controllers with application to inverted pendulum tracking”, IEEE Transactions on Systems, vol. 26 , no. 5, pp. 677-
691, October 1996.
[3]L. X. Wang, Adaptive Fuzzy Systems and Control: Design and Stability Analysis, New Jerey Prentice Hall, 1994.
[4]D. L. Tsay, H. Y. Chung, and C. J. Lee, “The adaptive control of nonlinear systems using the Sugeno-type of fuzzy logic”, IEEE Transactions on Fuzzy Systems, vol. 7, no. 2, pp. 225-229, April 1999.
[5]V. Tahani and F . Sheikholeslam, “Stability analysis and design of fuzzy control systems”, IEEE International Conference Fuzzy Systems Proceedings, 1998., vol. 1, pp. 456-461, May 1998.
[6]K. Yamashita, A . Suyitno, and Y. Dote, “Stability analysis for classes of nonlinear fuzzy control systems”, International Conference on on Proceedings of the IECON '93., vol. 1 , pp. 242-247, Nov. 1993.
[7]B. S. Chen, C. H. Lee, and Y. C. Chang, “ tracking design of uncertain nonlinear SISO systems: Adaptive fuzzy approach”, IEEE Trans. Fuzzy Syst., vol. 4, pp. 32-43, Feb. 1996.
[8]J. T. Spooner and K. M. Passino, “Stable adaptive control of a class of nonlinear systems and neural network”, IEEE Trans. Fuzzy Syst., vol. 4, pp. 339-359, Aug. 1996.
[9]G. A. Rovithakis and M. A. Christodoulou, “Adaptive control of unknown plants using dynamical neural networks’’, IEEE Trans. Syst., Man, Cybern, vol. 24, pp. 400-421, Mar. 1994.
[10]S. Tong, T. Wang, and J.T. Tang, “Fuzzy adaptive output tracking control of nonlinear systems”, Fuzzy Sets and Systems, vol. 111, pp.169-182, April 2000.
[11]F. Esfandiari and H. K. Khalil, “Output feedback stabilization of fully linearizable systems”, Int. J. Control, vol. 56, no. 5, pp. 1007–1037,1992.
[12]S. Tong and T. Chai, “Fuzzy direct adaptive control for a class of nonlinear systems”, Fuzzy Sets and Systems,vol 103, pp. 379-387,1999.
[13]C.Y. Sue and Y. Stepanenko, “Adaptive control of a class of nonlinear systems with fuzzy logic”, Trans. Fuzzy Systems, vol 2, pp. 285-294, Nov. 1994.
[14]B. Aloliwi and H. K. Khalil, “Robust adaptive output feedback control of nonlinear systems without persistence of excitation”, Automatica, vol. 33, pp. 2025–2032, 1997.
[15]Z. P. Jiang and L. Praly, “Design of robust adaptive controllers for nonlinear systems with dynamic uncertainties”, Automatica, vol. 34, pp. 825–840, 1998.
[16]H. K. Khail, “Adaptive output feedback control of nonlinear systems represented by input-output models”, IEEE Trans. Automat. Control vol. 41, pp. 177–188, 1996.
[17]Y. Liu and X. Y. Li, “Robust adaptive control of nonlinear systems represented by input-output models”, IEEE Trans. Automat. Control vol. 48, pp. 1041-1045, June 2003.
[18]Z. P. Jiang and D. J. Hill, “A robust adaptive backstepping scheme for nonlinear systems with unmodeled dynamics”, IEEE Trans. Automat. Contr., vol. 44, pp. 1705–1711, Sept. 1999.
[19] N. A. Mahmoud and H. K. Khail, “Asymptotic regulation of minimum phase nonlinear systems using output feedback”, IEEE Trans. Automat. Contr., vol. 41, pp. 1402–1412, October 1996.
[20] H. K. Khail and A. F. Esfandiari, “Semiglobal stabilization of a class of nonlinear systems using output feedback”, IEEE Trans. Automat. Contr., vol. 38, no9, pp. 1412-1415, 1993.
[21] S. Tong and T. Chai, “Fuzzy adaptive control for a class of nonlinear systems”, Fuzzy Sets and Systems, vol. 103, pp. 31-39, 1999.
[22] M. M. Polycarpou and P. A. Ioannou, “A robust adaptive nonlinear control design”, Automatica, vol. 31, pp. 423–427, 1995.
[23] R. Marino and P. Tomei, “Robust adaptive state-feedback tracking for nonlinear systems”, IEEE Trans. Automat. Contr., vol. 43, pp. 84–89, Jan. 1998.
[24] G. C. Goodwin and D. Q. Mayne, “A parameter estimation perspective of continuous time model reference adaptive control”, Automatica, vol. 23, pp. 57-70, 1987.
[25] H. K. Khalil, “Robust servomechanism output feedback controllers for feedback linearizable systems”, Automatica, vol. 30, pp. 1587–1599, 1994.
[26] H. J. Sussmann and P. V. Kokotovic, “The peaking phenomenon and the global stabilization of nonlinear systems”, IEEE Trans. Automat. Contr., vol. 36, pp. 424–440, Apr. 1991.
[27] Y. Liu and X. Y. Li, “Robust adaptive control of nonlinear systems with unmodelled dynamics”, IEEE Proc.-Control Theory Appl., vol. 151, no 1, pp. 424–440, January. 2004.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top