跳到主要內容

臺灣博碩士論文加值系統

(44.211.239.1) 您好!臺灣時間:2023/02/05 21:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃麒安
研究生(外文):Chi-An Huang
論文名稱:針對不確定非線性系統使用類神經網路之多目標強健適應觀察器設計
論文名稱(外文):Multiobjective robust adaptive observer design for uncertain nonlinear systems using neural networks
指導教授:游文雄
指導教授(外文):Wen-Shyong Yu
學位類別:碩士
校院名稱:大同大學
系所名稱:電機工程學系(所)
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:43
中文關鍵詞:觀察器非線性適應線性矩陣不等式類神經網路
外文關鍵詞:adaptiveLMIneural networksnonlinearobserver
相關次數:
  • 被引用被引用:0
  • 點閱點閱:110
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
在本篇論文中,我們針對可經由狀態空間轉換成為特殊等效可觀標準形式(observable canonical form)的非線性系統類型,其在具有未知系統參數以及有界干擾下,提出一個包含H2追蹤性能、H∞追蹤性能、以及區域性極點限制多重目標的混合類神經網路消去法則與滑動模式控制行為強健適應觀察器(robust adaptive observer)。此適應類神經網路與滑動模式控制行為分別被用來估測系統的不確定性以及抵銷經由類神經近似所產生近似誤差的影響。我們將具有區域性極點限制的H∞追蹤性能以及具有區域性極點限制的混合H2/H∞追蹤性能的兩個不同目標,以線性矩陣不等(linear matrix inequality)公式發展閉迴路系統穩定之充分條件。在論文的最後,我們將經由兩個模擬的結果來驗證所提出理論的有效性。
In this thesis, a robust adaptive observer incorporating neural network elimination scheme and sliding-mode control action for multiobjectives including H2 tracking performance, H∞ tracking performance, and regional pole constraints is proposed in some class of single-output nonlinear systems with unknown internal parameters and bounded external disturbances. The nonlinear systems can be transformed by state-space change of coordinates into a special observable canonical form. The adaptive neural networks and the sliding-mode control action are used for plant uncertainty estimates and to eliminate the effect of approximation error via neural network approximation, respectively. The sufficient conditions are developed for different objectives in terms of linear matrix inequality (LMI) formulations, which include H∞ tracking performance with regional pole constraints and mixed H2/H∞ tracking performance with regional pole constraints. Finally, two simulation results show the effectiveness of the proposed scheme.
ABSTRACT(IN CHINESE).....I
ABSTRACT(IN ENGLISH).....II
ACKNOWLEDGES.....III
1 INTRODUCTION.....1
2 MODEL DESCRIPTION AND PROBLEM FORMULATION.....4
3 THE ADAPTATION ALGORITHM AND SLIDING-MODE CONTROL.....10
4 LMI FORMULATION OF THE DESIGN SPECIFICATIONS.....14
4.1 The H∞ tracking performance.....14
4.2 The H2 tracking performance.....17
4.3 Regional pole constraints.....19
4.4 H∞ tracking performance with regional pole constraints.....20
4.5 Mixed H2/H∞ tracking performance with regional pole constraints.....21
5 SIMULATIONS.....22
5.1 Example of single-link robot.....22
5.1.1 H∞ tracking performance without regional pole constraints.....23
5.1.2 H∞ tracking performance with regional pole constraints.....23
5.1.3 Mixed H2/H∞ tracking performance with regional pole constraints.....24
5.2 Example of inverted pendulum system.....24
5.2.1 H∞ tracking performance with regional pole constraints.....25
5.2.2 Mixed H2/H∞ tracking performance with regional pole constraints.....25
6 CONCLUSIONS.....31
APPENDIX: The boundedness of state error in the presence of external disturbances.....32
REFERENCES.....34
[1] R. Marine, G.L. Santosuosso, and P. Tomei, ``Robust adaptive observer for nonlinear systems with bounded disturbances," IEEE Trans. Automat. Contr., vol. 46, no. 6, pp. 967-972, June 2001.
[2] C.S. Tseng and B.S. Chen, ``Multiobjective PID control design in uncertain robotic systems using neural network elimination scheme," IEEE Trans., Syst., Man and Cyber., Part A, vol. 31, no. 6, pp. 632-644, Nov. 2001.
[3] G. Bastin and M. Gevers, ``Stable adaptive observers for nonlinear time-varying systems," IEEE Trans. Automat. Contr., vol. 33, no. 7, pp. 650-658, July 1988.
[4] R. Marino, ``Adaptive observers for single output nonlinear systems," IEEE Trans. Automat. Contr., vol. 35, no. 9, pp. 1054-1058, Sept. 1990.
[5] R. Marino and P. Tomei, ``Global adaptive observers for nonlinear systems via filtered transformations," IEEE Trans. Automat. Contr., vol. 37, no. 8, pp. 1239-1245, Aug. 1992.
[6] R. Marino and P. Tomei, ``Adaptive observers with arbitrary exponential rate of convergence for nonlinear systems," IEEE Trans. Automat. Contr., vol. 40, no. 7, pp. 1300-1304, July 1995.
[7] G. Luders and K. S. Narendra, ``A new canonical form for an adaptive observer," IEEE Trans. Automat. Contr., vol. AC-19, pp. 117-119, Apr. 1974.
[8] K. S. Narendra and A. M. Annaswamy, Stable Adaptive Systems. Englewood Cliffs, NJ: Prentice-Hall, 1989.
[9] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in Systen and Control Theory. Philadelphia, PA: SIAM, 1994.
[10] K. S. Narendra and K. Parthasarathy, ``Identification and control of dynamical systems using neural networks," IEEE Trans. Neural Networks, vol. 1, no. 1, pp. 4-27, Mar. 1990.
[11] M. Chilali and P. Gahinet, ``H∞ design with pole placement constraints: An LMI approach," IEEE Trans. Automat. Contr., vol. 41, no. 3, pp. 358-367, Mar. 1996.
[12] M. Chilali and P. Gahinet, ``Pole assignment of linear uncertain systems in a sector via a Lyapunov-type approach," IEEE Trans. Automat. Contr., vol. 38, no. 7, pp. 1128-1132, July 1993.
[13] W.S. Yu and G.C. Wang, ``Adaptive control design using delayed dynamical neural networks for a class of nonlinear systems," Proc. of the 2001 IEEE Int. Conf. on Robotics and Automation, Seoul, Korea, vol. 4, pp. 3447-3452, May 2001.
[14] B.S. Chen, C.S. Tseng, and H.J. Uang, ``Mixed H2/H∞ fuzzy output feedback control design for nonlinear dynamic systems: an LMI approach," IEEE Trans. Fuzzy Syst., vol. 8, no. 3, pp. 249-265, June 2000.
[15] R. Ordonez, J. Zumberge, J. T. Spooner, and K. M. Passino, ``Adaptive fuzzy control: Experiment and comparative analysis," IEEE Trans. Fuzzy Syst., vol. 5, no. 2, pp. 167-188, May 1997.
[16] K. Narendra and A.M. Annaswamy, ``A new adaptive law for robust adaptation without persistent excitation," IEEE Trans. Automat. Contr., vol. AC-32, no. 2, pp. 134-145, Feb. 1987.
[17] J.T. Spooner and K.M. Passino, ``Stable adaptive control using fuzzy systems and neural networks," IEEE Trans. Fuzzy Syst., vol. 4, no. 3, pp. 339-359, Aug. 1996.
[18] H.K. Khalil,``Adaptive output feedback control of nonlinear systems represented by input-output models," IEEE Trans. Automat. Contr., vol. 41, no. 2, pp. 177-188, Feb. 1996.
[19] C. Scherer and P. Gahinet, ``Multiobjective output-feedback control via LMI optimization," IEEE Trans. Automat. Contr., vol. 42, no. 7, pp. 896-911, July 1997.
[20] H. K. Khalil, Nonlinear Systems. Englewood Cliffs, NJ: Prentice-Hall, 1996.
[21] M. Vidyasagar, Nonlinear Systems Analysis. Second Edition, NJ: Prentice-Hall, 1993.
[22] D. J. Limebeer, B. D. O. Anderson, and B. Hendel, ``A Nash game approach to moxed H2/H∞ control," IEEE Trans. Automat. Contr., vol. 39, no. 1, pp. 69-82, Jan. 1994.
[23] M. Zhihong, H. R. Wu, and M. Palaniswami, ``An adaptive tracking controller using neural networks for a class of nonlinear systems," IEEE Trans. Neural Networks, vol. 9, no. 5, pp. 947-955, Sept. 1998.
[24] J. J. Slotine and W. Li, Applied Nonlinear Control.
Englewood Cliffs, NJ: Prentice-Hall, 1991.
[25] P. Gahinet, A. Nemirovski, A. J. Laub, and M. Chilali, LMI Control Toolbox. Natick, MA: The MathWorks, 1995.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top