( 您好!臺灣時間:2023/01/29 10:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::


研究生(外文):Meng-Wen Chang
論文名稱(外文):Stripping of Organic Compounds from Wastewater as an Auxiliary Fuel of Regenerative Thermal Oxidizer
指導教授(外文):Jia-Ming Chern
外文關鍵詞:regenerative thermal oxidizerstripper
  • 被引用被引用:0
  • 點閱點閱:154
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘 要
Beside processes themselves, the air and wastewater pollutions caused by manufacturing processes have long been troubles to industries, especially for the processes generating high COD wastewater and low VOC waste gas. No matter what treatment processes are used, the treatment costs for the high COD wastewater and low VOC waste gas are so high that sometimes the industries are not able or willing to pay for. Due to recent development of the ceramic energy-storing materials that can recover over 95% of the waste heat from thermal incinerators, combustion of the low VOC waste gas is no longer too expensive to be accepted by industries. This study used a packed bed stripping tower in combination with a regenerative thermal oxidizer to treat the COD in the wastewater from a PCB manufacturing process. The acetone wastewater was first used to test the operating dynamics of the stripping tower, and then the real PCB wastewater was treated by the system. The experimental results showed that the combined system could effectively remove the acetone from the wastewater and treat the high COD wastewater from PCB manufacturing process.

1.1 Background 1
1.2 Objectives and Scope 4
2.1 Organic Wastewater Treatment 5
2.1.1 Activated Carbon Adsorption 5
2.1.2 Advanced Oxidation Process 7
2.2 Organic Waste Gas Treatment 10
2.2.1 Absorption and Adsorption 12
2.2.2 Thermal Oxidation 13
2.2.3 Catalytic Oxidation 20
2.2.4 VOC Treatment Studies 25
3.1 Apparatus 28
3.1.1 VOC Stripping Unit 28
3.1.2 VOC Incineration Unit 30
3.2 Source of Wastewater 35
3.3 Experimental Procedures 36
3.3.1 Air Blower Performance Test 36
3.3.2 Heat Recovery Efficiency Test 36
3.3.3 COD Stripping Test 37
4.1 RTO Performance Test 39
4.2 Stripping of Acetone Wastewater 48
4.3 Stripping of PCB Wastewater 53

(1)Beltran, F. J.; Rivas, J.; Alvarez, P. M.; Alonso, M. A.; Acedo, B. A kinetic model for advanced oxidation processes of aromatic hydrocarbons in water: application to phenanthrene and nitrobenzene. Ind. Eng. Chem. Res. 1999, 38, 4189-4199.
(2)Cha, J. S.; Maliks, V.; Bhaumik, D.; Li, R.; Sirkar, K. K. Removal of VOCs from waste gas streams by permeation in a hollow fiber permeator. Journal of Membrane Science 1997, 128, 195-211.
(3) Chern, J. M., Helfferich, F. G. Effective kinetic modeling of multistep homogeneous reactions. AIChE J. 1990, 36, 1200-1208.
(4)Chatzopoulos, D., Varma A. Aqueous-phase adsorption and desorption of toluene in activated carbon fixed beds: Experiments and model. Chem. Eng. Sci. 1995, 50, 127-141.
(5)Chen, T. S., Chern, J. M. Kinetic modeling of p-nitrophenol decomposition by fenton reagent. Asian Waterqual 2003, 2QHF09, Bangkok Thailand, 2003.
(6)Chern, J. M., Huang, S. N. Study of non-linear wave propagation theory: 1. Dye adsorption by activated carbon. Ind. Eng. Chem. Res. 1998, 37, 253-257.
(7)Chern, J. M., Huang, S. N. Study of non-linear wave propagation theory: 2. Interference phenomena of single-component dye adsorption waves. Sep. Sci. Technol. 1999, 34, 1993-2011.
(8)Chern, J. M., Wu, C. Y. Adsorption of binary dye solution onto activated carbon: Isotherm and breakthrough curves. J. CIChE. 1999, 30, 507-514.
(9)Chern, J. M., Chien, Y. W. Adsorption of nitrophenol onto activated carbon beds: Isotherms and breakthrough curves. Wat. Res. 2002, 36, 647-655.
(10)Cummings, M. A.; Coogan, J. Cost effectiveness of silent discharge plasma for point-of-use VOC emissions control in semiconductor fabrication. Institution of Chemical Engineers Symposium Series, 1997, 143, 179-186.
(11)Daifullah, A. E., El-Reefy, S., Gad, H. Adsorption of p-nitrophenol on Inshas incinerator ash and on the pyrolysis residue of animal bones. Ads. Sci. Technol. 1997, 15, 485-496.
(12)Daifullah, A. A. M., Girgis, B. S. Removal of some substituted phenols by activated carbon obtained from agriculture waste. Wat. Res. 1998, 32, 1169-1177.
(13)Gee, I. L., Sollars, C. J., Fowler, G., Ouki, S. K., Perry, R. Use of a liquid chemical waste to produce a clay-carbon adsorbent. J. Chem. Technol. Biotech. 1998, 72, 329-338.
(14)Ghaly, M. Y., Hartel, G., mayer, R., Haseneder, R. Photochemical oxidation of p-chlorophenol by UV/H2O2 and photo-Fenton process. A comparative study. Waste Manag. 2001, 21, 41-47.
(15)Helfferich, F. G., Klein, G. Multicomponent Chromatography: Theory of Interference; Marcel Dekker: New York, NY, 1970.
(16)Hobday, M. D., Li, P. H. Y., Crewdson, D. M., Bhargava, S. K. Use of low rank coal-based adsorbents for the removal of nitrophenol from aqueous solution. Fuel 1994, 73, 1848-1854.
(17)Kang, N., Lee, D. S., Yoon, J. Kinetic modeling of Fenton oxidation of phenol and monochlorophenols. Chemosphere 2002, 47, 915-924.
(18)Karimi-Jashni, A., Narbaitz, R. M. Impact of pH on the adsorption and desorption kinetics of 2-nitrophenol on activated carbons. Wat. Res. 1997, 31, 3039-3044.
(19)Kastner, J. R.; Das, K. C. Wet scrubber analysis of volatile organic compound removal in the rendering industry. Journal of the Air and Waste Management Association, 2002, 52, 459-469.
(20)Konstantinou, I. K., Sakkas, V. A., Albanis, T. A. Photocatalytic degradation of propachlor in aqueous TiO2 suspensions. Determination of the reaction pathway and identification of intermediate products by various analytical methods. Wat. Res. 2002, 36, 2733-2742.
(21)Kwon, B. G., Lee, D. S., Kang, N., Yoon, J. Characteristics of p-chlorophenol oxidation by Fenton’s reagent. Wat. Res. 1999, 33, 2110-2118.
(22)Laat, J. D., Gallard, H. Catalytic decomposition of hydrogen peroxide by Fe(III) in homogeneous aqueous solution: mechanism and kinetic modeling. Environ. Sci. Technol. 1999, 33, 2726-2732.
(23)Leboda, R., Charmas, B. Evaluation of surface area of carbon component of model carbon-silica adsorbents from adsorption data of p-nitrophenol from aqueous solutions. Colloids Surf. A: Phys. Eng. Asp. 1998, 135, 267-275.
(24)Lee, J. H., Song, D. I., Jeon, Y. W. Adsorption of organic phenols onto dual organic cation montmorillonite from water. Sep. Sci. Technol. 1997, 32, 1975-1992.
(25)LeVan, M. D., Carta, G., Yon, C. M. Adsorption and Ion Exchange. In Perry‘s Chemical Engineers’ Handbook, 7th ed., Perry, R. H., Green, D. W., Maloney, J. O., Eds., McGraw-Hill, New York, 1997.
(26)Lin, S.-H., Lin, C.-M., Leu, H.-G. Operating characteristics and kinetic studies of surfactant wastewater treatment by Fenton oxidation. Wat. Res. 1999, 33, 1735-1741.
(27)Lin, S.-S., Gurol, M. D. Catalytic decomposition of hydrogen peroxide on iron oxide: kinetics, mechanism, and implications. Environ. Sci. Technol. 1998, 32, 1417-1423.
(28)Lu, M.-C. Oxidation of chlorophenols with hydrogen peroxide in the presence of goethite. Chemosphere 2000, 40, 125-130.
(29)Moreno-Castilla, C., Rivera-Utrilla, J., Lopez-Ramon, M. V., Carrasco-Marin, F. Adsorption of some substituted phenols on activated carbons from a bituminous coal. Carbon 1995, 33, 845-851.
(30)Pichat, P. Photocatalytic degradation of aromatic and alicyclic pollutants in water: by-products, pathways and mechanisms. Wat. Sci. Technol. 1997, 35, 73-78.
(31)Pitts, D. M. Technical and economic evaluation of the use of honeycomb structured packing for the design of regenerative thermal oxidizers. Proceedings of the Air & Waste Management Association's Annual Meeting & Exhibition, 1998, 98-MA6.02, 12.
(32)Ruthven, D. M. Principles of Adsorption and Adsorption Processes, Wiley: New York, 1984.
(33)Salden, A.; Eigenberger, G. Multifunctional adsorber/reactor concept for waste-air purification. Chem. Eng. Sci. 2001, 56, 1605-1611.
(34)Schnelle, K. B. Jr., Brown, C. A. Air Pollution Control Technology Handbook, CRC Press, New York, 2002.
(35)Slaney, A. J., Bhamidimarri, R. Adsorption of pentachlorophenol (PCP) by activated carbon in fixed beds: application of homogeneous surface diffusion model. Wat. Sci. Technol. 1998, 38, 227-235.
(36)Srivastava, S. K, Tyagi, R. Competitive adsorption of substituted phenols by activated carbon developed from the fertilizer waste slurry. Wat. Res. 1995, 29, 483-488.
(37)U.S. Environmental Protection Agency Handbook-Control Technologies for Hazardous Air Pollutants, EPA-625-6-91-014, Research Triangle Park, NC, 1991.
(38)Walling, C., Goosen, A. Mechanism of the ferric ion catalysed decomposition of hydrogen peroxide. Effect of organic substrates. J. Am. Chem. Soc. 1973, 95, 2987-2991.
(39)Walling, C., El-Taliawi, G. M., Johnson, R. A. Fenton reagent. Structure and reactivity relations in the reactions of hydroxyl radicals and the redox reactions of radicals. J. Am. Chem. Soc. 1974, 96, 133-139.
(40)Walling, C. Fenton’s reagent revisited. Acc. Chem. Res. 1975, 8, 125-131.
(41)Wang, X.; Daniels, R.; Baker, R.W. Recovery of VOCs from high-volume, low-VOC-concentration air streams. AIChE Journal, 2001, 47, 1094-1100.
(42)Wolborska, A. Adsorption on activated carbon of p-nitrophenol from aqueous solution. Wat. Res. 1989, 23, 85-91.
(43)Wolborska, A. and Pustelnik, P. A Simplified method for determination of the break-through time of an adsorbent layer. Wat. Res. 1996, 30, 2643-2650.
(44)Wolborska, A. External film control of the fixed bed adsorption. Chem. Eng. J. 1999, 73, 85-92.
(45)Wu, K., Xie, Y., Hidaka, H. Photo-Fenton degradation of a dye under visible light irradiation. J. Mol. Cat. A: Chem. 1999, 144, 77-84.
(46)Yang, C.; Suidan, M. T.; Zhu, X.; Kim, B. J. Comparison of single-layer and multi-layer rotating drum biofilters for VOC removal. Environ. Progress 2003, 22, 87-94.
(47)Yoon, J., Lee, Y., Kim, S. Investigation of the reaction pathway of OH radicals produced by Fenton oxidation in the conditions of wastewater treatment. Wat. Sci. Technol. 2001, 44, 15-21.
(48)Zagoruiko, A. N.; Kostenko, . V.; Noskov, A. S. Development of the adsorption-catalytic reverse-process for incineration of volatile organic compounds in diluted waste gases. Chem. Eng. Sci. 1996, 51, 2989-2994.
第一頁 上一頁 下一頁 最後一頁 top