跳到主要內容

臺灣博碩士論文加值系統

(44.222.82.133) 您好!臺灣時間:2024/09/15 22:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭傑元
研究生(外文):Je-Yuan Cheng
論文名稱:應用離散餘弦轉換降低OFDM峰均值比
論文名稱(外文):PAPR Reduction For OFDM By Using Discrete Cosine Transform
指導教授:許超雲許超雲引用關係
指導教授(外文):Chau-Yun Hsu
學位類別:碩士
校院名稱:大同大學
系所名稱:通訊工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:47
中文關鍵詞:離散餘弦轉換峰均值比正交多頻分工
外文關鍵詞:DCTOFDMPAPR
相關次數:
  • 被引用被引用:0
  • 點閱點閱:162
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
正交多頻分工(OFDM)係利用多載波來傳送資料,資料被分散到許多的子載波,就像平行傳輸,而非單一載波傳輸。每一個子載波都以低傳輸速率傳送小量資料,因此,OFDM就像是平行資料傳輸及分頻多工等技術的結合。OFDM可以增強對抗頻率選擇性衰減及多重路徑傳播干擾的能力。
OFDM在歐洲、日本及台灣已廣泛應用在無線數位電視地面廣播,此外,OFDM也應用在高速率之電話線路(例如ADSL)、無線區域網路(例如IEEE802.11a/g)等。
OFDM擁有許多優點,但存在峰值對平均功率比(PAPR)很高的問題。這是由於多載波訊號的合成會產生比平均訊號位準高出許多的峰值訊號,導致高PAPR的嚴重缺點。
高PAPR將導致訊號非線性失真、接收資料錯誤率增加及鄰頻干擾等嚴重問題,因此必須使用高階之發射機、高解析之類比數位(A/D)及數位類比(D/A)轉換器等方法來克服這些問題,相對導致設備及營運成本的增加。
本研究目的在於探討如何利用離散餘弦轉換(DCT)降低PAPR,以改善OFDM應用成本。
OFDM (Orthogonal Frequency Division Multiplexing) is using multi-carries to transmit data. The transmitted data are separated into many sub-carriers as parallel transmission, instead of one carrier. Only a small amount of the data is transported on each sub-carrier, and by this lowering of the bit rate per sub-carrier. OFDM can be seen as a parallel data transmission and frequency multiplexing techniques (FDM). The approach can increase robustness against frequency selective fading and multipath immunity.
OFDM is used for Terrestrial Digital TV broadcasting in Europe, Japan and Taiwan. In addition, OFDM is used in high-speed telephone line communications such as ADSL, and wireless LAN such as IEEE802.11a/g.
Although OFDM has many advantages, it has a problem which is high Peak-to-average power ratio (PAPR). OFDM has high peak more than the average signal level because OFDM is composed of thousands of orthogonal waves. It is a serious defect.
The defect results in these serious problems such as nonlinear distortion and increases bit error rate (BER) of receiver, next-channel Interference, etc. We must use a high-level transmitter, an high-resolution A/D and D/A converter, etc. to overcome these defects. It will increase equipment and business capital.
The main purpose of this thesis is to discuss how to use discrete cosine transform (DCT) to reduce PAPR and improve application capital of OFDM.
ACKNOWLEDGMENT i
ABSTRACT ii
中文摘要 iii
TABLES OF CONTENTS iv
LIST OF FIGURES vi
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Literature Review 1
1.3 Scope of the Present Study 2
Chapter 2 Overview of OFDM 3
2.1 History of OFDM 3
2.2 Description of OFDM System 4
2.3 Characteristics of OFDM 7
2.4 PAPR problem 8
Chapter 3 PAPR Reduction Techniques 12
3.1 Signal Distortion Techniques 12
3.1.1 Clipping 12
3.1.2 Peak Windowing 13
3.1.3 Peak Cancellation 13
3.2 Coding Techniques 14
3.2.1 Block Coding 14
3.2.2 M Sequences 14
3.2.3 Golay Complementary Codes 15
3.3 Multiple Signal Representation 16
3.3.1 Selected Mapping (SLM) 16
3.3.2 Partial Transmit Sequence (PTS) 18
3.3.3 Random Interleaving (RI) 20
3.4 Discrete Cosine Transform (DCT) 22
Chapter 4 Results and Discussion 27
4.1 PAPR Reduction using DCT by QPSK 27
4.2 PAPR Reduction using DCT by 16-QAM 29
4.3 PAPR Reduction using DCT by 64-QAM 32
4.4 The PAPR Reduction Performance of DCT Compare with MSR 34
Chapter 5 Conclusions 35
Chapter 6 Recommendation for Future Studies 36
REFERENCES 37




LIST OF FIGURES

Fig. 2.1 Block diagram of an OFDM system 5
Fig. 2.2 The QPSK, 16-QAM and 64-QAM mappings 6
Fig. 2.3 The spectrum of OFDM 7
Fig. 2.4 OFDM Cyclic Prefix 8
Fig. 2.5 The reason of causing peak 9
Fig. 2.6 A large-PAPR signal 9
Fig. 2.7 A small-PAPR signal 10
Fig. 3.1 Block diagram of Selected Mapping 17
Fig. 3.2 PAPR reduction performance of using SLM 17
Fig. 3.3 Block diagram of Partial Transmit Sequence 18
Fig. 3.4 PAPR reduction performance of using PTS 19
Fig. 3.5 Block diagram of Random Interleaving 21
Fig. 3.6 PAPR reduction performance of using RI 21
Fig. 3.7 The OFDM system by using DCT 23
Fig. 3.8 The energy compaction property of DCT by using 16 the same 16-QAM symbols 24
Fig. 3.9 The energy compaction property of DCT by using 16 different 16-QAM symbols 26
Fig. 4.1 PAPR reduction performance (QPSK, 2K mode) 28
Fig. 4.2 Mapping symbols Error Rate (QPSK, 2K mode) 28
Fig. 4.3 PAPR reduction performance (QPSK, 8K mode) 29
Fig. 4.4 Mapping symbols Error Rate (QPSK, 8K mode) 29
Fig. 4.5 PAPR reduction performance (16-QAM, 2K mode) 30
Fig. 4.6 Mapping symbols Error Rate (16-QAM, 2K mode) 30
Fig. 4.7 PAPR reduction performance (16-QAM, 8K mode) 31
Fig. 4.8 Mapping symbols Error Rate (16-QAM, 8K mode) 31
Fig. 4.9 PAPR reduction performance (64-QAM, 2K mode) 32
Fig. 4.10 Mapping symbols Error Rate (64-QAM, 2K mode) 32
Fig. 4.11 PAPR reduction performance (64-QAM, 8K mode) 33
Fig. 4.12 Mapping symbols Error Rate (64-QAM, 8K mode) 33
Fig. 4.13 The comparison of PAPR reduction performance between DCT and MSR 34
1.R.V. Nee and R. Prasad, OFDM Wireless Multimedia Communications, Boston London, Artech House, 2000
2.M. Y. Hsu, “Low-Complexity Peak-to-Average Power Ratio Reduction Techniques for OFDM-Based Communication Systems”, Master thesis, National Tsing Hua University, Taiwan, Republic of China, July 2002.
3.J. Jedwab, “M-Sequences for OFDM Peak-to-Average Power Ratio Reduction and Error Correction”, Networked Systems Department, HP Laboratories Bristol, HPL-97-65, April 1997.
4.A. D. S. Jayalath and C. R. N. Athaudage, “On the PAR Reduction of OFDM Signals Using Multiple Signal Representation”, The 14th IEEE Proceedings on Personal, Indoor and Mobile Radio Communications Proceedings, pp. 799-803, Sept. 2003.
5.S. G. Kang, J. G. Kim and E. K. Joo, “A novel sub block partition scheme for partial transmit sequence OFDM”, IEEE Trans. Commun., vol. 45, pp. 333-338, 1999.
6.S. H. Müller and J. B. Huber, “A novel peak power reduction scheme for OFDM”, Proc. 8th IEEE Person. Indoor Mobile Rayio Commun., Heisinki, Finland, vol. 3, pp. 1090-1094, Sep. 1997.
7.S. Saha, “Image Compression - from DCT to Wavelets : A Review”, ACM Crossroads Student Magazine, Web Site URL: http://www.acm.org/crossroads/xrds6-3/sahaimgcoding.html.
8.W. Li, “A New Algorithm to Compute the DCT and its Inverse”, IEEE Transactions on Signal Processing, vol. 39, no. 6, JUNE 1991.
9.K. R. Rao and P. Yip, Discrete Cosine Transform: Algorithms, Advantages, Applications, and Academic Press 1990.
10.European Telecommunications Standard, “Digital Video Broadcasting (DVB); Framing structure, channel coding and modulation for digital terrestrial television” ETSI EN 300 744 V1.4.1, Jan. 2001.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top