跳到主要內容

臺灣博碩士論文加值系統

(44.212.99.248) 您好!臺灣時間:2023/01/28 12:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林子欽
研究生(外文):Tzu-Chin Lin
論文名稱:新型(S)-2-(6-甲氧基-2-萘基)丙酸衍生之旋光性液晶材料的合成與性質的研究
論文名稱(外文):SYNTHESIS AND PROPERTIES OF NOVEL CHIRAL LIQUID CRYSTALS DERIVED FROM (S)-2-(6-METHOXY-2-NAPHTHYL)PROPIONIC ACID
指導教授:吳勛隆
指導教授(外文):Shune-Long Wu
學位類別:碩士
校院名稱:大同大學
系所名稱:化學工程學系(所)
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:153
中文關鍵詞:誘電性液晶液晶
外文關鍵詞:ferroelectric liquid crystalsliquid crystals
相關次數:
  • 被引用被引用:0
  • 點閱點閱:95
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:1
本研究目的是探討旋光性末端烷鏈部份對於液晶相及其物性的影響。以(S)-2-(6-methoxy-2-naphthyl)propionic acid為起始物合成出七個具有不同旋光性尾鏈結構以探討化合物不同結構的旋光烷鏈與液晶相的關係。
第一部分合成兩系列旋光性燕尾型液晶材料:(S)-2-(6-(4-(4¢-alkanoyloxyphenyl
))benzoyloxy)-2-napthyl)propionate, PmPBNP (m=7-11) 和2-ethyl-1-butyl
(S)-2-(6-(4-(4¢-alkanoyloxyphenyl)benzoyloxy)2-napthyl)propionate, EBmPBNP
(m=7-11),探討以燕尾結構作為旋光尾鏈對於液晶相及其物性的影響。
化合物PmPBNP (m=7-8)具有Iso-N*-TGBA*-SmA*-CrX*-Cr的相順序而化合物PmPBNP (m=9-11)具有Iso-N*-TGBA*-SmA*-SmCA*-CrX*-Cr的相順序。隨著增加非旋光烷鏈的長度會增加SmCA*相的熱穩定性但是SmA*的溫度範圍卻會變小。電流轉換行為、可溶混性實驗和介電性質的研究證實這系列的液晶材料具有反誘電性液晶相(SmCA*)的存在,在自發極化值方面隨著非旋光烷鏈的增加而自發極化值也隨之增加。在反誘電液晶相中可以得到無閥值之V型轉換行為。
化合物EBmPBNP (m=8-11)具有Iso-N*-SmA*-SmC*-CrX*-Cr的相順序而EB7PBNP則具有Iso-N*-SmA*-CrX*-Cr的相順序。當增加非旋光烷鏈的長度SmC*相的溫度範圍變廣而SmA*相的溫度範圍變窄。在燕尾結構與旋光中心間增加一個甲基會降低液晶相的熱穩定性。在自發極化值方面隨著非旋光烷鏈的增加而自發極化值也隨之增加;而在光電應答的研究顯示這系列的化合物在誘電性液晶相中可以得到無閥值之V型轉換行為。
第二部分合成四系列含有氟化烷鏈之液晶材料PBNP(p,m,n) (p=7-11; m=3, n=2; m=2, n=4; m=3, n=4; m=2, n=6),探討以半氟化烷鏈作為旋光尾鏈對於液晶相及其物性的影響。此外合成一個不含半氟化烷鏈之液晶材料PBNP(p,6,0) (p=7-11)與PBNP(p,2,4) (p=7-11)比較。
化合物PBNP(p,m,n) (p=7-11; m=3, n=2; m=2, n=4; m=3, n=4; m=2, n=6)大多都具有Iso-SmA*-SmC*-Cr的相順序,實驗結果顯示導入半氟化烷鏈於旋光尾鏈的確能有利於層列相(smectic phases)的產生並且會增加液晶相的熱穩定性。由化合物的紋理圖鑑定、電流轉換行為、自發極化值和介電性質研究顯示這些旋光性液晶材料確實具有SmC*相的存在。光電應答的結果顯示在SmC*相中具有無閥值之V型轉換行為。此外無論含有半氟化烷鏈的PBNP(p,2,4)系列和不含半氟化烷鏈的PBNP(p,6,0)系列在SmC*相中都具有無閥值之V型轉換行為。
綜合以上結果得知以(S)-2-(6-methoxy-2-naphthyl)propionic acid為起始物合成出的旋光性液晶材料似乎有利於產生無閥值之V型轉換行為,這些結果可以作為日後液晶分子設計的重要參考。
The aim of the research work was intended to study the effect of terminal chiral chain moiety on the mesophases and mesomorphic properties. By means of chiral compound, (S)-2-(6-methoxy-2-naphthyl)propionic acid as building block, seven homologous series of liquid crystal materials comprised of different chiral chain were synthesized for investigating the correlation between the chemical structure of chiral tails and mesomorphic properties.
Chiral swallow-tailed compounds (S)-2-(6-(4-(4¢-alkanoyloxyphenyl))benzoyl-
oxy)-2-napthyl)propionate, PmPBNP (m=7-11) and 2-ethyl-1-butyl (S)-2-(6-(4-(4¢-
alkanoyloxyphenyl)benzoyloxy)2-napthyl)propionate, EBmPBNP (m=7-11) were synthesized for studying the effect of swallow-tailed moiety of chiral chain on mesomorphic properties.
Compounds PmPBNP (m=7-8), display enantiotropic mesophases of the N*, TGBA*, SmA* and CrX* phases whereas the materials PmPBNP (m=9-11) show enantiotropic mesophases of the N*, TGBA*, SmA* and SmCA* phases. An increasing chain length of methylene (m) can enhance the thermal stability of the SmCA* phase, but the temperature range of the SmA* phase decreases. The study of switching curve, miscibility study and dielectric property demonstrates that the series of chiral materials possess SmCA* phase. The magnitude of spontaneous polarization for materials PmPBNP(m=9-11) increase as the length of achiral aliphatic chain increases. The thresholdless, V-shaped switching property can be obtained in the SmCA* phase.
Compounds EBmPBNP (m=8-11) show the enantiotropic mesophases of the N*, SmA*, SmC* and CrX* phases whereas compound EB7PBNP shows enantiotropic mesophases of the N*, SmA*, and CrX* phases. As the chain length of terminal achiral chains increasing, the temperature range of the SmC* phase becomes wide while that of the SmA* phase becomes narrow. Moreover, extending of a methylene between chiral center and swallow-tailed moieties leads to suppress the thermal stability of mesophases. The magnitude of spontaneous polarization for materials EBmPBNP (m=8-11) increase as the length of achiral aliphatic chain increases. The study of electro-optical response indicates that this series of chiral materials in the SmC* phase exhibit thresholdless, V-shaped switching property.
Four homologous series of chiral semi-fluorinated liquid crystals, PBNP(p,m,n) (p=7-11; m=3, n=2; m=2, n=4; m=3, n=4; m=2, n=6), were synthesized for investigating the influence of semi-fluorinated chain on mesomorphic properties. In addition, a homologous series of non-fluorinated compounds, PBNP(p,6,0), were synthesized in order to compare to the fluorinated compounds, PBNP(p,2,4).
Compounds PBNP(p,m,n) (p=7-11; m=3, n=2; m=2, n=4; m=3, n=4; m=2, n=6) mostly show the enantiotropic mesophases of SmA* and SmC* phases. The results reveal that introduction of semi-fluorinated chain on chiral tails indeed favor the formation of the smectic phases and enhance the thermal stability of the mesophases. The study of texture observation, switching current behavior and dielectric properties demonstrates that these chiral materials truly possess existence of the SmC* phase. The results of the electro-optical response exhibit the thresholdless, V-shaped switching property in the SmC* phase. Furthermore, both non-fluorinated and fluorinated compounds, for example of PBNP(p,6,0) and PBNP(p,2,4), the V-shaped switching can be obtained in the SmC* phase at appropriate frequency and temperature.
In conclusion, the results indicate that these chiral materials derived from (S)-2-(6-methoxy-2-naphthyl)propionic acid seem favorable for the formation of the thresholdless and V-shaped switching properties.
TABLE OF CONTENTS

CHINESE ABSTRACT………….………………………………..……………………III
ENGLISH ABSTRACT…………………………………………………………………V
ACKNOWLEDGMENTS………………..………………….………………..………VII
TABLE OF CONTENTS…………………………………………..……..…………..VIII
LIST OF SCHEME……………………………………………………….…………..XIII
LIST OF TABLES……………………………………………………….……………XIV
LIST OF FIGURES…………….….……..…………………………………………..XVI
CHAPTER 1
INTRODUCTION……………………………………..…………………….…………..1
1.1 Overview………………………….……………………………………………..….…1
1.2 Cholesteric (Ch) or chiral nematic (N*) phase………..……………………………….1
1.3 Chiral smectic phases……………..…………………………………………..……….3
1.3.1 Chiral smectic A phase………………….……………………………..……….……3
1.3.2 Chiral smectic C phase (ferroelectric phase)……….……………………………6
1.3.3 Antiferroelectric (SmCA*) phase……………..……………………………………..12
1.3.4 Thresholdless antiferroelectricity and V-shaped switching………………..……….17
1.4 Frustrated phases…………………..………………..………………………………..22
1.4.1 Blue phases…………….…………………………..……………………………….22
1.4.2 Twist grain boundary phases……………………..………………………….….….25
1.5. Motivation of study………………………………..………………………….……..27
1.5.1 Chiral swallow-tailed liquid crystals……………………………………………….27
1.5.2 Highly fluorinated chiral liquid crystals……………………………………………32
CHAPTER 2
EXPERIMENTAL……………………………………….……………………………..36
2.1 Preparation of Materials……………………………….……………………………..36
2.1.1 Synthesis of 4-(4’-alkanoyloxyphenyl)benzoic acids, PBA(m)……………….…..36
2.1.2 Synthesis of 3-pentyl (S)-2-(6-methoxy-2-naphthyl)propionate, MNP(0)……..….39
2.1.3 Synthesis of 2-ethyl-1-butyl (S)-2-(6-methoxy-2-naphthyl)propionate, MNP(1)…………………………………………………………………………..……….39
2.1.4 Synthesis of 3-pentyl (S)-2-(6-hydroxy-2-naphthyl)propionate, HNP(0)………….39
2.1.5 Synthesis of 2-ethyl-1-butyl (S)-2-(6-hydroxy-2-naphthyl)propionate, HNP(1)……………………………………………………………………………….…..40
2.1.6 Synthesis of 3-pentyl (S)-2-(6-(4-(4¢-alkanoyloxyphenyl))benzoyloxy)-2-
napthyl)propionate, PmPBNP (m=7-11)………………..……………..…………..….….40
2.1.7 Synthesis of 2-ethyl-1-butyl (S)-2-(6-(4-(4¢-alkanoyloxyphenyl)benzoyloxy
)2-napthyl)propionate, EBmPBNP (m=7-11)……………..……………………………..41
2.1.8 Synthesis of 1-hexyl (S)-2-(6-methoxy-2-naphthyl)propionate, MNP(6,0)…….…41
2.1.9 Synthesis of 4,4,5,5,5-pentafluoro-1-pentyl (S)-2-(6-methoxy-2-napthyl)-
propionate, MNP(3,2)……………..……………………………………………………...41
2.1.10 Synthesis of 4,4,5,5,5-pentafluoro-1-pentyl (S)-2-(6-methoxy-2-napthyl)-
propionate, MNP(3,2)……………………………………..…………………………..…42
2.1.11 Synthesis of 4,4,5,5,6,6,7,7,7-nonafluoro-1-heptyl (S)-2-(6-methoxy-2-
napthyl)propionate, MNP(3,4)……………………..……...……………………..………42
2.1.12 Synthesis of 3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluoro-1-octyl (S)-2-(6-
methoxy-2-napthyl)propionate, MNP(2,6)……………………………………….………42
2.1.13 Synthesis of 1-hexyl (S)-2-(6-hydroxy-2-naphthyl)propionate, HNP(6,0)………………………………………………………………...…………..…..42
2.1.14 Synthesis of 4,4,5,5,5-pentafluoro-1-pentyl (S)-2-(6-hydroxy-2-napthyl)
propionate, HNP(3,2)…………………………………………………..….……………..43
2.1.15 Synthesis of 3,3,4,4,5,5,6,6,6-nonafluoro-1-hexyl (S)-2-(6-hydroxy-2-
napthyl)propionate, HNP(2,4)……………..………………………….……………..…..43
2.1.16 Synthesis of 4,4,5,5,6,6,7,7,7-nonafluoro-1-heptyl (S)-2-(6-hydroxy-2-
napthyl)propionate, HNP(3,4)…………...…………………………….……………..…..43
2.1.17 Synthesis of 3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluoro-1-octyl (S)-2-(6-hydroxy-
2-napthyl)propionate, HNP(2,6)…………...………………………….…..……………..43
2.1.18 Synthesis of 1-hexyl (S)-2-(6-(4-(4¢-alkanoyloxyphenyl)benzoyloxy)2-
napthyl)propionate, PBNB(p,6,0)…………...……………………..………..….………..44
2.1.19 2.1.19 Synthesis of 4,4,5,5,5-pentafluoro-1-pentyl (S)-2-(6-(4-(4¢-alkanoyloxy-
phenyl)benzoyloxy)-2-napthyl)propionate, PBNP(p,3,2).…………….…………..……..44
2.1.20 Synthesis of 3,3,4,4,5,5,6,6,6-nonafluoro-1-hexyl (S)-2-(6-(4-(4¢-alkanoyloxy-
phenyl)benzoyloxy)-2-napthyl)propionate, PBNP(p,2,4).………………………..….…..44
2.1.21 Synthesis of 4,4,5,5,6,6,7,7,7-nonafluoro-1-heptyl (S)-2-(6-(4-(4¢-alkanoyloxy-
phenyl)-benzoyloxy)-2-napthyl)propionate, PBNP(p,3,4)……………………………....45
2.1.22 Synthesis of 3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluoro-1-octyl (S)-2-(6-(4-(4¢-
alkanoyloxyphenyl)-benzoyloxy)-2-napthyl)propionate, PBNP(p,2,6)………………....45
2.2 Physical properties……………………………….……………………….………….45
2.2.1 Chemical structure identification…………………….…………………………….46
2.2.2 Mesophase identification………….…………..……….………..………………….46
2.2.3 Measurements of switching behavior…..…………..………….………..………….46
2.2.4 Measurements of Spontaneous polarization………..……….……………..……….46
2.2.5 Dielectric constant measurement……………………………………………..…….49
2.2.6 Optical response measurement..…………………………………..………….…….49
CHAPTER 3
RESULTS AND DISSCUSSION…………………….…….…………………………..52
3.1 Chemical structure identifications..…………………………………………….…….52
3.2 The study of mesomorphic properties of a homologous series of PmPBNP (m=7-11): the effect of swallow-tailed structure….…..……………………………………….…….63
3.2.1 Optical microscopy studies..……………………………………….…….………..63
3.2.2 Differential scanning calorimetry (DSC)..……………………………...………….67
3.2.3 Miscibility study..…………………………………………………………….…….67
3.2.4 Switching current behavior..………………………………………………….…….71
3.2.5 Spontaneous polarization (Ps)..…………………………………………………….71
3.2.6 Dielectric properties..……………….…………………………………….….…….75
3.2.7 Electro-optical response..…………….…………………………………..….…….75
3.3 The study of mesomorphic properties of a homologous series of EBmPBNP (m=7-11): the effect of swallow-tailed structure on the mesomorphic properties
..…………….……………………………………..………………………………..…….79
3.3.1 Optical microscopy studies..………………………………….……………………79
3.3.2 Differential scanning calorimetry (DSC)..…………………………………………80
3.3.3 Switching current behavior..…………………………………………………..……85
3.3.4 Spontaneous polarization (Ps)..……………………………………………….……85
3.3.5 Dielectric properties..……………….……………………………….……….…….88
3.3.6 Electro-optical response..…………….……………………………………..……..91
3.4 The study of mesomorphic properties of a homologous series of PBNP(p,6,0)
(p=7-11)…………………………………….…………………………………….……..91
3.4.1 Transition temperatures and mesomorphic properties..…………..…….…………..91
3.4.2 Switching current behavior..…………………………………………….……….…98
3.4.3 Spontaneous polarization (Ps)..………………………………………….….……..98
3.4.4 Electro-optical response..…………….……………………………………….……98
3.5 The study of mesomorphic properties of a homologous series of PBNP(p,m,n) (p=7-11)……………………………………………………..…………..…………..….102
3.5.1 Transition temperatures and mesomorphic properties.………………..…….…….102
3.5.2 Switching current behavior..…………………………………………….………..113
3.5.3 Spontaneous polarization (Ps)….……………………………………………..….113
3.5.4 Dielectric properties…….………..…….……………………………………..….117
3.5.5 Electro-optical response………………………..…………………………………117
3.6 The effect of semi-perfluorinated chain, PBNP(11,6,0) versus PBNP(11,2,4)
..…………….………………….……………………..……………………..…….…….121
3.6.1 Mesomorphic properties..……………………………………………….………..121
3.6.2 Switching current behavior..…………………………………………….………..127
3.6.3 Spontaneous polarization (Ps)………………………….……………….………..127
3.6.4 Electro-optical response……….……………………….……………….………..127
CHAPTER 4
CONCLUSIONS…………………………………………………………………….....132
REFERENCES………………………………………………………………..…..…...134
APPENDIX…………………………………….…………………….…………..…….141









LIST OF SCHEME

Scheme 2.1 Synthetic procedures for target compounds, PmPBNP and EBmPBNP
…….………………………………………………………………………………..…….37
Scheme 2.2 Synthetic procedures for target compounds, PBNP(p,m,n)
…….………………………………..……………………………………………..……..38


















LIST OF TABLES

Table 3.1.1 Chemical shifts of 1H-NMR of compounds PmPBNP………………………55
Table 3.1.2 Chemical shifts of 1H-NMR of compounds EBmPBNP……..……………..56
Table 3.1.3 Results of elemental analysis for compounds PmPBNP..……………………57
Table 3.1.4 Results of elemental analysis for compounds EBmPBNP…………………..57
Table 3.1.5 Chemical shifts of 1H-NMR spectrum for compounds PBNP(p,6,0)………..61
Table 3.1.6 Chemical shifts of 1H-NMR spectrum for compounds PBNP(p,2,4)………..61
Table 3.1.7 Results of elemental analysis for compounds PBNP(p,6,0)…………………62
Table 3.1.8 Results of elemental analysis for compounds PBNP(p,2,4)…………..……..62
Table 3.2.1 Transition temperature and enthalpiesΔH (in italics) of materials PmPBNP at 5°C/min scanning rate…….……….…………..……………………………..…………..68
Table 3.3.1 Transition temperature and enthalpiesΔH (in italics) of materials EBmPBNP at 5°C/min scanning rate…………..………………..………..………………………..…82
Table 3.4.1 Transition temperature and enthalpiesΔH (in italics) of materials PBNP(p,6,0) at 5°C/min scanning rate……………….………………………………………….……..97
Table 3.5.1 Transition temperature and enthalpiesΔH (in italics) of materials PBNP(p,m,n) at 5°C/min scanning rate………………………….…………..………………………...106
Table 3.6.1 Transition temperature and enthalpiesΔH (in italics) of materials PBNP(11,6,0) and PBNP(11,2,4) at 5°C/min scanning rate……….…………………..124
Table 3.6.2. Conformational energies of butane and decafluoro-butane and their ratio of trans to gauche…………………………………………………………….……………126
Table A.1 Chemical shifts of 1H-NMR spectrum for compound MNP(0)……………..142
Table A.2 Chemical shifts of 1H-NMR spectrum for compound MNP(1)……………...142
Table A.3 Chemical shifts of 1H-NMR spectrum for compound HNP(0)………..……..142
Table A.4 Chemical shifts of 1H-NMR spectrum for compound HNP(1)………………142
Table A.5 Chemical shifts of 1H-NMR of compounds, PBA(m)……………………….143
Table A.6 Chemical shifts of 1H-NMR spectrum for compound MNP(6,0)……………144
Table A.7 Chemical shifts of 1H-NMR spectrum for compound MNP(3,2)……………144
Table A.8 Chemical shifts of 1H-NMR spectrum for compound MNP(2,4)……………144
Table A.9 Chemical shifts of 1H-NMR spectrum for compound MNP(3,4)……………144
Table A.10 Chemical shifts of 1H-NMR spectrum for compound MNP(2,6)…………..145
Table A.11 Chemical shifts of 1H-NMR spectrum for compound HNP(6,0)…………..145
Table A.12 Chemical shifts of 1H-NMR spectrum for compound HNP(3,2)…………..145
Table A.13 Chemical shifts of 1H-NMR spectrum for compound HNP(2,6)…………..145
Table A.14 Chemical shifts of 1H-NMR spectrum for compound HNP(3,4)…………..146
Table A.15 Chemical shifts of 1H-NMR spectrum for compound HNP(2,6)…………..146
Table A.16 Chemical shifts of 1H-NMR spectrum for compounds PBNP(p,3,2)………147
Table A.17 Chemical shifts of 1H-NMR spectrum for compounds PBNP(p,3,4)………148
Table A.18 Chemical shifts of 1H-NMR spectrum for compounds PBNP(p,2,6)………148
Table A.19 Results of elemental analysis for compounds PBNP(p,3,2)………………..149
Table A.20 Results of elemental analysis for compounds PBNP(p,3,4)………………..149
Table A.21 Results of elemental analysis for compounds PBNP(p,2,6)………………..150





LIST OF FIGURES

Figure 1.1. The melting process of a calamitic (rod-like) liquid-crystalline material……..2
Figure 1.2 Helical structure of the chiral nematic phase (N*)……………………..………4
Figure 1.3 The structure of smectic A phase (SmA*)…………………………..………....5
Figure 1.4 Symmetry operations in the smectic C and chiral smectic C* phase (SmC*)……………………………………………………………………………………..7
Figure 1.5 Helical macrostructure of the chiral smectic C* phase……………..………….8
Figure 1.6 Schematic representation of a "surface stabilized FLC" (SSFLC) cell where the helix is unwound due to the strong interaction in thin cell. The director of a molecule can be on either side of a cone with an opening angle of 2q and alternate each other by applying electrical field and vice versa…………………………………………………..10
Figure 1.7 Canon FLCD 15C01 color monitor, which went into production in 1995
……………………………………………………………………………………..……..11
Figure 1.8 Transmittance change and switching current observed by applying a triangular voltage wave in MHPOBC. Note that two changes in the transmittance and two peaks in the switching current are observed……………………………………………..………..14
Figure 1.9 Apparent tilt angle under the application of a dc electric field in MHPOBC
……………………………………………………………………..……………………..14
Figure 1.10 Helicoidal structures of the antiferroelectric (SmCA*) phase, and a local molecular arrangement in SmCA* phase………………………………………………….16
Figure 1.11 In 1998, Denso AFLCD 17-inch prototype (passive matrix) with 1280 ´ 1024 pixels (SXGA), displaying 16,777,216 colors at a contrast of 50:1 and a brightness of 200cd/m2………………………………………………………………………………….18
Figure 1.12 (a) A three-component mixture of compound I, II and III with the mixing ratio of I:II:III=40:40:20, (b) the observed V-shaped switching (Upper) and the simulated light transmittance as a function of the normalized electrical field and (c) the simplified model of the phase with thresholdless antiferroelectricity………….……………………19
Figure 1.13 Schematic illustration of the orientationally molecular structures and the simulated light transmittance as function of electrical field in the three stable states
……………………………………………………………………………………………21
Fig. 1.14 A picture shown on a 5.5 inch, full-color, video rate LCD which Casio recently prototyped and exhibited at the Electronics Show 97……………………………………23
Fig. 1.15 A picture shown on a 15 inch, full-color, video rate LCD which Toshiba recently prototyped and exhibited at the 1997 Toshiba Electronics Show………………23
Figure 1.16 Scheme picture of the temperature region near the nematic-isotropic phase transition. Top: Nonchiral molecules have only nematic and isotropic phase. Bottom: Chiral molecules have helical (H) and isotropic phases, and, depending on the chirality, up to three blue phases. The BPI and BPII phases are cubic; the BPIII phase has the same symmetry as the Iso phase……………………………..………………………………....24
Figure 1.17 Two views of a double twist cylinder. A cross sectional view (a) shows that in the center the director is parallel to the cylinder axis. The director twists in going away from the center in any direction. As shown in (b) the director has twisted by 45o between the center and outside of the cylinder…………………………………………………….24
Figure 1.18 Models for BPI and BPII. Arrangement of double twist tubes (left) and disclination lines (right) for the unit cell of (a) BPI and unit cell of (b) BPII……….……26
Figure 1.19 Helical structure of the TGBA phase…………..…………………….………28
Figure 1.20 (a) Swallow-tailed dimers and a schematic representation of their packing in the smectic A phase. (b) antiferroelectric packing of dimers in the smectic C phase
…………………………………………………………………………………..………..30
Figure 1.21 V-shaped switching obtained from (S)HNP(10,0,2) and (S)HNP(10,1,2) at appropriate temperature and frequency…………………………………….…………….30
Figure 2.1 Block diagram for the measure circuit………………..………………………48
Figure 2.2 Schematic illustration for the current induced by applying a field with a triangular form……………………………………………………………..…..…………48
Figure 2.3 Optical setup for the transmittance measurement. L, He-Ne laser; P, polarizer; C, LC sample cell; D, detector; F, function generator; A, power preamplifier; S, digital oscilloscope………………………..…………………………………………………..…50
Fig 3.1.1 The 1H-NMR spectrum of compound MNP(0)……………………….………..53
Fig 3.1.2 The 1H-NMR spectrum of compound HNP(0)…………………………….…..53
Fig 3.1.3 The 1H-NMR spectrum of compound PBA(11)………..…………………..…..54
Fig 3.1.4 The 1H-NMR spectrum of compound P11PBNP………………………………54
Fig 3.1.5 The 1H-NMR spectrum of compound MNP(6,0)………………………………59
Fig 3.1.6 The 1H-NMR spectrum of compound HNP(6,0)……………………………….59
Fig 3.1.7 The 1H-NMR spectrum of compound PBNP(11,6,0)…………..……..………..60
Figure 3.2.1 Textures of P11PBNP observed form polarizing microscope on cooling process (a) the scale-like texture of N* phase (145.7°C, magnification, x200); (b) the spiral filament texture of TGBA* phase (119.8°C, magnification, x200); (c) the homeotropic texture of SmA* phase (115.5°C, magnification, x200)……………………64
Figure 3.2.2 Textures of P11PBNP observed form crossed polarizing microscope on cooling process (a) the petal texture of SmCA* phase of P11PBNP (77.8°C, magnification, x200); (b) the petal texture of SmCA* phase of P11PBNP (59.0°C, magnification, x200)…………………………………………………..………………………………….65
Figure 3.2.3 Textures of P11PBNP observed form crossed polarizing microscope on cooling process (a) the normal texture of SmA* phase (124.2°C, +5V, magnification, x200); (b) the microscopic striped pattern of homogenous texture of SmCA* phase (69.9°C, +5V, magnification, x200); (c) the microscopic striped pattern of homogenous texture of SmCA* phase (69.9°C, -5V, magnification, x200)………………………………………..66
Figure 3.2.4 DSC thermogram for P11PBNP on heating and cooling runs at a scanning rate of 5°C/min.………………………………………………………..…..…………….69
Figure 3.2.5 A plot of transition temperature as a function of achiral terminal aliphatic chain length (m) for compounds PmPBNP on cooling process……………………….….70
Figure 3.2.6 Miscibility phase diagram for mixtures (wt.%) of standard sample, (S)-EP10PBNP, and the testing sample P9PBNP………………………………………..72
Figure 3.2.7 The switching current behavior of P11PBNP obtained at 0.5Hz and 80°C under a applying triangular field in 5mm thickness of homogeneous aligned cell.………73
Figure 3.2.8 Magnitudes of the spontaneous polarization plotted as a function of temperature for PmPBNP (m=9-11). Then Tc is the temperature of SmA*-SmCA* transition………………………………………………………………………………….74
Figure 3.2.9 Temperature dependence of the dielectric constant e¢ for P11PBNP at 10kHz in the cell with 25mm thickness under 0.2°C/min cooling process……….……………..76
Figure 3.2.10 Frequency dependence of the dielectric dispersion (●) and absorption curves (○) in the SmA* phase (a) at 120°C and in the SmCA* phase (b) at 110°C and (c) at 90°C measured from material P11PBNP………………………………….…………..77
Fig 3.2.11 Transmittance versus electrical field obtained at temperatures and frequency on applying triangular wave of compound P11PBNP……………………………………….78
Figure 3.3.1 Textures of EB11PBNP observed form polarizing microscope on cooling process (a) the scale-like texture of N* phase (122.3°C, magnification, x200); (b) the homeotropic texture of SmA* phase (119.6°C, magnification, x200); (c) the schlieren texture of SmC* phase (109.5°C, magnification, x400)………………………………….81
Figure 3.3.2 DSC thermogram for EB11PBNP on heating and cooling runs at a scanning rate of 5°C/min.…………………………………………………………………………..83
Figure 3.3.3 A plot of transition temperature as a function of achiral terminal aliphatic chain length (m) for compounds EBmPBNP on cooling process………………………..84
Figure 3.3.4 The switching current behavior of EB11PBNP obtained at 20Hz and several temperatures on applying triangular in 5mm thickness of homogeneous aligned cell………………………………………………………………………………………..86
Figure 3.3.5 Magnitudes of the spontaneous polarization plotted as a function of temperature for EBmPBNP (m=8-11). Then Tc is the temperature of SmA*-SmC* transition………………………………………………………………………………….87
Figure 3.3.6 Temperature dependence of the dielectric constant e¢ for EB11PBNP at 100Hz in the cell with 25mm thickness under 0.2°C/min cooling……………………….89
Figure 3.3.7 Frequency dependence of the dielectric dispersion (●) and absorption curves (○) in the SmA* phase (a) at 120°C and in the SmC* phase and (b) at 65°C measured from material EB11PBNP……………………………………………………………………..90
Figure 3.3.8 Transmittance versus electrical field obtained at temperatures and frequency on applying triangular wave of compound EB11PBNP……………….…………………92
Figure 3.4.1 Textures of PBNP(11,6,0) observed form polarizing microscope on cooling process (a) the iridescent platelet texture of BPII phase (139.3°C, magnification, x200) (b) the scale-like texture of N* phase (138.7°C, magnification, x200); (c) the spiral filament texture of TGBA* phase (135.9°C, magnification, x200); (d) the homeotropic texture of SmA* phase (134.6°C, magnification, x200) (e) the petal texture of SmC* phase (70.5 °C, magnification, x200)……………………………………………………………………..94
Figure 3.4.2 DSC thermogram for PBNP(11,6,0) on heating and cooling runs at a scanning rate of 5°C/min.………………………………………………………………..95
Figure 3.4.3 A plot of transition temperature as a function of achiral terminal aliphatic chain length (p) for compounds PBNP(p,6,0) on cooling process……………………….97
Figure 3.4.4 The switching current behavior of PBNP(10,6,0) obtained at 20Hz and several temperatures on applying triangular in 5mm thickness of homogeneous aligned cell…………………………………………..…………………………………………....99
Figure 3.4.5 Magnitudes of the spontaneous polarization plotted as a function of temperature for PBNP(p,6,0) (p=8-11). Then Tc is the temperature of SmA*-SmC* transition…………………………………………..…………………………………….100
Figure 3.4.6 Transmittance versus electrical field obtained at several temperatures and frequency on applying triangular wave of compound PBNP(11,6,0)…………………..101
Figure 3.5.1 The focal-conic texture of the SmA* phase (156.7°C, magnification, x200)………………………………………………………………………………..…..104
Figure 3.5.2 The striated focal-conic texture of the SmC* phase (129.7°C, magnification, x200)…………………………………………………………………………………….104
Figure 3.5.3 DSC thermogram for PBNP(11,3,2) on heating and cooling runs at a scanning rate of 5°C/min.………………………………………………….……………105
Figure 3.5.4 A plot of transition temperature as a function of achiral terminal aliphatic chain length (p) for compounds PBNP(p,3,2) on cooling………………………………107
Figure 3.5.5 A plot of transition temperature as a function of achiral terminal aliphatic chain length (p) for compounds PBNP(p,2,4) on cooling………………………………108
Figure 3.5.6 A plot of transition temperature as a function of achiral terminal aliphatic chain length (p) for compounds PBNP(p,3,4) on cooling………………………………109
Figure 3.5.7 A plot of transition temperature as a function of achiral terminal aliphatic chain length (p) for compounds PBNP(p,2,6) on cooling………………………………111
Figure 3.5.8 A phase diagram plotted by the number of the length of chiral chain versus transition temperature of PBNP(11,m,n)………………………………………………..112
Figure 3.5.9 The switching current behavior of PBNP(10,3,2) obtained at 20Hz and several temperatures on applying triangular in 5mm thickness of homogeneous aligned cell……………………………………….…………………………..………………….114
Figure 3.5.10 Magnitudes of the spontaneous polarization plotted as a function of temperature (a) for PBNP(p,3,2) and (b) for PBNP(p,2,4). The Tc is the temperature of SmA*-SmC* transition………………………………………………………………….115
Figure 3.5.11 Magnitudes of the spontaneous polarization plotted as a function of temperature (a) for PBNP(p,3,4) and (b) for PBNP(p,2,6). The Tc is the temperature of SmA*-SmC* transition………………………………………………………………….116
Figure 3.5.12 Frequency dependence of the dielectric dispersion (●) and absorption curves (○) in the SmA* phase (a) at 145°C and in the SmC* phase and (b) at 125°C measured from material PBNP(11,3,2)…………………………………………………118
Figure 3.5.13 Frequency dependence of the dielectric dispersion (●) and absorption curves (○) in the SmA* phase (a) at 155°C and in the SmC* phase and (b) at 115°C measured from material PBNP(11,3,4)…………………………………………………119
Figure 3.5.14 Transmittance versus electrical field obtained at several temperatures and frequency on applying triangular wave of compound PBNP(10,3,2)…………………..120
Figure 3.5.15 V-shaped switching obtained from PBNP(10,3,2), PBPN(11,2,4), PBNP(11,3,4) and PBNP(11,2,6) at appropriate temperature and frequency…………..122
Figure 3.6.1 A plot of transition temperature as a function of the length of semi-perfluorinated chain for compounds PBNP(11,6,0) and PBNP(11,2,4) on cooling
………………………………………………………………..…………………………125
Figure 3.6.2 Influence of the fluorinated chain(s) and the hydrocarbon chain(s) on the packing behavior………………………………………………………………………..126
Figure 3.6.3 Switching behavior in the SmC* phase obtained from PBNP(10,6,0) and PBNP(11,2,4) at 20Hz…………………………………………………………………..128
Figure 3.6.4 Magnitudes of the spontaneous polarization plotted as a function of temperature for PBNP(10,6,0) and PBNP(10,2,4). Then Tc is the temperature of SmA*-SmC* transition……………………………………………………………..……129
Figure 3.6.5 V-shaped switching obtained from PBNP(11,6,0) and PBNP(11,2,4) at appropriate temperature and frequency………………………………..………………..130
Figure A.1 The switching current behavior of PBNP(10,3,2) obtained at 20Hz and several temperatures on applying triangular in 5mm thickness of homogeneous aligned cell………………………………………………………………….…..……………….151
Figure A.2 The switching current behavior of PBNP(9,3,4) obtained at 5Hz and several temperatures on applying triangular in 5mm thickness of homogeneous aligned cell……………………………………………………………………………..………..152
Figure A.3 The switching current behavior of PBNP(11,2,6) obtained at 20Hz and several temperatures on applying triangular in 5mm thickness of homogeneous aligned cell……………………………..……………………………………………..…………153
[1]MEYER, R.B., LIEBERT, L., STRZELECKI, L. and KELLER, P., 1975, J. PHYS. (Pairs) Lett., 36, L69.
[2]CHANDANI, A.D.L., HAGIWARA, T., SUZUKI, Y., OUCHI, Y., TAKEZOE, H. and FUKUDA, A., 1988, Jpn. J. Appl. Phys., 27, L729.
[3]CHANDANI, A.D.L., OUCHI, Y., TAKEZOE, H., FUKUDA, A., TERASHIMA, K., FURUKAWA, K. and KISHI, A., 1989, Jpn. J. Appl. Phys., 28, L1261.
[4]GORECKA, E., CHANANI, A.D.L., OUCHI, Y., TAKEZOE, H. and FUKUDA, A., 1990, Jpn. J. Appl. Phys., 29, 131.
[5]GOODBY, J.W., WAUGH, M.A., STEIN, S.M., CHIN, E., PINDAK, R. and PATEL, J.S., 1989, J. Am. Chem. Soc., 111, 8119.
[6]YU, L.J., LEE, H., BAK, C.S. and LABES, M.M., 1976, Phys. Rev. Lett., 36, 388.
[7]CLARK N.A. and LAGERWALL, S.T., 1980, Appl. Phys. Lett., 36, 899.
[8]YAMAWAKI, M., YAMADA, Y., YAMAMOTO, N., MORI, K., HAYASHI, H., SUZUKI, Y., NEGI, Y. S., HAGIWARA, T., KAWAMURA, I., ORIHARA, H. and ISHIBAHSI, Y., 1989, Jpn. Display '89, 26.
[9]JOHNO, J., CHANDANI, A.D.L., LEE, J., OUCHI, Y., TAKEZOE, H., FUKUDA, A., IOTH, K. and KITAZUME, T., 1989, Proc. Jpn. Display, 22.
[10]SEOMUN, S. S., GOUDA, T., TAKANISHI, Y., ISHIKAWA, K.; TAKEZOE, H. and FUKUDA, A., 1999, Liq. Cryst., 26, 151.
[11]CHANDANI, A., CUI, Y., SEOMUN, S. S., TAKANISHI, Y., ISHIKAWA, K., TAKEZOE, H. and FUKUDA, A., 1999, Liq. Cryst., 26, 167.
[12]RUDQUIST, P., LAGERWALL, J. P. F., BUIVYDAS, M., GOUDA F., LAGERWALL, S. T., CLARK, N. A., MACLENNAN, J. E., SHAO, R., COLEMAN, D. A., BARDON, S., BELLINI, T., LINK, D. R., NATALE, G., GLASER, M. A., WALBA, D. M., WANDC, M. D., CHENC, X.-H., 1999, J. Mater. Chem., 9, 1257.
[13]CLARK, N. A., COLEMAN, D., MACLENNAN, J. E., 2000, Liq. Cryst., 27, 985.
[14]INUI, S., LIMURA, N., SUZUKI, T., IWANE, H., MIYACHI, K., TAKANISHI, Y. and FUKUDA, A., 1996, J. Mater. Chem., 6, 671.
[15]REINITZER, 1888, Monatsh. Chem., 9, 421.
[16]LEHMANN, Z., 1889, Phys. Chem., 4, 462.
[17]DEMUS, D., GOODBY J. W., GRAY, G. W., SPIESS, H. W., and VILL, V., 1998, Handbook of Liquid Crystals, 2(A). (Wiley-VCH)
[18]GAROFF, S., and MEYER, R, B., 1977, Phys. Rev. Lett., 38, 848.
[19]GAROFF, S., and MEYER, R, B., 1979, Phys. Rev. A, 19, 338.
[20]MEYER, R. B., LIEBERT, L., and STRZELECKI, L., KELLER, P., 1975, J. Phys. (Paris) Lett.,, 36, L69.
[21]DEMUS, D., GOODBY J. W., GRAY, G. W., SPIESS, H. W. and VILL, V., 1998, Handbook of Liquid Crystals, 2(A), 127-129. (Wiley-VCH)
[22]DEMUS, D., GOODBY J. W., GRAY, G. W., SPIESS, H. W., and VILL, V., 1998, Handbook of Liquid Crystals, 2(A), 118-119. (Wiley-VCH)
[23]CLARK, N.A., LAGERWALL, S. T., 1980, Appl. Phys. Lett.,36, 899.
[24]Asia Technology Information Program: http://www.atip.org/fpd/samples/flcd/report.htm
[25]KITZEROW, H.-S., and BAHR, C., 2001, Chirality in Liquid Crystals, p.251 reference therein . (Springer)
[26]CHANDANI, A. D. L., HAGIWARA, T., SUZUKI, Y., OUCHI, Y., TAKEZOE, H., and FUKUDA, A., 1988, Jpn. J. Appl. Phys., 27, L729.
[27]DEMUS, D., GOODBY, J.W., GRAY, G.W., SPIESS, H.W., and VILL, V., 1998, Handbook of Liquid Crystals, 2(B), p.684-688. (Wiley-VCH)
[28]FUKUDA, A., TAKANISHI, Y., ISOZAKI, T., ISHIKAWA, K., and TAKEZOE, H., 1994, J. Mater. Chem., 4, 997.
[29]TAKANISHI, Y., TAKEZOE, H., FUKUDA, A., KOMURA, H., and WATANABe, J., 1992, Liq. Cryst., 2, 71.
[30]HIRAOKA, K., TAGUCHI, A., OUCHI, Y., TAKEZOE, H., and FUKUDA, A., 1990, Jpn. J. Appl. Phys., 29, L103.
[31]Asia Technology Information Program: http://www.atip.org/fpd/src/rep/denso/report.html
[32]SEOMUN, S. S., GOUDA, T., TAKANISHI, Y., ISHIKAWA, K., TAKEZOE, H., and FUKUDA, A., 1999, Liq. Cryst., 26, 151.
[33]CHANDANI, A. D. L., CUI, Y., SEOMUN, S. S., TAKANISHI, Y., ISHIKAWA, K. TAKEZOE, H., and FUKUDA, A., 1999, Liq. Cryst., 26, 167.
[34]RUDQUIST, P., LAGERWALL, J. P. F., BUIVYDAS, M., GOUDA F., LAGERWALL, S. T., CLARK, N. A., MACLENNAN, J. E., SHAO, R., COLEMAN, D. A., BARDON, S., BELLINI, T., LINK, D. R., NATALE, G., GLASER, M. A., WALBA, D. M., WANDC, M. D. and CHENC, X.-H., 1999, J. Mater. Chem., 9, 1257.
[35]CLARK, N. A., COLEMAN, D. and MACLENNAN, J. E., 2000, Liq. Cryst., 27, 985.
[36]BEZBORODOV, V., LAPANIK, V. and SASNOUISKI, G.., 2002, Liq. Cryst., 29,321.
[37]BLINOV, L. M., PALTO, S. P., PODGORNOV, F. V., MORITAKE, H.and HAASE, W., 2004, Liq. Cryst., 31, 61.
[38]MATSUMOTO, T., FUKUDA, A., JOHNO, M., MOTOYAMa, Y., YUI, T., SEOMUN, S. S. and YAMASHITA, M., 1999, J. Mater. Chem., 9, 2051.
[39]COATES, D., and GRAY, G. W., Phys. Lett., 1973, 45A, 115.
[40]STEGEMEYER, H., and BERGMANN, K., 1980, Liquid Crystals of One- and Two-Dimensional Order, edited by HELFRICH, W., and HEPPKE, G., p.161. (berlin : Springer)
[41]STEGEMEYER, H., BLUMEL, T. H., HILTROP, K., ONUSSEIT, H., and PORSCH, F., 1986, Liq. Cryst., 1, 3.
[42]CROOITER, P. P., 1989, Liq. Cryst., 5, 751.
[43]LI, M.-H., LAUX, V., NGUYEN, H.-T., SIGAUD, G., BAROIS, P., and ISAERT, N., 1997, Liq. Cryst., 23, 389.
[44]GRELET, E., PANSU, B., and NGUYEN, H. T., 2001, Liq. Cryst., 28., 1121.
[45]DA CRUZ, C., GRELET, E., ROUILLON, J. C., MARCEROU, J. P., SIGAUD, G., PANSU, B., and NGUYEN, H. T., 2001, Liq. Cryst., 28, 1415.
[46]GRELET, E., 2003, Liq. Cryst. Today, 12, 1.
[47]DE GENNES, P. G., 1972, Solid State Commun., 10, 753.
[48]RENN, S. R., and LUBENSKY, T. C., 1988, Phys. Rev. A., 38, 2132.
[49]GOODBY, J. W., PETRENKO, A., HIRD, M., LEWIS, R. A., MEIER, J., and JONES, J. C., 2000, Chem. Commun., 1149.
[50]MEIER, J. G., RUDQUIST, P., PETRENKO, A. S., GOODBY, J. W., and. LAGERWALL, S. T., 2002, Liq. Cryst., 29, 179.
[51]NISHIYAMA, I., GOODBY, J. W., 1992, J. Chem. Mater., 2, 1015.
[52]WU, S.-L., and HSIEH, W.-J., 1999, Chem. Mater., 11, 852.
[53]WU, S.-L., and CHANG, P.-L., 2002, Liq. Cryst., 29, 1355.
[54]WU, S.-L., and LU, F.-C. (to be published)
[55]WU, S.-L., and CHEN, F.-D., 2003, Liq. Cryst., 30, 991.
[56]TAKANISHI, Y., OUCHI, Y., TAKEZOE, H., FUKUDA, A., MOCHIZUKI, A., and NAKATSUKA, M., 1990, Jpn. J. Appl. Phys., 29, L984.
[57]TAKANISHI, Y., OUCHi, Y., TAKEZOE, H., and FUKUDA, A., 1991, Mol. Cryst. Liq. Cryst. 199, 111.
[58]OKAMOTO, H., MURAI, H., and TAKENAKA, S., 1997, Bull. Chem. Soc. Jpn., 70, 3163.
[59]DUAN, M., OKAMOTO, H., PETROV, V. F., and TAKENAKA, S., 1998, Bull. Chem. Soc. Jpn., 71, 2735.
[60]FORNASIERI, G., GUITTARD, F., and GÉRIBALDI, S., 2003, Liq. Cryst., 30, 663.
[61]FORNASIERI, G., GUITTARD, F., and GÉRIBALDI, S., 2004, Liq. Cryst., 31, 491.
[62]LIU, H., and NOHIRA, H., 1996, Liq. Cryst., 20, 581.
[63]LIU, H., and NOHIRA, H., 1997, Liq. Cryst., 22, 217.
[64]NGUYEN, H. T., ROUILLON, J. C., BABEAU, A., MARCEROU, J. P., COTRAIT, H., and ALLOUCHI, H., 1999, Liq. Cryst., 26, 1007.
[65]SARMENTO, S., SIMEÃO CARVALHO, P., GLOGAROVÁ, M., CHAVES, M. R., NGUYEN, H. T., and RIBEIRO, M. J., 1998, Liq. Cryst., 25, 375.
[66]WU, S.-L., CHEN, D.-G.., CHEN, S.-J., WANG, C.-Y., SHY, J.-T., and HSIUE, G..-H., 1995, Mol. Cryst. Liq. Cryst., 264, 39.
[67]KOBAYASHi, S., ISHIBASHI, S., 1992, Mol. Cryst. Liq. Cryst., 220, 1.
[68]MIYASATO, K., ABE, S., TAKEZOE, H., FUKUDA, A., and KUZE, E., 1983, Jpn. J. Appl. Phys., 22, L661.
[69]WROBRL, S., HAASE, W., PFEIFFER, M., BERESNEV, L., and GEELHAAR, T., 1992, Mol. Cryst. Liq. Cryst., 212, 335.
[70]CHANDANI, A. D. L., HAGIWARA, T., SUZUKI, Y., OUCHI, Y., TAKAZOE, H., and FUKUDA, A., 1988, Jpn. J. appl. Phys., 27, L729.
[71]LEE, J., CHANDANI, A. D. L., ITOH, Y., TAKAZOE, H., and FUKUDA, A., 1990, Jpn. J. Appl. Phys., 29, 1122.
[72]SLANKEY, A. J., WATSON, M., and GOODBY, J. W., 1995, J. Mater. Chem., 5, 2145.
[73]HOU, J., SCHACHT, J., GIEßELMANN, F., and ZUGENMAIER, P., 1997, Liq. Cryst., 22, 401.
[74]HIRAOKA, K., TAGUCHI, A., OUCHI, Y., TAKEZOE, H., and FUKUDA, A., 1990, Jpn. J. Appl. Phys., 29, L103.
[75]SEOMUM, S., GOUDA, T., TAKANISHI, Y., ISHIKZWA, K., TAKEZOE, H., and FUKUDA, A., 1999, Liq. Cryst., 26, 151.
[76]DIERKING, I., 2003, Textures in Liquid Crystals (Weinheim: WILEY-VCH), p4.
[77]GOODBY, J. W., BLINC, R., CLARK, N. A., LAGERWALL, S. T., OSIPOV, M. A., PIKIN, S. A., SAKURAI, T., YOSHINO, K., and ZEKS, B., 1991, Ferroelectric Liquid Crystals (Gordon & Breach Science Publisher), p208-p213.
[78]GOUDA, F., SKARP, K., and LAGERWALL, S. T., 1991, Ferroelectrics, 113, 165.
[79]BUIVYDAS, M., GOUDA, F., ANDERSSON, G., LAGERWALL, S. T., STEBLER, B., BOMELBURG, J., HEPPKE, G., and GESTBLOM, B., 1997, Liq. Cryst., 23, 723.
[80]LIU, H., and NOHIRA, H., 1998, Liq. Cryst., 24, 719.
[81]LEE, J.-W., PARK,Y., JIN, J.-I., ACHARD, M. F., and HARDOUIN, F., 2003, J. Chem. Mater., 13, 1367.
[82]DOI, T., SAKURAI, Y., TAMATANI, A., TAKENAKA, S., KUSABAYASHI, S., NISHIHATA, Y., and TERAUCHI, H., 1991, J. Chem. Mater., 1, 169.
[83]NGUYEN, H. T., SIGAUD, G., ACHARD, M. F., HARDOUIN, F., TWIEG, R. J., and BETTERTON, K., 1991, Liq. Cryst., 10, 389.
[84]KODEN, M., NAKAGAWA, K., ISHII, Y., FUNADA, S., MATSUURA, M., and AWANI, K., 1989, Mol. Cryst. Liq. Cryst. Lett., 6, 285.
[85]TSCHIERSKE, C., 1998, J. Mater. Chem., 8, 1485.
[86]TSCHIERSKE, C., 2001, J. Mater. Chem., 11, 2647.
[87]PERKOWSKI, P., RASZEWSKI, Z., KEDZIERSKI, J., RUTKOWSKA, J., PIECEK, W., ZIELINSKI, J., and KLOSOWICZ, S., 2002, Ferroelectric., 276, 279.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top