跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/01/19 00:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:江顯偉
研究生(外文):Hsien-Wei Chiang
論文名稱:具有不同連接基團之二酚所衍生的芳香族聚酯、聚醚碸及聚醚酮之合成與結構-性質研究
論文名稱(外文):SYNTHESIS AND STRUCTURE-PROPERTY STUDY OF POLYARYLATES, POLY(ETHER SULFONE)S AND POLY(ETHER KETONE)S DERIVED FROM BISPHENOLS WITH DIFFERENT CONNECTOR GROUPS
指導教授:蕭勝輝
指導教授(外文):Sheng-Huei Hsiao
學位類別:碩士
校院名稱:大同大學
系所名稱:化學工程學系(所)
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:73
中文關鍵詞:聚醚酮聚醚碸芳香族聚酯
外文關鍵詞:POLY(ETHER KETONE)SPOLY(ETHER SULFONE)SPOLYARYLATES
相關次數:
  • 被引用被引用:0
  • 點閱點閱:229
  • 評分評分:
  • 下載下載:24
  • 收藏至我的研究室書目清單書目收藏:0
四種具有不同連結基團的二酚如 2,2-bis(4-hydroxyphenyl)-
propane (BPA)、 2,2-bis(4-hydroxyphenyl) hexafluoropropane (BPAF)、 1,1-bis(4-hydroxyphenyl)-1-phenylethane (BPAP) 及 1,1-bis(4-
hydroxyphenyl)-1-phenyl-2,2,2-trifluoroethane (BPAPF) 分別與各種芳香族二醯氯經由界面聚縮合或高溫溶液聚縮合反應製得數系列芳香族聚酯。這些聚酯的一些基本性質(如固有粘度、成膜性、結晶性、機械性質及熱性質等)及”結構-性質”的關係將加以探討。由不對稱結構二酚 BPAP 及 BPAPF 所衍生之芳香族聚酯比由相對應含對稱結構之二酚成份所衍生之芳香族聚酯顯示較低的結晶性及較高的溶解性及玻璃態轉移溫度 (Tg)。含氟的聚酯比相對應不含氟的聚酯顯示較高的熱裂解溫度。二系列聚醚碸和聚醚酮分別由 4,4’-difluorodiphenyl sulfone 與 4,4’-difluorobenzophenone和五種不同之二酚在CsF的存在下經由溶液聚縮合法製得。這五個二酚在芳香環間具有如下不同的連接基團:-C(CH3)2-、-C(CF3)2-、C(CH3)(C6H5)-、-C(CF3)(C6H5)-和–C(C6H5)2-等。這些聚醚的固有粘度在0.51-0.82 dL/g之間,其重量平均分子量和數平均分子量(由膠體滲透層析量測)分別在34,000-67,000和20,000-42,000之間。所製得之高分子均為非晶形的材質且易溶於數種有機溶劑並可製得具可撓曲性、強韌且具有良好機械性質之薄膜。這些由具有不同連接基團結構之二酚所合成之聚醚碸和聚醚酮的玻璃轉移溫度 (Tg)分別在189-221 oC及157-187 oC之間。無論在空氣或氮氣中,所有的聚醚在480 oC之前都不會產生明顯的熱裂解。這些聚醚的介電常數在3.33-3.67之間 (在 1 MHz測量的值)。其中含氟的聚醚較相對應不含氟的聚醚顯現較高的Tg、熱裂解溫度及較低的介電常數。為了性質比較,本研究亦合成了由hydroquinone和4,4’-bisphenol所衍生的聚醚並測定其性質。
Several polyarylates were synthesized from the interfacial or high-temperature solution polycondensation reactions of four bisphenols including 2,2-bis(4-hydroxyphenyl)propane (BPA), 2,2-bis(4- hydroxyphenyl)hexafluoropropane (BPAF), 1,1-bis(4-hydroxyphenyl)-1- phenylethane (BPAP), and 1,1-bis(4-hydroxyphenyl)-1-phenyl-2,2,2- trifluoroethane (BPAPF) with various aromatic diacyl chlorides. The basic properties such as inherent viscosity, film-forming capability, crystallinity, and mechanical and thermal properties and the “structure-property” relationships of these polyarylates were investigated. The polyarylates derived from asymmetric BPAP and BPAPF had lower crystallinity and higher solubility and glass-transition temperature (Tg) than the corresponding counterparts based on symmetric BPA and BPAPF. The fluorinated polyarylates revealed higher Tg values and decomposition temperatures than the corresponding nonfluorinated polyarylates. Two series of poly(ether sulfone)s and poly(ether ketone)s were synthesized by solution polycondensation of 4,4’-difluorodiphenyl sulfone and 4,4’-difluorobenzophenone, respectively, with various bisphenols in the presence of cesium fluoride. Five bisphenols with different connecting linkages between the phenol units such as -C(CH3)2-, -C(CF3)2-, -C(CH3)(C6H5)-, -C(CF3)(C6H5)- and –C(C6H5)2- were used as the monomers. These polyethers had inherent viscosities of 0.51-0.82 dL/g that corresponded to weight-average and number-average molecular weights (by gel permeation chromatography) of 34,000-67,000 and 20,000-42,000, respectively. All polymers are amorphous and readily soluble in many organic solvents and can be solution cast into flexible and tough films with good mechanical properties. The glass-transition temperatures (Tg) of these poly(ether sulfone)s and poly(ether ketone)s have been measured in the range of 189-221 oC and 157-187 oC, respectively, depending on the structure of bisphenol connecting groups. All the polymers did not show significant decomposition before 480 oC in air or under nitrogen, and they had dielectric constants of 3.33-3.67 at 1 MHz. The fluorinated polymers showed higher Tg and decomposition temperatures and lower dielectric constants than the nonfluorinated counterparts. For a comparative study, polyethers based on hydroquinone and 4,4’-biphenol were also prepared and characterized.
TABLE OF CONTENTS

ACKNOWLEDGEMENTS…………………………………………………………i
ABSTRACT (in English) …………………………………………………………..ii
ABSTRACT (in Chinese)……..…………...………………………………………..iv
TABLE OF CONTENTS…………………………………………..……..………....vi
LIST OF SCHEMES…………………………………………………….…………xii
LIST OF TABLES……………………………………………………….………xiii
LIST OF FIGURES………………………………………………………………xiv
CHAPTER 1 INTRODUCTION…………...…………..…………………….……..1
CHAPTER 2 EXPERIMENTAL…………….……………………...………………5
2.1 Materials……………………………….………………………………….5
2.2 Synthesis of 1,1-Bis(4-hydroxyphenyl)-1-phenyl-2,2,2-trifluoroethane (BPAPF, 1d) …………………………………………………………………………6
2.3 Polymer Synthesis……………………………………………………..7
2.3.1 Polyarylates……………………………………………………….7
2.3.1.1 Interfacial Polycondensation……………………………………..7
2.3.1.2 High-temperature Solution Polycondensation……….………….8
2.3.2 Poly(ether sulfone)s…………………………………………….9
2.3.3 Poly(ether ketone)s…………………………………………….10
2.4 Preparation of the Polyarylate Films…………………………..…….11
2.4.1 Polyarylates………………………………………………………11
2.4.2 Poly(ether sulfone)s and Poly(ether ketone)s……………………..12
2.5 Measurements…………………………………………………………….12

CHAPTER 3 RESULTS AND DISSCUSSION……………………………….…..15
3.1 Polymer Synthesis………..…………………………………………...….15
3.1.1 Polyarylates……………………………………………………….15
3.1.2 Poly(ether sulfone)s and Poly(ether ketone)s…………………… 20
3.2 Polymer Properties……………………………………..……………..….29
3.2.1 Polyarylates……………………………………….………………29

3.2.1.1 Crystallinity.……………………………….……………29

3.2.1.2 Organo-solubility…………………..……………………33
3.2.1.3 Tensile Properties……………….………………….…...35
3.2.1.4 Thermal Properties……………………………………35
3.2.2 Poly(ether sulfone)s and Poly(ether ketone)s……………………..40
3.2.2.1. X-ray Diffraction Data……………………………...….40
3.2.2.2 Organo-Solubility………………………………………43
3.2.2.3. Tensile Properties……………………………………...45
3.2.2.4. Thermal Properties……………………………………..45
3.2.2.5. Moisture Absorption and Dielectric Constants………...46
CHAPTER 4 CONCLUSIONS………………...……………………………….54
REFERENCES………………………………………………………………..….…56

LIST OF SCHEMES

Scheme 3.1. Synthesis of 1,1-bis(4-hydroxyphenyl)-1-phenyl-2,2,2-trifluoro-
ethane (bisphenol of α,α,α-trifluoroacetophenone; BPAPF, 1d)….……………17
Scheme 3.2. Synthetic routes for poly(ether sulfone)s and poly(ether ketone)s……23

LIST OF TABLES

Table 3.1. Synthesis and film quality of polyarylates…………………………19
Table 3.2. Inherent viscosities, average molecular weights, and tensile properties of polymers.………………………………………………………………………24
Table 3.3. Solubility behavior of polyarylates……………………..………………34
Table 3.4. Tensile properties of polyarylate films……………….…………………36
Table 3.5. Thermal behavior data of polyarylates……………………………………37
Table 3.6. Solubility behavior of poly(ether sulfone)s and poly(ether ketone)s……44
Table 3.7. Thermal behavior data of poly(ether sulfone)s and poly(ether ketone)s….46
Table 3.8. Moisture absorption and dielectric constants of poly(ether sulfone)s and poly(ether ketone)s……………………………………………………………….53

LIST OF FIGURES

Figure 3.1. (A) 13C NMR and (B) 1H NMR spectra of 1,1-bis(4-hydroxyphenyl)-1-phenyl-2,2,2-trifluoroethane (BPFPF, 1d) in CDCl3 + DMSO-d6………………………6
Figure 3.2. Structure and codes of diacyl chloride monomers……………………18
Figure 3.3. Structures and codes of bisphenol monomers……………………..….18
Figure 3.4. FTIR spectra of some BPAPF polyarylates…………………………….21
Figure 3.5. IR spectra of bisphenol 1d and its derived poly(ether sulfone) 2d and poly(ether ketone) 3d………………………………………………..…25
Figure 3.6. 1H NMR spectra of poly(ether sulfone) 2d and poly(ether ketone) 3d in CDCl3………………………………………………………………………………...27
Figure 3.7. 13C NMR spectra of poly(ether sulfone) 2d and poly(ether ketone) 3d in CDCl3………………………………………………………….………………..28
Figure 3.8. WAXD patterns of BPA-derived polyarylates………….30
Figure 3.9. WAXD patterns of BPAF-derived polyarylates…………………………31
Figure 3.10. WAXD patterns of TPC-derived polyarylates………………………….32
Figure 3.11. The TMA curve of polyarylate T-3F, at heating rate of 10 ℃/min.39
Figure 3.12. TGA curves of TPC-derived polyarylates, with a heating rate of 20 ℃/min in nitrogen………………………………………………………………………41
Figure 3.13. WAXD patterns of poly(ether sulfone)s and poly(ether ketone)s…42
Figure 3.14. Typical TMA traces of some polymer films at a heating rate of 10℃/min…………………………………………………………………………………48
Figure 3.15. TGA thermograms of poly(ether sulfone)s 2c and 2d at a heating rates of 20℃/min……………………………………………………………………………50
Figure 3.16. TGA thermograms of poly(ether ketone)s 3a-e at a scan rate of 20℃/min in nitrogen…………………………………………………………………………51
REFERENCES
1. Korshak V. V.; Vinogradova, S. V. “Polyesters”, Pergamon: Oxford, 1965.
2. Bier, G. Polymer 1974, 15, 527.
3. Vinogradova, S.V.; Vasnev, V. A.; Valetskii, P. M. “Polyarylates. Synthesis and properties,” Russ Chem Rev 1994, 63, 833.
4. Imai, Y.; Ishikawa, H.; Park, K. H.; Kakimoto, M. J Polym Sci Part A: Polym Chem 1997, 35, 2055.
5. Robeson, L. M.; Tibbitt, J. M. “History of Polyarylates,” In High Performance Polymers: Their Origin and Developments; Seymour, R. B.; Krishenbaum, G. S., Eds.; Elsvier: Amsterdam, 1986, pp 95-103.
6. Jeong, H.-J.; Kakimoto, M.; Imai, Y. J Polym Sci Part A: Polym Chem 1991, 29, 1293.
7. Hsiao, S.-H.; Yang, C.-P.; Chuang, M.-H; Hsiao, H.-C. J Polym Sci Part A: Polym Chem 2000, 38, 247.
8. Hsiao, S.-H.; Chen, W.-T. J Polym Sci Part A: Polym Chem 2003, 41, 420.
9. Hsiao, S.-H.; Chen, W.-T. J Polym Res 2003, 10, 95.
10. Woodard, M. H.; Rogers, M. E.; Brandom, D. K.; Wilkes, G. L.; McGrath, J. E. ACS Polym Prepr 1992, 33(2), 333.
11. Morgan, P. W. Macromolecules 1970, 3, 536.
12. Eareckson, M. W. J Polym Sci 1959, 40, 399.
13. Morgan, P. W. “Condensation Polymers by Interfacial and Solution method”, Interscience: New York, 1965.
14. Johnson, R. N.; Farnham, A. G.; Clendinning, R. A.; Hala, W. F.; Merriam, C. N. J Polym Sci A-1 1967, 5, 2375.
15. Hala, W. F.; Farnham, A. G.; Johnson, R. N.; Clendinning, R. A. J Polym Sci A-1 1967, 5, 2399.
16. Johnson, R. N.; Farnham, A. G. J Polym Sci A-1 1967, 5, 2415.
17. Attwood, T. E.; Barr, D. A.; King, T.; Newton, A. B.; Rose, J. B. Polymer 1977, 18, 359.
18. Matsuo, S.; Murakami, T.; Takasawa, R. J Polym Sci Part A: Polym Chem 1993, 31, 3439.
19. Hergenrother, P. M.; Jensen, B. J. and Havens, S. J. Polymer 1988, 29, 358.
20. Keitoku, F.; Kakimoto, M.; Imai, Y. J Polym Sci Part A: Polym Chem 1994, 32, 317.
21. Mullins, M. J.; Woo, E. P. J. Macromol Sci, Rev Macromol Chem Phys 1987, C27 (2), 313.
22. Tullos, G. L.; Cassidy, P. E.; Clair A. K. St. Macromolecules 1991, 24, 6059.
23. Cassidy, P. E.; Aminabhavi, T. M.; Farley, J. M. J Macromol Sci, Rev Macromol Chem Phys 1989, C29 (2 & 3), 365.
24. Tunca, U.; Hizal, G. J Polym Sci Part A: Polym Chem 2000, 38, 2300.
25. Zolotukhin, M. G.; de Abajo, J.; Alvarez, J. C.; de la Campa, J. G.; Rueda, D. R. J Polym Sci Part A: Polym Chem 1998, 36, 1251
26. Risse, W.; Sogah, D. Y. Macromolecules, 1990, 23, 4029.
27. Taguchi, Y.; Uyama, H.; Kobayashi, S. J Polym Sci Part A: Polym Chem 1996, 34, 561.
28. Yonezawa, N.; Miyata, S.; Nakamura, T. Mori, S.; Ueda, Y.; Katakai, R.; Macromolecules 1993, 26, 5262.
29. Ueda, M.; Seino, Y.; Haneda, Y.; Yoneda, M. Sugiyama, J. I. J Polym Sci Part A: Polym Chem 1994, 32, 675.
30. Ueda, M.; Sato, M. Macromolecules 1987, 20, 2675.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top