跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/01/17 05:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張雅慧
研究生(外文):Ya-Hui Chang
論文名稱:Solasodine 促進腫瘤壞死因子-a(TNF-a)所誘導細胞凋亡之研究
論文名稱(外文):Enhanced tumor necrosis factor-a induced apoptosis by solasodine
指導教授:戴達英戴達英引用關係何錦玟
指導教授(外文):Dar-in TaiChin-wen Ho
學位類別:碩士
校院名稱:大同大學
系所名稱:生物工程學系(所)
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:40
中文關鍵詞:腫瘤壞死因子細胞凋亡
外文關鍵詞:ApoptosissolasodineTNF
相關次數:
  • 被引用被引用:0
  • 點閱點閱:282
  • 評分評分:
  • 下載下載:50
  • 收藏至我的研究室書目清單書目收藏:0
Solasodine存在於台灣本土植物黃水茄,具有抗病毒、抗癌之作用。同類的類固醇生物鹼solamargine能誘導腫瘤壞死因子受體-I (TNFR-I) 之表達,因此能引發細胞凋亡。由於C型肝炎病毒核蛋白可能藉調控TNFR-I 訊息傳導途徑來造成持續性感染,且solasodine比solamargine含量多易取得。因此探討solasodine在腫瘤壞死因子-�� (TNF-��)誘導之細胞凋亡的作用與機制。
以 tetrazolium (MTT) 來測量不同濃度之solasodine 對HepG2 細胞之活存率之影響。然後HepG2肝腫瘤細胞分別或一齊加入特定濃度之TNF-�� 與solasodine,再測量Caspase 3 活性,以定量細胞凋亡狀況。核因子kappaB (NF-�羠) 在抑制性蛋白質kappaB (I�羠) 被磷酸化以及解離後,進入細胞核活化釵h基因:可調控細胞凋亡。以西方墨點法測量抑制性蛋白質kappaB (I�羠) 磷酸化以及被解離過程,再以電泳移動改變測量細胞核內活性NF-�羠之含量,可了解solasodine促進細胞凋亡之作用與TNF-�� 訊息傳遞間的關係。
處理2-15 μg/ml solasodine,均明顯的降低HepG2肝腫瘤細胞存活率。Caspase 3 活性在一齊加入40 ng/ml TNF-�� 與10 μg/ml solasodine後6小時顯著升高,而單獨使用40 ng/ml TNF-�� 要到16小時後才升高。只用solasodine及未加入任何藥物之控制組皆未測出Caspase 3 活性。顯示solasodine 強化經由TNF引起的細胞凋亡。HepG2肝腫瘤細胞在加入 TNF-�� �n���n分鐘後,�n即測量出磷酸化之I�羠。TNF-�� �n�n與solasodine一齊加入並未影響I�羠之磷酸化。而單獨加入solasodine 在80 分時出現微弱的I�羠磷酸化之作用。同時使用TNF-�� 與solasodine在40分鐘出現略微增強的NF-�羠電泳移動改變。
在HepG2肝腫瘤細胞中,一齊加入TNF-�� 與solasodine強化了細胞凋亡,其機制不是阻斷了NF-�羠 的訊息傳導途徑。可能是solasodine破壞細胞膜的完整或solasodine尚有其它弁鄏傢騿C
Solasodine, a native plant product of Taiwan, was found to have anti-viral and anti-cancer effects. Solamargine, a similar steroid alkaloid compound, was reported to enhance tumor necrosis factor receptor-I (TNFR-I) expression and induce apoptosis to tumor cells. Hepatitis C virus core protein may bind to cytoplasmic tail of TNFR-I thus may regulate TNF signal transduction pathway. This action may favor for persistent HCV infection. Solasodine is more abundant than solamargine in plant, so we examined the effect of solasodine in tumor necrosis factor (TNF) induced apoptosis.
HepG2 cells were incubated with different doses of solasodine. Cell viability was measured by colorimetric tetrazolium (MTT) assay. Apoptosis was studied by measuring Caspase 3 activity from cell lysate treated by solasodine with or without combination of TNF-��. I�羠 phosphorylation western blotting and nuclear factor kappaB (NF-�羠) electrophoretic motility shift assay (EMSA) were done to understand the interaction of solasodine with TNF-ωignal transactivation pathway.
Solasodine (2 to 15 μg/ml) significantly decreased HepG2 cell viability in MTT assay. Enhanced apoptosis was found by elevation of Caspase 3 activity six hours after coincubation of solasodine and TNF, whereas incubation with TNF-� alone showed elevation of Caspase 3 activity at 16 hour. Incubation with solasodine or without any treatment in HepG2 cells did not showed elevation of Caspase 3 activity for up to 16 hours. Incubation of HepG2 cells with TNF-�, with or without solasodine, induced IκB phosphorylation at 3 min after treatment. Incubation with solasodine alone in HepG2 cell showed a weak IκB phosphorylation at 80 min after treatment. Coincubation of solasodine and TNF-� slightly increased nuclear NF-κB activity in gel shift assay at 40 min.
The mechanism for solasodine to enhance TNF-�-induced apoptosis is not through blocking of NF-κB signal transduction pathway. Disrupt membrane integrity or other unrecognized function of solasodine may be involved in TNF-�-induced apoptosis.
中文摘要………………………………………………………………………….. i
ABSTRACT………………………………………………………………………. iii
LIST OF TABLE AND FIGURES……………………………………………….. iv
ABBREVIATIONS……………………………………………………………….. v
1. INTRODUCTION……………………………………………...……………… 1
2. MATERIALS AND METHODS………………………………………………. 16
2.1 Cell line and Culture…………………………………………………..……. 16
2.2 Cell proliferation/viability assay…………………………………….…..….. 16
2.3 Assessment of TNF- –induced apoptosis…………………………………... 17
2.4 Semiquantification for TNFR-I…………………………………………….. 18
2.4.1. Extraction of total RNA………………………………………………... 18
2.4.2. Reverse transcription polymerase chain reaction………………..…….. 18
2.4.3. Western blotting for TNFR-I………………………...………...…….…. 19
2.5 Examination of I�羠 phosphorylation……………………………………….. 19
2.5.1. Preparation of cytosolic and nuclear proteins………………………….. 19
2.5.2. Western blotting for non-phosphorylated I�羠 and phosphorylated I�羠.. 20
2.6 Electrophoretic Mobility Shift Assay (EMSA) study………………………. 21

3. RESULTS……………………………………………………………………… 23
3.1 Cell viability assay……………………………………………………...…... 23
3.2 Apoptosis Assay……………………………………………………….……. 24
3.3 Detection of TNFR-I mRNA and protein after incubation with solasodine... �n����
3.4 Western blotting for non-phosphorylated I�羠 and phosphorylated I�羠…… 26
3.5 EMSA study………………………………………………………………… 29
4. DISCUSSION………………………………………………………………….. 30
5. CONCLUSION………………………………………………………………… 34
6. REFERENCES…………………………………………………………...……. 35
Aggarwal, B. B., and K. Natarajan, 1996. Tumor necrosis factors: Developments during the last decade. European Cytokine Network 7: 93-124

Alnemri, E. S., D. J. Livingston, D. W. Nicholson, G. Salvesen, N. A. Thornberry, W.W. Wong and J. Yuan, 1996. Human ICE/CED-3 protease nomenclature. Cell 87: 171

Baeuerle, P. A., and D. Baltimore, 1996. NF-�羠: Ten years after. Cell 87: 13-20

Barnes, P. J. and M. Karin, 1997. Nuclear factor-kB: A pivotal transcription factor in chronic inflammatory disease. The New England Journal of Medicine 336: 1066-1071

Bazzoni, E., and B. Beutter, 1996. The tumor necrosis factor ligand and receptor families. The New England Journal of Medicine 334: 1717-1725

Beaman-Mbaya, V., and S. I. Muhammed, 1976. Antibiotic action of Solanum incanum Linnaeus. Antimicrobial Agents and Chemotherapy P: 920-924

Beg, A. A., and D. Baltimore, 1996. An essential role for NF-�羠 in preventing TNF-�� induced cell death. Science 274: 782-784

Berek, L., D. Szabo, I. B. Petri, Y. Shoyama, Y. H. Lin, and J. Molnar, 2001. Effects of naturally occurring glycosides, solasodine glycosides, ginsenosides and parishin derivatives on multidrug resistance of lymphoma cells and leukocyte functions. In Vivo 15: 151-156

Blankemeyer, J. T., M. L. McWilliams, J. R. Rayburn, M. Weissenberg, and M. Friedman, 1998. Developmental toxicology of solamargine and solasonine glycoalkaloids in frog embryos. Food and Chemical Toxicology 36: 383-389

Cerretti, D. P., C. J. Kozlosky, B. Mosley, N. Nelson, N. K. Van, T. A. Greenstreet, C. J. March, S. R. Kronheim, T. Druck, and L. A. Cannizzaro, 1992. Molecular cloning of the interleukin-1 beta converting enzyme. Seience 256: 97-100

Cham, B. E., M. Gilliver, and L. Wilson, 1987. Antitumour effects of glycoalkaloids isolated from Solanum sodomaeum. Planta Medica 54: 34-36

Cham, B. E., and B. Daunter, 1990. Solasodine glycosides. Selective cytotoxicity for cancer cells and inhibition of cytotoxicity by rhamnose in mice with sarcoma 180. Cancer Letters 55: 221-225

Cham, B. E., B. Daunter, and R. A. Evans, 1991. Topical treatment of malignant and premalignant skin lesions by very low concentrations of a standard mixture (BEC) of solasodine glycosides. Cancer Letters 59: 183-192

Chang, L. C., T. R. Tsai, J. J. Wang, C. N. Lin, and K. W. Kuo, 1998. The rhamnose moiety of solamargine plays a crucial role in trigging cell death by apoptosis. Biochemical and Biophysical Research Communications 242: 21-25.

Chataing, B., J. L. Concepcion, R. Lobaton, and A. Usubillage, 1998. Inhibition of Trypanosoma cruzi growth in vitro by Solanum alkaloids: a comparison with ketoconazole. Planta Medica 64: 31-36

Chen, L. H., 2002. Studies on the production of Solasodine from cell culture of Solanum Incanum. P: 8-11. Thesis. Graduate Institute of Bioengineering, Tatung University

Daunter, B., and B. E. Cham, 1990. Solasodine glycosides. In vitro preferential cytotoxicity for human cancer cells. Cancer Letters. 55: 209-220

Di Bisceglie, A. M., and J. H. Hoofnagle, 2002. Optimal therapy of hepatitis C. Hepatology 36(S): 121-127

Ellis, R. E., and J. Yuan, 1991. Mechanisms and functions of cell death. Annual Review of Cell Biology 7: 663-698

Fewell, A. M., J. G. Roddick, and M. Weissenberg, 1994. Interactions between the glycoalkaloids solasonine and solamargine in relation to inhibition of fungal growth. Phytochemistry 37: 1007-1011

Granville, D. J., C. M. Carthy, D. W. C. Hunt, and B. M. McManus, 1998. Apoptosis: Molecular aspects of cell death and disease. Laboratory Investigation 78: 893-907
Honda, M., S. Kaneko, T. Shimazaki, E. Matsushita, K. Kobayashi, L. H. Ping, H. C. Zhang, and S. M. Lemon, 2000. Hepatitis C virus core protein induces apoptosis and impairs cell-cycle regulation in stably transformed Chinese hamster ovary cells. Hepatology 31: 1351-1359

Hsu, S. H., T. R. Tsai, C. N. Lin, M. H. Yen, and K. W. Kuo, 1996. Solamargine purified from Solanum incanum Chinese herb triggers gene expression of human TNFR1 which may lead to cell apoptosis. Biochemical and Biophysical Research Communication 229: 1-5

Hu, K., H. Kobayashi, A. Dong, Y. Jing, S. Iwasaki, and X. Yao, 1999. Antineoplastic agents. III: Steroidal glycosides from Solanum nigrum. Planta Medica 65: 35-38

Huang, S. M., 2002. The Changes of signaling transduction protein in human hepatocellular carcinoma. P: 14-16. Thesis. Institute of Biochemistry, Chung Shan Medical University

Hung, S. M., 2000. Studies on the apoptosis effects of Ganoderma species on human hepatoma cells. P: 10-11. Thesis. Graduate Institute of Food Science and Technology, National Taiwan University

Katschinski, D. M., H. B. Ian, M. Schad, S. Frede, and J. Fandrey, 1999. Role of tumor necrosis factor ���nin hyperthermia-induced apoptosis of human leukemia cells. Anticancer Research 59: 3404-3410

Kerr, J. F., A. H. Wyllie, and A. R. Currie, 1972. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. British Journal of Cancer 26: 239-257

Krammer, P. H., 1999. CD95(APO-1/Fas)-mediated apoptosis: live and let die. Advanoes in Immunology 71: 163-210

Kumar, A., M. Commane, T. W. Flickinger, C. M. Horvath, and G. R. Stark, 1997. Defective TNF-��-induced apoptosis in Stat1-null cell due to low constitutive levels of caspases. Science 278: 1630-1632



Kuo, K. W., S. H. Hsu, Y. P. Li, W. L. Lin, L. F. Liu, L. C. Chang, C. C. Lin, C. N. Lin, and H. M. Sheu, 2000. Anticancer activity evaluation of the solanum glycoalkaloid solamargine. Triggering apoptosis in human hepatoma cells. Biochemical Pharmacology 60: 1865-1873

Lai, M.Y., J. H. Kao, P. M. Yang, J. T. Wang, P. J. Chen, K. W. Chan, J. S. Chu, and D. S. Chen, 1996. Long-term efficacy of ribavirin plus interferon alfa in the treatment of chronic hepatitis C. Gastroenterology 111: 1307-1312

Lai, M. Y., 2000. Firstline treatment for hepatitis C: combination interferon/ribavirin versus interferon monotherapy. Journal of Gastroenterology Hepatology 15 (S): 130-133

Laken, H. A., and M. W. Leonard, 2001. Understanding and modulating apoptosis in industrial cell culture. Current Opinion in Biotechnology 12: 175-179

Lavie, Y., T. Harel-Orbital, W. Gaffield, and M. Lisoovitch, 2001. Inhibitory effect of steroidal alkaloids on drug transport and multidrug resistance in human cancer cells. Anticancer Research 21: 1189-1194

Liang, T. J., B. Rehermann, L. B. Seeff, and J. H. Hoofnagle, 2000. Pathogenesis, natural history, treatment, and prevention of hepatitis C. Annals of Internal Medicine 132: 296-305.

Lin, C. H., M. I. Chung, and K. H. Gan, 1988. Novel antihepatotoxic principles of Solanum incanum. Plant Medica 54: 222

Mosmann, T., 1983. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods 65: 55-63

Nicholsin, D. W., and N. A. Thornberry, 1997. Csapases: killer proteases. TIBS 22: 299-306

Raff, M. C., 1992. Social controls on cell survival and cell death. Science 356: 397-400

Riordan, S. M., and R. Williams, 2003. Mechanisms of hepatocyte injury multiorgan failure, and prognostic criteria in acute liver failure. Seminars in Liver Disease 23: 203-215

Roddick, J. G., M. Weissenberg, and A. L. Leonard, 2001. Membrane disruption and enzyme inhibition by naturally-occurring and modiffed chacotriose-containing Solanum steroidal glycoalkaloids. Phytochemistry 56: 603-610

Rowan, D. D., P. E. Macdonald, and R. A. Skipp, 1983. Antifungal stress metabolites from Solanum aviculare. Phytochemistry 22: 2102-2104

Shi, S. N., 1993. Studies on the triterpenes of paliurus hemsleyanus rehd, P: 76-77. Thesis. Graduate Institute of Pharmaceutical, College of Medicine, National Taiwan University

Stark, G. R., I. M. Kerr, R. G. Williams, and R. H. Silverman, 1998. How cells repond to interferons. Annual Review of cell Biology 67: 227-264

Sun, C. A., H. C. Chen, C. F. Lu, S. L. You, Y. C. Mau, M. S. Ho, S. H. Lin, and C. J. Chen, 1999. Transmission of hepatitis C virus in Taiwan: prevalence and risk factors based on a nationwide survey. Journal of Medical Virology 59: 290-296

Tai, D. I., 2000. The significance of tumor necrosis factor signal transduction pathway and NF-�羠 transactivation activity in chronic hepatitis and hepatocellular carcinoma, P: 2-6. Dissertation. Graduate Institute of Clinical Medical Sciences, Chang Gung University

Tai, D. I., S. L. Tsai, Y. H. Chang, S. N. Huang, T. C. Chen, K. S. Chang, and Y. F. Liaw, 2000a. Constitutive activation of nuclear factor kappaB in hepatocellular carcinoma. Cancer 89: 2274-2281

Tai, D. I., and S. L. Tsai, 2001. Apoptosis in viral Hepatitis B and C. Chang Gung Medical Journal 24: 285-293

Tai, D. I., S. L. Tsai, T. C. Chen, S. K. Lo, Y. H. Chang, and Y. F. Liaw, 2001. Modulation of tumor necrosis factor receptors 1 and 2 in chronic hepatitis B and C: the differences and implications in pathogenesis. Journal of Biomedical Science 8: 321-327
Tai, D. I., S. L. Tsai, Y. M. Chen, Y. L. Chuang, C. Y. Peng, I. S. Sheen, C. T. Yeh, K. S. Chang, S. N. Huang, G. C. Kuo, and Y. M. Liaw, 2000b. Activation of nuclear factor kappaB in hepatitis C virus infection: implications for pathogenesis and hepatocarcinogenesis. Hepatology 31: 656-664

Tai, D. I., C. H. Chen, T. T. Chang, S. C. Chen, L. Y. Liao, C. H. Kuo, Y. Y. Chen, G. H. Chen, S. S. Yang, H. S. Tang, H. H. Lin, D. Y. Lin, S. K. Lo, J. M. Du, K. C. Lin, C. S. Changchien, W. Y. Chang, J. C. Sheu, Y. F. Liaw, D. S. Chen, and J. L. Sung, 2002. Eight-year nationwide survival analysis in relatives of patients with hepatocellular carcinoma: role of viral infection. Journal of Gastroenterology and Hepatology 17: 682-689

Tartaglia, L. A., and D. V. Goeddel, 1992. Two TNF receptors. Immunology Today 13: 151-153

Tewari, M., L. T. Quan, K. O. Rourke, S. Desnoyers, Z. Zeng, D. R. Beidler, G. G. Poirier, G. S. Salvesen, and V. M. Dixit, 1995. Yama/CPP32��, a mammalian homolog of CED-3, is a crmA-inhibitable protease that cleaves the death substrate poly(ADP-Ribose) polymerase. Cell 81: 801-809

Thomas, D. L., J. Astemborski, R. M. Rai, F. A. Anania, M. Schaeffer, N. Galai, K. Nolt, K. E. Nelson, S. A. Strathdee, L. Johnson, O. Laeyendecker, J. Boitnott, L. E. Wilson, and D. Vlahov, 2000. The natural history of hepatitis C virus infection: host, viral, and environmental factors. The Journal of the American Medical Association 284: 450-456.

Thorne, H. V., G. F. Clarke, and R. Skuce, 1985. The inactivation of herpes simplex virus by some Solanaceae glycoalkaloids. Antiviral Research 5: 335-343

Tsai, S. L., Y. F. Liaw, M. H. Chen, C. Y. Huang, and G. C. Kuo, 1997. Detection of type 2-like T-helper cells in hepatitis C virus infection: implications for hepatitis C virus chronicity. Hepatology 25: 449-458

Van Antwerp, D. J., S. J. Martin, T. Kafri, D. R. Green, and I. M. Verma, 1996. Suppression of TNF-��-induced apoptosis by NF-�羠. Science 274: 787-789



Van Arsdale, T. L, S. L. Van Arsdale, W. R. Force, B. N. Walter, G. Mosialos, E. Kieff, J. C. Reed, and C. F. Ware, 1997. Lymphotoxin-�� receptor signaling complex: role of tumor necrosis factor receptor-associated factor 3 recruitment in cell death and activation of nuclear factor �羠. Proceedings of the National Academy of Sciences of the United States of America 94: 2460-2465

Weissenberg, M., A. Levy, J. A. Svoboda, and I. Ishaaya, 1998. The effect of some Solanum steroidal alkaloids and glycoalkaloids on larvae of the red flour beetle, Tribolium castaneum, and the tobacco hornworm, Manduca sexta. Phytochemistry 47: 203-209

White, E., 1996. Life, death and pursuit of apoptosis. Genes & Development 10: 1-15

Wyllie, A. H., J. F. R. Kerr, and A. R. Currie, 1980. Cell death: the significance of apoptosis. International Review of Cytology 68: 251-270

Yoshida, H, N. Kato, Y. Shiratori, M. Otsuka, S. Maeda, J. Kato, and M. Omata, 2001. Hepatitis C virus core protein activates nuclear factor kappa B-dependent signaling through tumor necrosis factor receptor-associated factor. The Journal of Biological Chemistry 276: 16399-16405

You, L. R., C. M. Chen, and Y. H. Lee, 1999. Hepatitis C virus core protein enhances NF-kappaB signal pathway triggering by lymphotoxin-beta receptor ligand and tumor necrosis factor alpha. Journal of Virology 73: 1672-1681

Zhu, N, A. Khoshnan, R. Schneider, M. Matsumoto, G. Dennert, C. Ware, and M. M. Lai, 1998. Hepatitis C virus core protein binds to the cytoplasmic domain of tumor necrosis factor (TNF) receptor 1 and enhances TNF-induced apoptosis. Journal of Virology 72: 3691-3697
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top