跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.175) 您好!臺灣時間:2024/12/07 23:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳明蓉
研究生(外文):Ming-Jung Wu
論文名稱:大腸桿菌O157:H7生物感測器DNA樣本之製備
論文名稱(外文):Preparation of target DNA for the biosensors of Escherichia coli O157:H7
指導教授:林銘澤
指導教授(外文):Ming -tse Lin
學位類別:碩士
校院名稱:大同大學
系所名稱:生物工程學系(所)
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:91
中文關鍵詞:大腸桿菌O157:H7 生物感測器 樣本製備
外文關鍵詞:Escherichia coli O157:H7 biosensor Preparatio
相關次數:
  • 被引用被引用:0
  • 點閱點閱:164
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
快速偵測與定性諸如大腸桿菌O157:H7之食品致病菌,對於流行病學研究與食品安全檢測是相當重要。核苷酸生物感測器為對於大腸桿菌O157:H7之偵測與基因型判定,具有敏感性與專一性的另一種方便的技術。
首先針對致病性與血清型基因eaeA, hlyA, StxI, StxII, O157與H7之引子組合進行設計合成,並証明對大腸桿菌O157:H7具專一性之偵測。之後於生物感測器上固定互補於致病基因eaeA 之30 個核苷酸長之探針,及自破碎細胞或純化之基因體DNA,藉由聚合酶連鎖反應進行合成,以增生目標DNA,此PCR產物並不需經過修飾或純化即可雜交至生物感測器上。
為能提高存在於市售食品中大腸桿菌O157:H7之檢測敏感度與縮短偵測時間,我們設計一系列的樣本製備實驗。收集並適當稀釋大腸桿菌O157:H7,然後以100 CFU/ml之數量接種於LB或BHI培養基中進行增殖,然後大腸桿菌O157:H7以煮沸方式破碎菌體並釋出基因體DNA以進行PCR合成反應,而自培養至少6小時後經煮沸處理的上清液,可合成具專一性的PCR產物。
大腸桿菌O157:H7(101至104 CFU/ml) 與大腸桿菌K12共同培養4小時而經煮沸處理之LB培養基,亦能夠增生出具專一性的PCR產物,而不受大腸桿菌K12干擾。
大腸桿菌O157:H7 (101至104 CFU/ml) 的純系培養,能在包含4小時培養與其他如細胞破碎、PCR反應及電泳等步驟操作,而於7小時內成功偵測。與高濃度大腸桿菌K12共同培養並不會影響對於低量大腸桿菌O157:H7之偵測,經4小時增殖後的最低之可偵測量可達到101 CFU/ ml。增生後之PCR產物,可與固定於石英晶體微天平晶片和光纖上之探針進行雜交而被偵測。
Rapid detection and characterization of food borne pathogens such as Escherichia coli O157:H7 is crucial for epidemiological investigations and food safety surveillance. As an alternative to conventional technologies, the nucleic acid biosensors for detecting and genotyping of E. coli O157:H7 were examined the sensitivity and specificity.
At first, primer sets for the pathogenic and sero-type genes, eaeA, hlyA, StxI, StxII, O157, and H7, were synthesized and evidenced the specificities in detection of E. coli O157:H7. Therefore, the biosensors were fixed with oligonucleotide probes of 30mer complementary to a virulence loci intimin, eaeA. Target DNA was amplified from disrupted cells directly or from purified DNA via single polymerase chain reaction, and PCR products were hybridized to the biosensors without further modification or purification.
In order to improve the sensitivity and shorten the detection time for the identification of E. coli O157:H7 in food obtained from markets, we designed a series of experiments about sample preparation. The E. coli O157:H7 was diluted appropriately and then added 100 CFU/ml into LB or BHI medium for enrichment. The E. coli O157:H7 was directly disrupted by boiling and released its genomic DNA for PCR amplification. The specific PCR products could be amplified from the boiled supernatant after culture more than 6 hr.
Co-culture the 101 to 104 E. coli O157:H7 with 106 E. coli K12 organisms per ml, the specific PCR products were also amplified from the boiled media cultivated for 4 hr which was not interfered by E. coli K12.
Pure cultures of E. coli O157:H7 (101 to 104 CFU/ml) could be detected within 7 h including 4 h for incubation in LB broth and others for cell disruption, PCR, and electrophoresis. Our data show that the high level of K12 in medium did not impede the detection of low levels of O157:H7. The minimum detectable numbers of cells present in the initial inoculum was 101 CFU/ml after 4-h enrichment.
The amplified PCR products could be detected by hybridization with the immobilized probes on the chips of quartz crystal microbalance and optic fiber.
ABSTRACT I
中文摘要 III
CONTENT V
LIST OF TABLES IX
LIST OF FIGURES X
NOMENCLATURE XIII
CHAPTER 1 INTRODUCTION 1
1.1 Genosensors 2
1.1.1 Direct sequencing 2
1.1.2 DNA hybridization 2
1.1.3 Electrochemical devices 5
1.1.4 Optical devices 7
1.1.5 Acoustic wave devices 9
1.1.6 DNA microchips 13
1.2 Enterohemorrhagic Escherichia coli O157:H7 15
1.2.1 Introduction of Escherichia coli O157:H7 16
1.2.2 E. coli O157:H7 spread 18
1.2.3 Illness caused by E. coli O157:H7 19
1.2.4 E. coli O157:H7 infection diagnosed 22
1.2.5 E. coli O157:H7 in Apple cider 22
1.3 Methods to detect E. coli O157:H7 24
1.3.1 Polymerase chain reaction (PCR) 25
1.3.2 Infrared spectroscopy 27
1.3.3 Bioluminescence 27
1.3.4 Immunomagnetic flow cytometry 28
1.3.5 Time-resolved fluorometry (TRF) 28
1.4 Sample preparation methods for PCR detection 29
1.5 The framework of this monographic study 30
CHAPTER 2 MATERIALS AND METHODS 32
2.1 Materials 32
2.1.1 Chemicals and reagents 32
2.1.2 Bacteria strains 33
2.2 Instruments and Software 33
2.2.1 Instruments 33
2.2.2 Software for DNA sequence analysis 35
2.3 Designs for Primers and oligonucleotide probes 36
2.4 Sample preparation 37
2.4.1. Bacterial strains and their culture conditions 37
2.4.2. Preparation of purified bacteria DNA 38
2.4.3 Cell disruption by boiling method 38
2.4.4 Comparison of enrichment media 39
2.4.5 Preparation of E. coli mixtures 40
2.5 Detection by polymerase chain reaction 40
2.5.1 Polymerase chain reaction 40
2.5.2 Study for optimal annealing temperature 41
2.5.3 Primers specificity 42
2.6 Optical fiber 42
2.6.1 Coating of fibers 42
2.6.2 Detection by fiber-optic biosensor 44
2.7 Liquid phase quartz crystal microbalance 44
2.7.1 Preparation of QCM chip 44
2.7.2 QCM detection 45
CHAPTER 3 RESULTS AND DISCUSSION 47
3.1 Primer design 47
3.2 Detection of E. coli O157:H7 by PCR 48
3.2.1 Polymerase chain reaction of E. coli O157:H7 48
3.2.2 The specificity of primers 58
3.2.3 PCR from crude DNA released by boiling method 58
3.3 Culture enrichment 62

3.3.1 Comparison of enrichment media 62
3.3.2 Detection in mixing culture 68
3.4 Detection of fiber-optic biosensor for E. coli O157:H7 72
3.5 Detection of QCM for E. coli O157:H7 76
CHAPTER 4 CONCLUSIONS
CHAPTER 5 REFERENCES 81
Andle, J.C., J.F. Vetelino, M.W. Lade and D.J. McAllister, Sens. and Actuat. B. 1992; 8, 191.
Advisory Committee on the Microbiological Safety of Food Report on Verocytotoxin-Producing Escherichia coli. London: HMSO. 1995
Aizawa, M., Immunosensors for Chemical Aanlysis. Adv Clin. Chem. 1994; 31, 247-275
Babacan S, Pivarnik P, Letcher S, Rand AG. Evaluation of antibody immobilisation methods for piezoelectric biosensor application. Biosens. and Bioelectron. 2000; 15, 615-21.
Bringham-Burke, M., Edwards, J.R., O’Shannessy, D.J. Detection of receptor ligand interactions using surface plasmon resonance: model studies employing the HIV-1 GP120: CD4 interactions. J. Anal. Bioch. 1992; 205, 125-131.
Besser, R. E., Lett, S. M., Weber, J. T., Doyle, M. P., Barret, T. J., Wells, J. G., & Griffin, P. M. An outbreak of diarrhea and hemolytic uremic syndrome from Escherichia coli O157:H7 in fresh pressed apple cider. J Amer. Med. Assoc. 1993; 269, 2217-2220.
Bellin, T., Pulz, M., Matussek, A., Hempen, H.G., Gunzer, F. Rapid detection of enterohemorrhagic Escherichia coli by real-time PCR with fluorescent hybridization probes. J Clin Microbiol. 2001; 39, 370-374.
Bhaduri, S. & Cottrell, B. A simplified sample preparation from various foods for PCR detection of pathogenic Yersinia enterocolitica: a possible model for other food pathogens. Mol Cell Probes. 1998; 12, 79-83.
Bush, C.E., Vanden Brink, K.M., Sherman, D.G., Peterson, W.R., Beninsig, L.A., Godsey, J.H., Detection of Escherichia coli rRNA using target amplification and time-resolved fluorescence detection. Mol. Cell. Probes 1991; 5, 467–472.
Chan, K.C., L.B. Koutny and E.S. Yeung, On-line detection of DNA in gel electrophoresis by ultraviolet absorption utilizing a charge-coupled device imaging system. Anal. Chem. 1991; 63, 746-750.
CDCP (Centers for Disease Control and Prevention. Outbreak of Escherichia coli O157:H7 infections associated with drinking unpasteurized commercial apple juice-British Columbia, California, Colorado and Washington, October, 1996. Morbidity and Mortality Weekly Report. 1996; 45, 975-982.
CDCP (Centers for Disease Control and Prevention). Outbreaks of Escherichia coli O157:H7 infection and cryptosporidiosis associated with drinking unpasteurized apple cider-Connecticut and New York, October, 1996. Morbidity and Mortality Weekly Report. 1997; 46, 4-8.
Czajka, J., Batt, C.A. A solid phase fluorescent capillary immunoassay for the detection of Escherichia coli O157:H7 in ground beef and apple cider. J. Appl. Bacteriol. 1996; 81, 601-607.
DiCesare, J., Grossman, B., Katz, E., et al. A high sensitivity electrochemiluminescence based detection system for automated PCR product quantitation. Biotechniques 1993;15, 152-157.
Dahlén, P., Syënen, A., Hurskainen, P., Kwiatkowski, M., Sund, C., Ylikoski, J., Söderlund, H., Lövgren, T., Sensitive detection of genes by sandwich hybridization and time-resolved fluorometry. Mol. Cell. Probes 1987; 1, 159– 168.
Eggers, M., Hogan, M., Reich RK, Lamture J, Ehrlich D, Hollis M, Kosicki B, Powdrill T, Beattie K, Smith S and et al. A microchip for quantitative detection of molecules utilizing luminescent and radioisotope reporter groups. Biotechniques 1994; 17, 516-25.
Frat Amico, P.M., Strobaugh, T.P., Medina, M.B., Gehring, A.G., Detection of E. coli O157:H7 using a surface-plasmon resonance biosensor. Biotechnol. Techn. 1998; 12 (7), 571-576.
Fratamico, P.M., Sackitey, S.K., Wiedmann, M., Deng, M.Y. Detection of Escherichia coli O157:H7 by multiplex PCR. J. Clin. Microbiol. 1995; 33, 2188-2191.
Fortin, N.Y., Mulchandani, A., Chen, W. Use of real-time polymerase chain reaction and molecular beacons for the detection of Escherichia coli O157:H7. Anal. Biochem. 2001; 289, 281-288.
Griffiths D, Hall G. Biosensors—what real progress is being made? TIBTECH 1993; 11: 122-30.
Gannon, V.P., D’Souza, S., Graham, T., King, R.K. Specific identification of Escherichia coli O157:H7 using a multiplex PCR assay. Adv. Exp. Med. Biol. 1997; 412, 81-82.
Hafeman, D.G., J.W. Parce and H.M. McConnell, Light-addressable potentiometric sensor for biochemical systems. Science, 1988; 240, 1182-1185.
Harrison, D.J., K. Fluff, K. Seiler and Z. Fan, Science, 1993; 261, 895.
Holland, J.L., Louie, L., Simor, A.E., Louie, M. PCR detection of Escherichia coli O157:H7 directly from stools: evaluation of commercial extraction methods for purifying fecal DNA. J. Clin. Microbiol. 2000 ; 38, 4108– 4113.
Invitski D, Abdel-Hamid I, Atanasov P, Wilkins E. Biosensors for the detection of pathogenic bacteria. Biosens Bioelectron 1999;14:599-624.
Joseph I, Yang H, Sakhamuri S., Differentiation and detection of microorganisms using Fourier transform infrared photoacoustic spectroscopy. J. Mol. Struct. 2002; 606, 181-188.
G.H. Keller and M.M. Manak, DNA Probes, Stockton Press, London, 1994.
Kung, V.T., P.R. Panfili and E.L. Sheldon, RS King, PA Nagainis, JB Gomez, DA Ross, J Briggs and RF Zuk, Picogram quantitation of total DNA using DNA-binding proteins in a silicon sensor-based system. Anal Biochem., 1990; 187, 220-227.
Karlsson, R., Michaelsson, A., Mattsson, L., Kinetic-analysis of monoclonal antibody-antigen interactions with a new biosensor based analytical system. J. Immunol. Methods 1991; 145, 229-240.
Leland, J.K. and Powell, M.J., J. Electrogenerated chemiluminescence:
an oxidative-reduction type ECL reaction sequence using tripropyl amine. Electrochem. Soc., 1990; 137, 3127-3131.
Lukosz, W., Clerc, D., Nellen, P.M., Stamm, C., Weiss, P., Output grating couplers on planar optical wave-guides as direct immunosensors. Biosensors Bioelectron. 1991; 6, 227-232.
Leyer, G.J., Wang, L.L., Johnson, E.A., Acid adaptation Escherichia coli O157:H7 increases survival in acidic foods. Appl. Environ. Microbiol. 1995; 61, 3752-3755
Lantz, P., Matsson, M., Wadstro¨m, R. Removal of PCR inhibitors from human faecal samples through the use of an aqueous two-phase system for sample preparation prior to PCR. J. Microbiol. Methods 1997; 28, 159-167.
Lyons, S.R., Griffen, A.L., Leys, E.J. Quantitative real-time PCR for Porphyromonas gingivalis and total bacteria. J. Clin. Microbiol. 2000; 38, 2362-2365.
Lantz PG, Hahn-Hägerdal B, Rådström P. Sample preparation methods in PCR-based detection of food pathogens. Trends Food Sci. Tech. 1994; 5, 384–9.
Lindqvist, R., Norling, B. & Thisted-Lambertz, S. T. A rapid sample preparation method for PCR detection of food pathogens based on buoyant density centrifugation. Lett. Appl. Microbiol. 1997; 24, 306-10.
Lantz, P.-G., Tjerneld, F., Borch, E., Hahn-Hägerdal B, Rådström P. Enhanced sensitivity in PCR detection of Listeria monocytogenes in soft cheese through use of an aqueous two-phase system as a sample preparation method. Appl. Environ. Microbiol. 1994; 60, 3416–8.
Lindqvist, R. Preparation of PCR samples from food by a rapid and simple centrifugation technique evaluated by detection of Escherichia coli O157:H7. Intern. J. Food Microbiol. 1997; 37, 73–82.
Mirzabekov, A.D., DNA-Sequencing by hybridization-A megasequencing method and a dlagnostic-tool. Trends in Biotechnology, 1994; 12, 27.
Medina, M.B., Houten, L.V., Cooke, P.H., Tu, S.I., Real-time analysis of antibody binding interactions with immobilized E. coli O157:H7 cells using the BIAcore. Biotechnol. Techn. 1997; 11 (3), 173–176.
Mead, P.S. and Griffin, P.M. Escherichia coli O157:H7. The Lancet 1998; 352:1207-12.
Mahon BE, Griffin PM, Mead PS, Tauxe RV. Hemolytic uremic syndrome surveillance to monitor trends in infection with Escherichia coli O157:H7 and other shiga toxin-producing E. coli. Emerg Infect Dis 1997; 3:409-12.
Miller, L.G., Kaspar, C.W., Escherichia coli O157:H7 acid tolerance and survival in apple cider. J. Food Prot. 1994; 57, 460-464.
Nakamura, N., Shigematsu, A., Matsunaga, T., Electrochemical detection of viable bacteria in urine and antibiotic selection. Biosens. Bioelectron. 1991; 6 (7), 575–580.
Nogva, H.K., Rudi, K., Naterstad, K., Holck, A., Lillehaug, D. Application of 50-nuclease PCR for quantitative detection of Listeria monocytogenes in pure cultures, water, skim milk, and unpasteurized whole milk. Appl. Environ. Microbiol. 2000; 66, 4266-4271.
Olson, J.D., P.R. Panfili, R.E Zuk and E.L. Sheldon, Mol. Cell. Probes., 1991; 5, 351.
Okahata, Y., Y. Matsunobu, I. Kunihara, M. Masayuki, A. Murukami and K. Makino, J. Am. Chem. Soc., 1992; 114, 8299.
Oberst, R.D., Hays, M.P., Bohra, L.K., Phebus, R.K., Yamashiro, C.T., Paszko-Kolva, C., Flood, S.J., Sargeant, J.M., Gillespie, J.R. PCR-based DNA amplification and presumptive detection of Escherichia coli O157:H7 with an internal fluorogenic probe and the 50 nuclease (TaqMan) assay. Appl. Environ. Microbiol. 1998; 64, 3389–3396.
Pollard-Knight, D.V., Hawkins, E., Yeung, D., Pashby, D.P., Simpson, M., McDougall, A., Buckle, P., Charles, S.A., Immunoassays and nucleic-acid detection with a biosensor based on surface plasmon resonance. Ann. Biol. Clin. 1990; 48, 642–646.
Paton, A.W., Paton, J.C. Detection and characterization of Shiga toxigenic Escherichia coli by using multiplex PCR assays for stx1, stx2, eaeA, enterohemorrhagic E. coli hlyA, rfbO111, and rfbO157. J. Clin. Microbiol. 1998; 36, 598–602.
Riley, L. W., R. S. Remis, S. D. Helgerson, H. B. McGee, J. G. Wells, B. R. Davis, R. J. Hebert, E. S. Olcott, L. M. Johnson, N. T. Hargrett, P. A. Blake, and M. L. Cohen. Hemorrhagic colitis associated with a rare Escherichia coli serotype. N. Engl. J. Med. 1982; 308, 681–685.
Ramotar, K., Waldhart, B., Church, D., Szumski, R., Louie, T.J. Direct detection of verotoxin-producing Escherichia coli in stool samples by PCR. J. Clin. Microbiol. 1995; 33, 519-524.
Rossen, L., Nørskov, P., Holmstrøm, K. & Rasmussen, O. F. Inhibition of PCR by components of Food samples, microbial diagnostic assays and DNA-extraction solutions. Intern. J. Food Microbiol. 1992; 17, 37–45.
Rychlik I, van Kesteren L, Cardova L, Svestkova A, Martinkova R, Sisak F. Rapid detection of Salmonella in field samples by nested polymerase chain reaction. Lett. Appl. Microbiol. 1999; 29, 269-72.
Symons, R.H., Nucleic Acid Probes, CRC Press, Boca Baton, FL, 1989.
Strachan, N.J.C. and Gray, D.I. A rapid general method for the identification of PCR products using a fibre-optic biosensor and its application to the detection of Listeria. Lett. Appl. Microbiol., 1995; 21, 5-9.
Seo K.H., R.E. Brackett, J.F. Frank, Rapid detection of Escherichia coli O157:H7 using immunomagnetic flow cytometry in ground beef, apple juice, and milk. Int. J. Food Microbiol. 1998; 44, 115-123.
Su, H. and Thompson, M. Kinetics of interfacial nucleic acid hybridization studied by acoustic network analysis. Biosensors and Bioelectronics, 1995; 10, 329.
Su, H., P. Williams and M. Thompson, Platinum Anticancer Drug Binding to DNA Detected by Thickness-Shear-Mode Acoustic Wave Sensor. Anal. Chem., 1995; 67, 1010-1013.
Schneider, B.H., Edwards, J.G., Hartman, N.F., Hartman interferometer: versatile integrated optic sensor for label-free, real-time quantification of nucleic acids, proteins, and pathogens. Clin. Chem. 1997; 43 (9), 1757-1763.
Sloper, A.N., Deacon, J.K., Flannagan, M.T., A planar indium phosphate monomode wave-guide evanescent field immunosensor. Sensors Actuators B 1, 1990; 285–297.
Swenson, F.J., Development and evaluation of optical sensors for the detection of bacteria. Sensors Actuators B 11, 1993; 315-321.
Slutsker L, Ries AA, Greene KD, Wells JG, Hutwagner L, Griffin M, Escherichia coli O157:H7 diarrhea in the United States: clinical and epidemiologic features. Ann Intern Med 1997; 126: 505-513.
Stacy-Phipps, S., Mecca, J.J., Weiss, J.B. Multiplex PCR assay and simple preparation method for stool specimens detect enterotoxigenic Escherichia coli DNA during course of infection. J. Clin. Microbiol. 1995; 33, 1054-1059.
Stewart, D.S., Tortorell, M.L., Gendel, S.M. Evaluation of DNA preparation techniques for detection of the SLT-1 gene of Escherichia coli O157:H7 in bovine faeces using the polymerase chain reaction. Lett. Appl. Microbiol. 1998; 26, 93-97.
Soumet, C., Ermel, G., Fach, P. & Colin, P. Evaluation of different DNA extraction procedures for the detection of Salmonella from chicken products by polymerase chain reaction. Lett. Appl. Microbiol. 1994; 19, 294–8.
Squirrell D.J., R.L. Price, M.J. Murphy, Rapid and specific detection of bacteria using bioluminescence. Anal. Chimica Acta 2002; 457, 109-114.
Volknuth, W.D. and Austin, R.H. DNA electrophoresis in microlithographic arrays. Nature. 1992; 358, 600-602
Wise, K.D. and Najafi, K. Microfabrication Techniques for Integrated Sensors and Microsystems.
Science 1994; 254, 1335-1342.
Watts, H.J., Lowe, C.R., Pollard-Knight, D.V., Optical biosensor for monitoring microbial cells. Anal. Chem. 1994; 66, 2465–2470.
Wilson, I.G. Inhibition and facilitation of nucleic acid amplification. Appl. Environ. Microbiol. 1997; 63, 3741- 3751.
Witham, P.K., Yamashiro, C.T., Livak, K.J., Batt, C.A. A PCR-based assay for the detection of Escherichia coli Shiga-like toxin genes in ground beef. Appl. Environ. Microbiol. 1996; 62, 1347–1353.
Wang, R.F., Cao, W.W., Franklin, W., Campbell, W., Cerniglia, C. E. A 16S rDNA-based PCR method for rapid and specific detection of Clostridium perfringens in food. Mol. Cell. Probes 1994; 8, 131–8.
Yu L.S.L., S.A. Reed, M.H. Golden Time-resolved fluorescence immunoassay (TRFIA) for the detection of Escherichia coli O157:H7 in apple cider. J. Microbiol. Methods 2002;49,63-68.
Zhao, T., Doyle, M.P., Besser, R.E. Fate of enterohemor rhagic Escherichia coli O157:H7 in apple cider with and without preservatives. Appl. Environ. Microbiol. 1993; 59, 2526-2530.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文