跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/01/23 06:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄭彥蘋
研究生(外文):Yen-Ping Cheng
論文名稱:氧流量對陰極電弧沈積Cr(N,O)/CrN複合鍍膜機械性質之影響
論文名稱(外文):Effects of Oxygen Flow on Mechanical Properties of Cr(N, O)/CrN Duplex Coatings Synthesized by PVD-CAE Process
指導教授:許正勳許正勳引用關係
指導教授(外文):Cheng-Hsun Hsu
學位類別:碩士
校院名稱:大同大學
系所名稱:材料工程學系(所)
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:131
中文關鍵詞:氧流量陰極電弧Cr(N O)/CrN 複合鍍膜
外文關鍵詞:Cathodic arc evaporationCr(N O)/CrN duplex coatingsOxygen
相關次數:
  • 被引用被引用:6
  • 點閱點閱:197
  • 評分評分:
  • 下載下載:28
  • 收藏至我的研究室書目清單書目收藏:0
陰極電弧沈積(Cathodic Arc Evaporation, CAE)技術,是物理氣相沈積(PVD)技術之一,由於其鍍膜速度較快、附著性良好及品質較優良等等,藉由此技術在工具鋼、模具鋼或其他硬質合金上,披覆超硬薄膜,可提升模具的使用壽命,故近年來已成為普遍的加工方式。硬質薄膜的種類繁多,氮化鈦(TiN)、氮化鋁鈦(TiAlN)類碳鑽(DLC)及氮化鉻(CrN)等等,則是目前較常被使用的材料。
CrN鍍膜之所以具有高硬度、高溫抗氧化性、低摩擦係數、耐蝕及耐磨耗等特性,主要是因來自於表面容易生成氧化鉻(Cr2O3)所致。然而,在一些應用上,CrN的硬度因仍不及TiN或TiAlN高,使得CrN提早磨損,工作壽命遜於其他硬質薄膜。因此基於CrN和Cr2O3的相互關係,本研究則是直接利用陰極電弧系統,以變化氧氣流量參數來披覆Cr(N,O)/CrN複合鍍膜,探討藉由此製程參數的變化以尋求最佳參數,並進行不同製程之鍍膜型態的觀察以及機械性質等研究,可提供學術上或工業上應用之參考。此外,如何改善CrN的脫模特性,也是本論文的研究重點。
實驗結果顯示,利用陰極電弧系統沈積的Cr(N,O) / CrN複合膜,經X-ray及XPS成份鑑定後,發現成份幾乎一樣。但比較Cr(N,O) / CrN複合膜與CrN的機械性質中發現,除了氧氣流量為23sccm(S1)外,其他複合鍍層之摩擦係數(0.4~0.5)皆低於CrN(0.6),證實氧化物的確可以有效降低薄膜之摩擦係數,且隨著氧氣流量的增加,硬度、刮痕(臨界荷重Lc)等性質也有一最大值出現,膜厚測量發現,氧氣會使靶材產生毒化的現象,導致沈積率的下降;在奈米硬度試驗中,當氧氣流量達69sccm(S3)時,其硬度值高達25.6GPa,其餘試片也都高達20GPa以上;此外,由水接觸角試驗得知,Cr(N,O)/CrN複合鍍層之脫模性較CrN來得佳。
Cathodic arc evaporation (CAE) process is one of the physical vapor deposition processes. To increase the efficiency of cutting, tool materials and their geometry are continually being improved. In particular, better cutting performance was obtained by the introduction of thin hard coating on tools. Due to its high rates of the deposition, well adhesion, and superior quality ... etc, it has become the normal processing in these years. There are various kinds of hard thin films, as TiN, TiAlN, DLC, and CrN… etc, which is the common used materials in nowadays.
CrN with excellent properties in hardness, oxidation, oxidation resistance, chemical stability and slid comes from the easily formed Cr2O3 on the surface. Compared with TiN, the oxidation resistance of CrN is higher since the Cr oxide film formed at high temperature is more stable than that of Ti. The purpose of this study was to deposit Cr (N, O) / CrN duplex coating on SKH51. The structural, mechanical, tribology and corrosion properties will be discussed.
As shown in the experiment, during the CAE process, input oxygen will poison the target, leading to the increase of the electrical resistance and the decrease of the deposition rate. Therefore, at the same time the film thickness of CrN is thinnest. In hardness experiment, when the input of oxygen is 69sccm (S3), it can get the highest hardness, 25.6Gpa, and the hardness of the others conditions could reach the value of 20GPa. During friction experiment, the friction coefficient of double-layered Cr(N,O)/CrN is lower than the friction coefficient of CrN except that the input of oxygen is 23sccm. It can be seen in the contact angle of water experiment that the double-layered Cr (N,O)/CrN has better release than CrN. According to detus, the double-layered Cr (N,O)/CrN can improve the quality of single-layered CrN. It can be the prospecting materials in the future.
TABLES OF CONTENTS
ENGLISH ABSTRACT…………………………………….……………….I
CHINESE ABSTRACT……………………………………….……………ⅢTABLES OF CONTENTS………………..…………………………………………Ⅴ
LIST OF TABLES……………………...…………………………………..Ⅸ
LIST OF FIGURES………………………………………………………...Ⅹ
CHAPTER 1 INTRODUCTION………1
CHAPTER 2 BIBLIOGRAPHY…………….....…………………….……...6
2.1 High-speed steel………………………………………………..…...6
2.1.1 The content of the high-speed steel……………........…………..7
2.1.2 Heat treatments of the high-speed steel……………..…………..8
2.1.3 Classification of high-speed steel………….......………………..9
2.2 Characteristic of nitride chromium thin film…….......................…10
2.3 Cathodic Arc plasma deposition………………………...…...……11
2.3.1 Advantages and disadvantages of cathodic arc……….……….16
2.3.1.1 Advantages of cathodic arc..………………………………..16
2.3.1.2 Disadvantages of cathode arc………......…………………..17
2.3.2 Production and influence of particles………......................…...17
2.3.2.1 Production of particles……………………………………..17
2.3.2.2 Influence between particles and coating…………......……..17
2.3.2.3 The method of preventing the particle.........………………..18
2.3.3 Coatings growth organizations……………………............…...19
2.4 Surface coarseness measurement……………………............…….21
2.5 Coating hardness measurement……………..............…………….21
2.5.1 Vickers hardness indenter……….........………………………21
2.5.2 Nanoindenter…………………………………………………23
2.6 The adhesion of the coating………....................…………………26
2.6.1 Indentation test....................…………………………………...26
2.6.2 Scratch test………………...................………………………...28
2.7 Wear behavior……………....................…………………………..30
2.7.1 Adhesion wear.......................………………………………….30
2.7.2 Abrasive wear.......................…………………………………..30
2.7.3 Fatigue wear.....................……………………………………..30
2.7.4 Chemical wear.....................…………………………………..31
2.8 The interface free energy of coating…….................……………..33
CHAPTER 3 EXPERIMENTAL INSTRUMENTS AND TECHNIQUES..35
3.1 Experiment procedures………..…………………………………..35
3.2 Substrates…………….......................……………………………..38
3.3 Substrate heating treatment……………….......................………..38
3.4 Working before coating.........................…………………………..39
3.5 The process of coating………...........……………………………..41
3.6 Test and analysis…………………....................…………………..41
3.6.1 Property analysis…………...................................…………….41
3.6.1.1 FE-SEM (Field emission microscopy)…………………….41
3.6.1.2 SEM (Scanning electron microscopy)…………………….41
3.6.1.3 XRD (X-ray diffractometer)………………………...…….41
3.6.1.4 AES (Atomic emission spectrometry)…………………….42
3.6.1.5 GDS (Glow discharge spectrometer)……………………...42
3.6.2 Mechanical properties……................................………………42
3.6.2.1 Vickers................…………………………………………..42
3.6.2.2 Nanoindenter...........……………………………………….43
3.6.2.3 Rockwell-C....……………………………………………..43
3.6.2.4 Scratching test..............…….……………….……………..43
3.6.2.5 Roughness testing……………………..............…………..44
3.6.2.6 Tribological test.................………………………………..44
3.6.3 Contact angle of water.............………………………………...44
CHAPTER 4 RESULT AND DISCUSSION…………………………...….45
4.1 Observation of the surface configuration of Cr (N,O) / CrN duplex coatings............................................................................................45
4.1.1 The formation of surface micro-particles and voids................. 45
4.1.2 The effect on area of void with oxygen flow…..................…...55
4.2 The structure and the component analysis of Cr (N,O) / CrN duplex coatings......................................................................................... 59
4.2.1 Low acute angle XRD analysis…………..........................……59
4.2.2 Auger electron spectrometer analysis………....................……62
4.3 The effect on thickness and roughness of Cr (N,O)/CrN duplex coatings with oxygen flow............................................................ 66
4.4 The effect on mechanical properties of Cr (N,O)/CrN duplex coatings with oxygen flow............................................................75
4.4.1 Analysis of coatings hardness……………..........………...……75
4.4.2 Rockwell-C hardness tester………….............………………...79
4.4.3 Scratch test……………………..........................……………...82
4.4.4 Tribological analysis……………...........................…………...95
4.5 Contact angle of water……...................................................……103
CHAPTER 5 CONCLUSIONS…………………………………………...107
CHAPTER 6 REFERENCE……………………………………….……...109
【1】T. Hurkmans, J. Kubinski, T. Trinh et al., SVC 42nd Annual Techical Conference Proceedings (1999)364.
【2】M. Van Stappen, L. M. Stals, M. Kerkhofs, C. Quaeyhaegens, State of the art for the industrial use of ceramic PVD coatings, Surface and Coatings Technology, 74-75 (1995)629.
【3】R. J. Rodriguez, J. A. Garcia, A. Medrano, M. Rico, R. Sanchez, R. Martinez, C. Labrugere, M. Lahaye, A. Guette, Tribological behaviour of hard coatings deposited by arc-evaporation PVD, Vacuum, 67(2002)559.
【4】Shen-Chih Lee, Wei-Yu Ho, F. D. Lai, Effect of substrate surface roughness on the characteristics of CrN hard film, Materials Chemistry and Physics, 43(1996)266.
【5】T. Hurkmans, D. B. Lewis, J. S. Brooks, W. D. Münz, Chromium nitride coatings grown by unbalanced magnetron (UBM) and combined arc/ unbalanced magnetron (ABSTM) deposition techniques, Surface and Coatings Technology, 86-87(1996)192.
【6】J. D. Demaree, C. G. Fountzoulas, J. K. Hirvonen, Chromium nitride coatings produced by ion beam assisted deposition, Surface and Coatings Technology, 86-87(1996)309.
【7】Y. L. Su, S. H. Yao, On the performance and application of CrN coating, Wear, 205(1997)112.
【8】Y. Sen, M. Urgen, K. Kazmanli, A. F. Cakir, Stripping of CrN from CrN-coated high-speed steels, Surface and Coatings Technology, 113(1999) 31.
【9】S. H. Ahn, Y. S. Choi, J. G. Kim, J. G. Han, A study on corrosion resistance characteristics of PVD Cr-N coated steels by electrochemical method, Surface and Coatings Technology, 150(2002) 319.
【10】J. Vetter, R. Knaup, H. Dwuletzki, E. Schnider, S. Vogler, Hard coatings for lubrication reduction in metal forming, Surface and Coatings Technology, 86-87(1996) 739.
【11】何偉友,張宏源,“機械技術”,140期,1996,p108。
【12】沈保羅,工程材料,2002年,p248~251。
【13】Vàclav Valvoda, Structure of TiN coatings, Surface and Coatings Technology, 80(1996) 61.
【14】B. Navinsek and P. Panjan, Oxidation of CrNx hard coatings reactively sputtered at low temperature, Thin Solid Films, 223 (1993) 4.
【15】Mustafa Uergen, Ali Fuat Cakir, The effect of heating on corrosion behavior of TiN-and CrN-coated steels, Surface and Coatings Technology, 96 (1997) 236.
【16】J. Rechberger, R. Dubach, Soft physical vapour deposition coatings-a new coating family for high performance cutting tools, Surface and Coatings Technology, 60(1993)584.
【17】Eberhard Huber, Siegfried Hofmann, Oxidation behaviour of chromium-based nitride coatings, Surface and Coatings Technology, 68-69(1994)64.
【18】H. Schulz, E. Bergmann, Properties and applications of ion-plated coatings in the system Cr-C-N, Surface and Coatings Technology, 50(1991)53.
【19】B. Navinsek, P. Panjan, I. Milosev, Industrial applications of CrN (PVD) coatings, deposited at high and low temperatures, Surface and Coatings Technology, 97 (1997)182.
【20】陳寶清,“真空表面處理工程”,傳勝出版社,1992。
【21】江祿峰,陰極電弧電漿法沈積硬質薄膜之研究,國立台灣工業技術學院碩士論文,(1994)。
【22】趙浩勇,何主亮,陳克昌,表面技術雜誌,153期,p75。
【23】M. Nishibori, How to solve problems of films coated by ARC methods, Surface and Coatings Technology, 52(1992)229.
【24】R. L. Boxman and S. Goldsmith, Macroparticle contamination in cathodic arc coatings: generation, transport and control, Surface and Coatings Technology, 52 (1992)39.
【25】張振福,微波化學氣相沉積及磁控濺鍍成長類鑽石之研究,國立中山大學電機工程學系博士論文,91年6 月。
【26】S.P. Lau, Y.H. Cheng , J.R. Shi , P. Cao , B.K. Tay , X. Shi, Filtered cathodic vacuum arc deposition of thin film copper, Thin Solid Films , 398-399(2001) 539.
【27】Krzysztof Miernik, Jan Walkowicz, Jan Bujak, Design and performance of the microdroplet filtering system used in cathodic arc coating deposition, Plasmas & Ions , 3(2000) 41.
【28】M. Hakovirta, V. M. Tiainen, P. Pekko, Techniques for filtering graphite macroparticles in the cathodic vacuum arc deposition of tetrahedral amorphous carbon films, Diamond and Related Materials, 8(1999) 1183.
【29】P. J. Martin, A. Bendavid, Review of the filtered vacuum arc process and materials deposition, Thin Solid Films, 394(2001) 1.
【30】林慧霓,模具鋼披覆Ti-Zr-N陶瓷硬膜之物理及耐蝕性研究,私立大同大學碩士論文,(1999)。
【31】K. Holmberg, A. Matthews, Coatings Tribology, Elsevier Science B.V., 1994.
【32】A. M. Korsunsky, M. R. Mcgurk, S. J. Bull, T. F. Page, On the hardness of coated systems, Surface and Coating Technology, 99 (1998)171.
【33】Fouad Attar, Hardness evaluation of thin ceramic coatings on tool steel, Surface and Coatings Technology, 78(1996)78.
【34】W. Heinke, A. Leyland, A. Mattews, G. Berg, C. Friedrich, E. Broszeit., Evaluation of PVD nitride coatings, using impact, scratch and Rockwell-C adhesion tests, Thin Solid Films, 270(1995)431.
【35】張秉書,以非平衡磁控濺鍍法製備TiN硬質薄膜之研究,國立台灣師範大學碩士論文,(2003)。
【36】何恕德,以導電性原子顯微鏡研究矽在奈米壓痕下之相變化行為,國立清華大學碩士論文,(2003)。
【37】C. Angelelis, M. Ducarroir, E. Felder, M. Ignat and S. Scordo, Surf. Eng., 13(1997)207.
【38】A.J. Perry, Thin Solid Films, 107(1983)167.
【39】S. J. Bull, Failure mode maps in the thin film scratch adhesion test, Tribology International, 30 (1997)491.
【40】Per Hedenqvist and Sture Hogmark, Experiences from scratch testing of tribological PVD coatings, Tribology International, 30 (1997)507.
【41】N. Vidakis, A. Antoniadis, and N. Bilalis, The VDI 3198 indentation test evaluation of a reliable qualitative control for layered compounds, Materials Processing Technology, 143-144(2003)481.
【42】P. J. Burnett and D. S. Rickerby, The relationship between hardness and scratch adhesion, Thin Solid Films, 154(1987)403.
【43】黃俐恬,陰極電弧沈積法披覆CrN/Cr(N, O)複合層之製程與特性研究,私立大同大學碩士論文,(2003)。
【44】余東曉,鋼材的氧化磨耗行為,國立台灣大學碩士論文,(2001)。
【45】J.L. Vossen and W Kern, Thin Film Process II, Academic Press, San Diego, (1991)209.
【46】林建宏,磁控濺射沈積鉻基硬質鍍膜高溫氧化與機械性質研究,中興大學碩士論文,(1998)。
【47】Boxman, R. L., Sanders D., Martin P. J., Handbook of Vacuum Arc Science and Technology,(1995).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top