(3.227.208.0) 您好!臺灣時間:2021/04/21 00:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳嬿妃
研究生(外文):Yan-Fei Chen
論文名稱:利用分子動力學法預測奈米冰晶分子之氫鍵結構
論文名稱(外文):Predictions of Annealing of Hydrogen-Bond Structure for Ice Crystal in nanoscale by Molecular Dynamics Method
指導教授:鄭金祥
指導教授(外文):Chin-Hsiang Cheng
學位類別:碩士
校院名稱:大同大學
系所名稱:機械工程學系(所)
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:92
語文別:中文
論文頁數:81
中文關鍵詞:氫鍵水分子CC 位勢能分子動力學
外文關鍵詞:CC potentialHydrogen-bondMolecular dynamicsWater
相關次數:
  • 被引用被引用:1
  • 點閱點閱:97
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
本研究係針對奈米尺度系統下冰晶分子之氫鍵結構形成進行研
究。利用分子動力法(MD) 來分析冰晶分子在奈米尺度下之最小位
勢能之晶格結構以及其對於飄浮水分子之影響。本研究採用
Carravetta-Clementi (CC)位勢能來得到分子與分子之間的作用力,在
假設各分子仍然受牛頓第二運動定律支配的條件下,利用電腦對介質
分子的運動作直接模擬。各介質分子由於本身的慣性、分子間的作用
力、以及分子與邊界的相互作用,而產生平移與旋轉速度及位置與角
度的改變。本研究包括下列工作項目:(1)探討氫鍵結構之形成,(2)
研究冰晶結構受溫度之影響,以及(3)預測飄浮水分子在撞擊冰晶後
之表面躍動情形等。
The present study is concerned with the formation and stability of
hydrogen-bond structure for ice crystal in nanoscale. Molecular dynamics
method is adopted to analyze the ice crystal formed by water molecules.
In the molecular dynamics analysis, Newton’s second law of motion is
applied for predictions of the motion of any molecules. Translational and
angular velocities as well as the locations of all the molecules can be
predicted at any instant when the inertial and external forces acting on the
molecules have been known. The interactive forces between any two
molecules are determined based on Carravetta-Clementi (CC) potential in
this study. The van der Waals force and the electrostatic force are
evaluated between water molecules and then the translational and angular
velocity vectors and the position of the molecules can be predicted. The
study includes: (1) the annealing of hydrogen-bond structure for ice
crystal, (2) the influence of temperature on the vibration of the molecules
within a fixed ice crystal layers, and (3) the leaping behavior of the
drifting molecules on the crystal layer surface after they impinge on the
surface at different temperatures and incident angles.
中文摘要………………………………………………………………I
英文摘要………………………………………………………………II
誌謝……………………………………………………………………III
目錄……………………………………………………………………IV
表目錄…………………………………………………………………VI
圖目錄…………………………………………………………………VII
符號索引………………………………………………………………X
第一章緒論..............................................1
1-1 背景………………………………………………………………1
1-2 研究目的…………………………………………………………7
1-3 論文架構…………………………………………………………9
第二章分子動力學法…………………………………………………10
2-1 運動方程式………………………………………………………10
2-2 系統能量…………………………………………………………15
2-3 熱特性量…………………………………………………………17
2-4 運動方程式之數值積分…………………………………………19
2-5 重複性邊界………………………………………………………20
2-6 系綜平均…………………………………………………………21
2-7 溫度控制…………………………………………………………22
2-8 水分子之既有位勢能函數………………………………………23
2-8-1 Lennard-Jones Potential…………………………………23
2-8-2 ST2 Potential………………………………………………24
2-8-3 SPC 及SPC/E Potentials…………………………………25
2-8-4 TIP4P Potential…………………………………………26
2-8-5 Carravetta & Clementi Potential……………………26
第三章冰晶之氫鍵結構……………………………………………28
3-1 冰晶的基本排列………………………………………………28
3-2 冰晶分子最小位能距離………………………………………33
第四章結果與討論…………………………………………………34
4-1 數值測試………………………………………………………34
4-2 固定冰晶層間飄浮水分子平衡態結構………………………35
4-3 在固定晶格內的震動分子穩定性……………………………38
4-4 飄浮水分子入射冰晶分子層之表面躍動行為………………40
4-5 冰晶層表面之冰晶形成………………………………………43
第五章結論…………………………………………………………45
參考文獻……………………………………………………………47
表目錄
表2-1 惰性氣體分子之Lennard-Jones Potential 參數。……52
表2-2 水分子Lennard-Jones Potential 之參數。……………53
表2-3 不同位勢能函式之參數。…………………………………54
圖目錄
圖2-1 水分子結構之示意圖。……………………………………55
圖2-2 重複性邊界示意圖。………………………………………56
圖2-3 CC、MCY、TIP4P、SPC/E 位勢能的比較。………………57
圖2-4 典型Lennard-Jones Potential 表示圖。………………58
圖2-5 ST2 中的水分子結構。……………………………………59
圖2-6 SPC、SPC/E 及TIP4P 中的水分子結構。………………60
圖3-1 水的氫氧原子結構排列。…………………………………61
圖3-2 冰晶分子的排列方式。……………………………………62
圖3-3 冰晶的基本形式。…………………………………………63
圖3-4 冰晶分子之座標系統。……………………………………64
圖3-5 預排列三層冰晶分子層(1008 顆)之氧原子之間距離與位能關
係圖。………………………………………………………………65
圖4-1 當ρ=380 kg/m3時,分別於溫度300K、400K及600K下水分子
平衡態結構圖。( 本研究與Ohara and Aihara [48] 之比
較)…………………………………………………………………66
圖4-2 ρ=380 kg/m3及T=300K時,速度關聯函數之比較圖。(本研究
結果與Ohara and Aihara [48]之比較)…………………………67
圖4-3 圖4-3 飄浮水分子及冰晶分子層起始的相關位置,圖中下方
三層冰晶分子,上方亦有三層冰晶分子層,上下冰晶分子層
之間為飄浮水分子(128 顆~448 顆)。…………………………68
圖4-4 不同溫度下,在上下冰晶層間的飄浮水分子平衡態分佈結
構。本例之飄浮水分子數為128;冰晶層間的距離為11.503
Å,此距離恰為三層冰晶層之高度。……………………………69
圖4-5 不同活動高度下,在上下冰晶層間的飄浮水分子平衡態分佈
結構。本例之溫度為200K。………………………………………70
圖4-6 相同溫度下,在上下冰晶層間的飄浮水分子平衡態分佈結
構。本例之溫度為200K;冰晶層間的距離為11.503 Å,此距
離恰為三層冰晶層之高度。………………………………………71
圖4-7 單顆震動分子(深顏色者)被周圍固定不動的冰晶分子所環
繞。…………………………………………………………………72
圖4-8 單顆震動分子的位置變化圖。……………………………73
圖4-9 十八顆震動分子的位置變化圖。…………………………74
圖4-10 溫度控制為200K 時,1008 顆震動分子在無固定分子約束下
逐漸變成非晶體結構。……………………………………………75
圖4-11 不同溫度下,單顆水分子在冰晶層表面的躍動情況。…76
圖4-12 溫度200K 時,水分子分別以10°、30°、60°、90°水平角入射
撞擊冰晶層後之躍動現象。………………………………………77
圖4-13 溫度300K 時,水分子分別以10°、30°、60°、90°水平角入射
撞擊冰晶層後之躍動現象。………………………………………78
圖4-14 溫度200K 時,單顆飄浮水分子分別以不同角度撞擊冰晶層之
動能變化圖。………………………………………………………79
圖4-15 冰晶層表面之冰晶形成。溫度設定為300K,並每隔2.5
picosecond 放入一顆飄浮水分子。………………………………80
圖4-16 不同之溫度下,每隔2.5 picosecond 加入一飄浮水分子,圖上
分別為時間50 picosecond、150 picosecond 及250 picosecond
時飄浮水分子的結構圖。…………………………………………81
1. Kubo, R. 1962, J. Phys. Soc. Japan , Vol. 17, p. 975.
2. Kroto, H. W., Health, J. R., O‘Brien, S. C., Curl, R. F., and Smalley, R.
F., 1985, “C60 : Buckminsterfullerene,” Natur e , Vol. 318, pp. 162-163.
3. Iijima, S., 1991, “Helical Microtubles of Graphitic Carbon,” Natur e ,
Vol. 354, pp. 56-58.
4. Maruyama, S. and Yamaguchi, Y., 1998, “A Molecular Dynamics
Demonstration of Annealing to a Perfect C60 Structure,” Chem. Phys.
Letters , Vol. 286, pp. 343-349.
5. Dresselhaus, M.S., Dresselhaus, G., and Eklund, P.C., 1996, Science of
Fuller e nes and Carbon Nanotubes , Academic Press, New York.
6. Wang, B. C., Chen, L., Lee, K. J., and Cheng, C. Y., 1999,
“Semiempirical Molecular Dynamics Studies of C60/C70 Fullerene
Oxides: C60O, C60O2 and C70O,” Journal of Molecular S t ructur e , Vol.
469, pp. 127-134.
7. 鄭友仁,蔡秉錡,方得華, 2002, ”單層奈米碳管力學性質之分子動力
學分析,” 中國機械工程學會第十九屆全國學術研討會論文集,雲林
虎尾。
8. Duncan, B. and Peterson, G. P., 1994, “Review of Microscale Heat
Transfer,” Applied Mechanics Review , Vol. 47, pp. 397-427.
9. 過增元,2000,國際傳熱研究前沿-微細尺度傳熱,力學發展(中
國大陸),第30 卷,頁1-6。
10. Ozaki, K., 1995, “Pumping Mechanism Using Periodic Phase Changes
of a Liquid,” Pr oceedings of IEEE Micr o Electr o Mechanical Systems ,
Amsterdam, pp. 31-36.
11. Peng, X. F. and Wang, B. X., 1994, “Cooling Characteristics with
Microchanneled Structures,” J. of Enhanced Heat T ransfer , pp.
315-326.
12. Maddox, M., Ulberg, D., and Gubbins, K. E., 1995, “Molecular
Simulation of Simple Fluids and Water in Porous Carbons,” Flui d
Phase Equilibra , Vol. 104, pp. 145-158.
13. Bird, G. A., 1994, Molecular Gas Dynamics and the Dir e ct Simulati on
of Gas Flows , Oxford, New York.
14. Yang, Z. L., Do, Q. M., Palm, B. and Sehgal, B. R., 2000, “Numerical
Simulation of Bubble Dynamics: Lattice-Boltzmann Approach,”
Pr oceedings of Fif t h Internati onal Symposium on Heat T ransfer
47
(Editor: Wang, B. X.), Beijing, pp. 598-603.
15. Maruyama, S., 2000, Molecular Dynamics Method for Microscale
Heat Transfer, Advances in Numerical Heat T ransfer (ed: Minkowycz,
W. J. and Sparrow, E. M.), Vol. 2, Chap. 6, pp. 189-226, Taylor &
Francis, New York.
16. Nagai, T., Mikami, M., and Tanabe, Y., 1999, “A Study of the Force
between Walls Immersed in a Lennard-Jones Particle System Using a
Grand Canonical Monte Carlo Simulation,” Chem. Phys . L e tters , Vol.
308, pp. 131-136.
17. Heino, P. and Ristolainen, E., 1999, “Molecular Dynamics Study of
Thermally Induced Shear Strain in Nanoscale Copper,” IEEE
T ransaction on Advanced Packaging , Vol. 22, pp. 510-514.
18. Hayashi, K., Sakudo, N., and Kawai, T., 1996, “A New Measure of
Local Temperature Distribution in Non-Equilibrium Molecular
Dynamics Simulation of Friction,” Surface and Coating T echnology ,
Vol. 83, pp. 313-316.
19. Cherne III, F. J. and Deymier, P. A., 1998, “Calculation of Viscosity of
Liquid Nickel by Molecular Dynamics Methods,” Scripta M a terialia ,
Vol. 39, pp. 1613-1616.
20. Rahman, A., 1964, “Correlations in the Motion of Atoms in Liquid
Argon,” Physical Review , Vol. 136, pp. A405-A411.
21. Matsumoto, S., Maruyama, S., and Saruwatari, H., 1995, “A
Molecular Dynamics Simulation of a Liquid Droplet on a Solid
Surface,” ASME/JS ME Ther mal Engineering Confer ence , Volume 2,
pp. 557-562.
22. Matsumoto, M., 1998, “Molecular Dynamics of Fluid Phase Change,”
Fluid Phase Equilibria , Vol. 144, pp. 307-314.
23. Kido, A. and Nakanishi, K., 1999, “Molecular Dynamics Study of
Nucleation in Supersaturated Vapor of Carbon Dioxide,” Fluid Phase
Equilibria , Vol. 158, pp. 79-86.
24. Guo, Z. Y., et al., 2000, “Continuous Liquid-Vapor Phase Transition in
Microspace,” Int. J. Therm. Sci. , Vol. 39, pp. 481-489.
25. Stillinger, F. H. and Rahman, A., 1974, “Improved Simulation of
Liquid Water by Molecular Dynamics,” J. Ch em. Phys. , Vol. 60, pp.
1545-1557.
26. Jorgensen, W. L., et al., 1983, “Comparison of Simple Potential
48
Functions for Simulating Liquid Water,” J. Chem. Phys. , Vol. 79, pp.
926-935.
27. Jorgensen, W. L., 1986, “Optimized Intermolecular Potential
Functions for Liquid Alcohols.” J. Phys. Chem ., Vol. 90, pp.
1276-1284.
28. Carravetta, V. and Clementi, E., 1984, “Water-Water Interaction
Potential: An Approximation of the Electron Correlation Contribution
by a Function of the SCF Density Matrix,” J. Ch em. Phys . , Vol. 81, pp.
2646-2651.
29. 朱訓鵬、翁政義、張自恭、黃吉川,2000,“The Morphologic study
of Deposited Film with Different Process Parameters in Sputtering
Process,” 中國機械工程學會第十七屆全國學術研討會論文集,第
五冊,pp. 449-456,墾丁。
30. 林宏昌,黃吉川,張自恭,李世宏, 2002, “Numerical method of
molecular dynamics simulation:Kinetic energy corrector(KEC)
algorithm in deposition,” 中國機械工程學會第十九屆全國學術研
討會論文集,雲林虎尾。
31. 林大偉,陳朝光,2000, “分子動力學於空穴上之研究,” 中國機
械工程學會第十七屆全國學術研討會論文集,第五冊,pp.
425-432,墾丁。
32. Chen, L. J., 1995, “Area Dependence of the Surface Tension of a
Lennard-Jones Fluid Resulting from Molecular Dynamics
Simulations,” J. Chem. Phys . , Vol. 103, pp. 102-114.
33. Kataoka, Y. , 1987, “Studies of Liquid Water by Computer
Simulations. V. Equation of State of Fluid Water with
Carravetta-Clementi Potential.” J. Ch em. Phys. , Vol.87, no.1, pp.
589-598.
34. Belonoshko, A. and Saxena, S. K. , 1991, “A Molecular Dynamics
Study of the Pressure-Volume-Temperature Properties of
Super-Critical Fuildsl:I. H2O.”Geochimica et Cosmochimica Acta ,
Vol. 55, pp. 381-387.
35. Cummings, P. T., Cochran, H. D., Simonson, J. M., Mesmer, R. E. and
Karabomi, S., 1991, “Simulation of Supercritical Water and of
Supercritical aqueous Solution.” J. Chem. Phys . , Vol. 94, no. 8, pp.
5606-5621.
36. Guissani, Y. and Guillot, B. , 1993, “A Computer Simulation of
49
Liquid-Vapor Coexistence Curve of Water.” J. Ch em. Phys. , Vol. 98,
no. 10, pp. 8221-8235.
37. Beveridge, D. L., Mezei, M., Swaminathan, S., and Harrison, S. W.,
Computer Modeling of Mat t er , edited by Lykos, P. (American
Chemical Society, Washington, D. C., 1978), p. 191.
38. Bames, P., in Machi n e Simulat ion of W a t e r, edited by C. A. Croxton
(Wiley, Chichester, 1978), p. 391.
39. Wood D. W., in Water, A Compr e hensive T reatise , edited by F. Franks
(Plenum, New York, 1979), Vol. 6, p. 279.
40. Beveridge, D. L., Mezei, M., Mehrotra, P. K., Marchese, R. T.,
Ravi-Shanker, G., Vasu, T., and Swaminathan, S., in Molecular - Based
S t udy and Pr operties , edited by J. M. Haile and G. A. Mansoori
(American Chemical Society, Washington, D. C., 1983) p. 297.
41. Levesque, D., Weis, J. J., and Hansen, J. P., in Application of the
Monte Carlo Method in S t atistical Physics , edited by K. Binder
(Springer, Berlin, 1984), p. 37.
42. Toukan, K. and Rahman, A., 1985, “Molecular-dynamics study of
atomic motions in water.” Phys. Rev . B, Vol. 31, pp. 2643.
43. Bratko, D., Blum, L. and Luzar A., 1985, “A simple model for the
intermolecular potential of water.” J. Chem. Phys. , Vol. 83, pp. 6367.
44. Neuman, M. , 1985, “The dielectric constant of water. Computer
simulations with the MCY potential.” J. Chem. Phys. , Vol. 82, pp.
5663.
45. Wojcik, M. and Clementi, E., 1986, “Molecular dynamics simulation
of liquid water with three-body forces included.” J. Chem. Phys. , Vol.
84, pp. 5970.
46. Wojcik, M. and Clementi, E., 1986, “Single molecule dynamics of
three body water.” J. Chem. Phys. , Vol. 85, pp. 3544.
47. Wojcik, M. and Clementi, E., 1986, “Collective dynamics in three
body water and sound dispersion.” J. Chem. Phys. , Vol. 85, pp. 6085.
48. Ohara, T. and Aihara, T., 1994, “Molecular Dynamics Study on
Structure of Near-Critical Water.” Molecular and Micr oscale Heat
T ransfer (Ed: S. Kotake and C. L. Tien), pp. 132-137, Begell House,
New York.
49. Cheng, C.H. and Chang, H.W., 2004, “Simulation of phase states for
water in nanoscale systems by molecular dynamics method.” Int. J.
50
Heat T ransfer , vol. 47, pp. 5011-5020.
50. Encyclopedia Americana , No25, pp108-111.
51. Allen, M. P. and Tildesely, D. J., 1987, Computer Simulation of Liquid,
Oxfor d Un iversity Pr ess , New York.
52. Ben-Naim, A. and Stillinger, F. H. ,1972, Aspects of the
Statistical-Mechanical Theory of Water, in Structure and Transport
Processes in Water and Aqueous Solution (ed. R. A. Horne) ,
Wiley-Interscience, New York.
53. Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., Hermans,
J., in Intermolecular Forces (ed. B. Pullmann ), Reidel, Dordrecht, pp.
331-, 1981.
54. Berendsen,H. J. C., Grigera, J. R. and Straatsma ,T. P., 1987, The
Missing Term in Effective Pair Potentials, J. Phys. Chem. , vol. 91, no.
24, pp.6269-6271.
55. Matsuoka, O., Clementi, E. and Yoshimine, M., 1976, “ CI Study of
the Water Dimer Potential Surface.” J. Chem. Phys. , Vol. 64, no. 4, pp.
1351-1361.
56. Stoddard, S. D. and Ford, J., 1973, Numerical Experiments on the
Stochastic Behavior of a Lennard-Jones Gas System, Phys. Rev . A , vol.
8, pp.1504-1512.
57. Radhakrishnan, R., Gubbins, K. E., Sliwinska-Bartkowiak, M.,
2002, ”Global phase diagrams for freezing in porous media.” J. Chem.
Phys. , Vol. 116, no. 3, pp. 1147-1155.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔