跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/01/25 06:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許哲維
研究生(外文):Che-Wei Hsu
論文名稱:微流體裝置之設計與製作-微致動器與微混合器
論文名稱(外文):Design and Fabrication of Microfluidic Devices – Micro Actuator and Micro Mixer
指導教授:鄭金祥
指導教授(外文):Chin-Hsiang Cheng
學位類別:碩士
校院名稱:大同大學
系所名稱:機械工程學系(所)
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:117
中文關鍵詞:μTAS雙金屬效應微致動器微流體晶片
外文關鍵詞:Bi-metal EffectMicroactuatorMicrofluidicsMicromixerPDMS
相關次數:
  • 被引用被引用:2
  • 點閱點閱:218
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
近來生物技術不斷突破且人類及多種生物的解碼成功,使得生物科技快速發展,當中就以生物晶片較具代表性。其中微流體晶片又稱微整合分析晶片(μTAS),主要係於微小晶片上來完成傳統實驗室所進行的分析流程。利用微流道及驅動源將檢體、試劑或其他混合物,達到傳送、混合、反應、分離等目的。

本論文即針對晶片內驅動源及混合部分的元件作個別的研究。在驅動源的部分,製作出藉由雙金屬效應來產生致動以達到驅動目的之電熱式微致動器。利用現有之設備進行元件製作與測試,藉此發展出製程容易且驅動能源低之微致動裝置。而在混合元件部分則設計不同幾何形狀之結構來探討微流體中產生混合的機制及效果,期望能瞭解並設計出結構簡單且混合效果極佳之微混合元件。
This thesis is aimed at fabrication of microfluidics, including microactuator and micromixer. Firstly, a semiconductor electro-thermal microactuator is manufacture with the semiconductor technology. The microactuator is able to produce actuation due to a bi-metal structure. Make use of existing equipment to manufacture and test the microactuator devices that it’s in order to reach the purpose which develop fabrication easy and drive low energy. Microactuator device have succeeded to manufacture and have actuation result at present. Secondly, a micromixer is manufacture with the PDMS technology. Then we designed several kinds of geometry micromixer to observe mixing result. Utilize this experiment to let us understand the fluid characteristic under microscale. Expect to design the simple structure and optimum mixing result of micromixer devices through obtains the fluid flow mechanism under microscale.
TABLES OF CONTENTS

CHINESE ABSTRACT…………………………………………………………………Ⅰ
ENGLISH ABSTRACT…………………………………………………………………Ⅱ
ACKNOWLEDGEMENTS…………………………………………………………………Ⅲ
TABLE OF CONTENTS………………………………………………………………Ⅳ
LIST OF FIGURES………………………………………………………………… Ⅴ
LIST OF TABLES……………………………………………………………………Ⅵ
NOMENCLATURE………………………………………………………………………Ⅶ
CHAPTER 1 INTRODUCTION
1.1 Research Backgrounds and Motives……………………………………1
1.2 Related Researches………………………………………………………5
1.3 Current Approach…………………………………………………………9
CHAPTER 2 STRUCTURE DESIGN AND THEORY OF
MICROACTUATOR
2.1 Moving Principle of Electro-Thermal Microactuator……………11
2.2 Design and Concept of Electro-Thermal Microactuator…………12
2.2.1 Design the Concept in Basic Model………………………………12
2.2.2 Design, Draw, and Fabrication of Mask…………………………14
2.3 Theories Calculation………………………………………………………14
2.3.1 Intrinsic Carrier Concentration………………………………………14
2.3.2 Conductivity and Resistivity…………………………………………15
2.3.3 Resistance and Thermal Expansion Deflection………………………17
2.3.4 Theories of Bi-Metal Layer……………………………………………18
CHAPTER 3 FABRICATION OF MICROACTUATOR
3.1 Introduction to Mask…………………………………………………24
3.2 Fabrication Process……………………………………………………24
3.2.1 Fabrication of Resistance Heater………………………………25
3.2.2 Fabrication of Wiring and Membrane Structure………………25
3.2.3 Fabrication of Cantilever Beam…………………………………26
3.2.4 Fabrication of Bottom Face of Diamond Ladder-Shaped Hollow Column………………………………………………………………………………… 27
CHAPTER 4 STRUCTURE DESIGN AND THEORY OF MICROMIXER
4.1 Form of Micromixer……………………………………………………28
4.2 Basic Theory of Micromixer…………………………………………29
4.2.1 Definition of Reynold Number……………………………………29
4.2.2 Definition of Kundsen Number……………………………………30
4.3 Design and Concept of Micromixer…………………………………31
4.3.1 Design of Micromixer………………………………………………31
CHAPTER 5 FABRICATION OF MICROACTUATOR
5.1 Fabrication Process……………………………………………………32
5.1.1 Fabrication of Mother Mold………………………………………32
5.1.2 Fabrication of Micromixer (PDMS)………………………………32
5.2 Experiment Equipment and Measurement……………………………33
CHAPTER 6 RESULTS AND DISCUSSION
6.1 Results and Discussion of Microactuator…………………………35
6.1.1 Test Results of Microactuator……………………………………35
6.2 Results and Discussion of Micromixer………………………………36
6.2.1 The Influence of the Different Flow Upon the Mixing Result……36
6.2.2 The Influence of the Different Geometry Upon the Mixing Result37
6.2.3 The Influence of the Different Matrix Number Upon the
Mixing Result…………………………………………………………………38
CHAPTER 7 SUMMARY……………………………………………………………………40
CHAPTER 8 FUTURE WORK………………………………………………………………42
REFERENCES………………………………………………………………………………44


LIST OF FIGURES

Fig.1.1 The sketch map of Lab-on-a-chip[1]……………………………………48
Fig.1.2 The microactuator of the offer of Judy and Howe [7]………………49
Fig.1.3 Utilize the micro nozzle of the micromixer [18]……………………50
Fig.1.4 The micromixer of the offer of Branebjerg [19], et al.…………51
Fig.1.5 The micromixer of the offer of Hao Chen [21], et al.……………52
Fig.2.1 Moving theory of bi-metal effect………………………………………53
Fig.2.2 The prototype of Japan company named Matsushita Electric
Works, Ltd. for research, evaluating its performance and
improving the design [17]…………………………………………………54
Fig.2.3 Have different deflection areas of microactuator (a)one piece
(b)two pieces (c)three pieces (d)four pieces…………………………………55
Fig.2.4 Shape of M and Shape of O have design N-type silicon of heater
(a) Shape of M (b) Shape of O………………………………………………57
Fig.2.5 Reference dimension of bi-layer deflection area……………………58
Fig.2.6 Reference dimension of bi-layer deflection area(aluminum structure)………………………………………………………………………………………………59
Fig.2.7 Reference dimension of wiring and electrode piece…………………60
Fig.2.8 Reference dimension of silicon frame……………………………………61
Fig.2.9 Reference dimension of N-type silicon heater(Shape of M)…………62
Fig.2.10 Reference dimension of N-type silicon heater (Shape of O)………63
Fig.2.11 Eight layers masks of electro-thermal microactuator………………64
Fig.2.12 Mask of electro-thermal microactuator---First Mask………………65
Fig.2.13 Mask of electro-thermal microactuator---Second Mask………………65
Fig.2.14 Mask of electro-thermal microactuator---Third Mask………………65
Fig.2.15 Mask of electro-thermal microactuator---Fourth Mask………………66
Fig.2.16 Mask of electro-thermal microactuator---Fifth Mask………………66
Fig.2.17 Mask of electro-thermal microactuator---Sixth Mask………………66
Fig.2.18 Mask of electro-thermal microactuator---Seventh Mask……………67
Fig.2.19 Mask of electro-thermal microactuator---Eighth Mask………………67
Fig.2.20 Eight layers alignment keys of mask……………………………………67
Fig.2.21 Alignment key of mask---First Mask……………………………………68
Fig.2.22 Alignment key of mask---Second Mask……………………………………68
Fig.2.23 Alignment key of mask---Third Mask……………………………………68
Fig.2.24 Alignment key of mask---Fourth Mask……………………………………69
Fig.2.25 Alignment key of mask---Fifth Mask……………………………………69
Fig.2.26 Alignment key of mask---Sixth Mask……………………………………69
Fig.2.27 Alignment key of mask---Seventh Mask…………………………………70
Fig.2.28 Alignment key of mask---Eighth Mask……………………………………70
Fig.2.29 Current conduction in a uniformly doped semiconductor bar with
length L and cross-sectional area A [26]………………………………70
Fig.2.30 Deflection theory of bi-layer membrane………………………………71
Fig.2.31 Deflection curve of cantilever beam……………………………………71
Fig.3.1 Total masks of one piece microactuator…………………………………72
Fig.3.2 One-piece microactuator---First Mask……………………………………73
Fig.3.3 One-piece microactuator---Second Mask…………………………………73
Fig.3.4 One-piece microactuator---Third Mask……………………………………73
Fig.3.5 One-piece microactuator---Fourth Mask…………………………………73
Fig.3.6 Fabrication Process of one-piece microactuator………………………74
Fig.3.7 Choice of the ion implantation masking [31]….………………………77
Fig.3.8 Fabrication process of the lift-off technique………………………78
Fig.3.9 Fabrication of aluminum wiring and structure (a) Aluminum wiring
and structure (b) Second alignment key…………………………………79
Fig.3.10 Fabrication of cantilever beam structure (a) Define pattern of PR
(b) After etching Si wafer…………………………………………………80
Fig.3.11 Fabrication of the bottom face of diamond ladder-shaped hollow
column (a)Top view (b) Slope angle………………………………………81
Fig.3.12 Finished product of microactuator device……………………………82
Fig.4.1 Design of the basic model micromixer……………………………………83
Fig.4.2 Design of the basic model of complex geometry micromixer…………84
Fig.6.1 A diagram of electro-thermal microactuator……………………………85
Fig.6.2 At the same geometry(rhombus) and matrix(1×2), the mixing result
of different flow (a)10μl/min (b) 1000μl/min (c) 2000μl/min……86
Fig.6.3 At the same geometry(circular) and matrix(1×2), the mixing result
of different flow (a) 10μl/min (b) 1000μl/min (c) 2000μl/min……………87
Fig.6.4 At the same flow(10μl/min) and matrix(1×2), the mixing result of
different geometry (a) rhombus (b) circular…………………………………88
Fig.6.5 At the same flow(1000μl/min) and matrix(1×2), the mixing result
of different geometry (a) rhombus (b) circular……………………89
Fig.6.6 At the same flow(10μl/min) and matrix(4×4), the mixing result of
different geometry (a) rhombus (b) circular…………………………………90
Fig.6.7 At the same flow(1000μl/min) and matrix(4×4), the mixing result
of different geometry (a) rhombus (b) circular………………………………91
Fig.6.8 At the same flow (10μl/min) and geometry(rhombus), the mixing
result of different matrix (a) 1×2 (b) 4×4…………………………92
Fig.6.9 At the same flow (1000μl/min) and geometry(rhombus), the mixing
result of different matrix (a) 1×2 (b) 4×4……………………………………93
Fig.6.10 At the same flow (2000μl/min) and geometry(rhombus), the
mixing result of different matrix (a) 1×2 (b) 4×4…………………94

LIST OF TABLES

Table 1.1 Different kinds of microactuator and characteristic……………95
Table 3.1 The related parameter of Ion Implantation(Provide by NDL)……96
Table 3.2 The condition of Ion Implantation……………………………………97
Table 4.1 Fluid dynamic model of different Kundsen Number [35]……………98
Table 4.2 Change of various geometry parameter of micromixer………………99
REFERENCES

[1]文 / 楊舜傑,黃明遠,林嘉柏, ”處理型生物晶片(Lab-on-a-chip)之介紹”, 2002.
[2]文 / 林群哲,陳淑慧, ”微全程分析(-TAS)生醫晶片系統∼實驗室晶片的發展現況”, 電子月刊第八卷第五期, pp. 96-109, 2002年五月號.
[3]文 / 楊重熙, ”淺談微流體晶片在生物科技之應用”, 電子月刊第八卷第五期, pp. 90-95, 2002年五月號.
[4]文 / 莊慧明, ”生物晶片”, 產業調查與技術第一四一期, pp. 2-25.

[5]Riethmuller, W. and Benecke, W., “Thermally Excited Silicon Microactuators,” IEEE Transactions on Electron Devices, Vol. 35, pp. 758 -763, Jun. 1988.

[6]Benecke, W. and Riethmuller, W., “Applications of silicon microactuators based on bimorph structures,” Micro Electro Mechanical Systems, 1989, Proceedings, 'An Investigation of Micro Structures, Sensors, Actuators, Machines and Robots'. IEEE , pp. 116 -120, Feb. 1989.

[7]Judy, M.W. and Howe, R.T., “Polysilicon Hollow Beam Lateral Resonators,” Micro Electro Mechanical Systems, 1993, MEMS '93, Proceedings 'An Investigation of Micro Structures, Sensors, Actuators, Machines and Systems'. IEEE, pp. 265 -271, Feb. 1993.

[8]Guckel, H., Klein, J., Christenson, T., Skrobis, K., Laudon, M., and Lovell, E.G., “Thermo-Magnetic Metal Flexure Actuators,” Solid-State Sensor and Actuator Workshop, 5th Technical Digest, IEEE, pp. 73 –75. 1992.

[9]Rashidian, B., and Allen, M.G., “Electrothermal microactuators based on dielectric loss heating,” Proceedings of the IEEE MEMS’93 Workshop, Ft. Lauderdale, Fla., pp.24-29, Feb. 1993

[10]Comtois, J.H., Michalicek, M.A., and Barron, C.C., “Characterization of Electrothermal Actuators and Arrays Fabricated in a Four-Level, Planarized Surface-Micromachined Polycrystalline Silicon Process,” Solid State Sensors and Actuators, 1997. TRANSDUCERS '97 Chicago., 1997 International Conference, Vol. 2 , pp. 769 -772, June. 1997.

[11]Comtois, J. H. and Bright, V. M., ”Applications for Surface- Micromachined Polysilicon Thermal Actuators and Arrays,” Sensors and Actuators A, Vol. 58, pp. 19-25, 1997.

[12]Jerman, J. H., IC Sensors Inc., Milpitas, CA, United States Patent 5,069,419 “Semiconductor microactuator,” June 23, 1989.

[13]Shigeaki Tomonari, Hitoshi Yoshida, Masanao Kamakura, Hiroshi Kawada, Masaaki Saito, Kazuhiro Nobutoki, Jun Ogihara, Nagao Shuichi, Matsushita Electric Works, Ltd., Osaka, JP, United States Patent 6,384,509 “Semiconductor device,” May 7, 2002.

[14]Miyake, R., Lammerink, T.S.J., Elwenspoek, M., Fluitman, J.H.J., “Micro Mixer with Fast Diffusion”, Proceedings An Investigation of Micro Structures, Sensors, Actuators, Machines and Systems. IEEE, pp.248-253, 1993.

[15]Branebjerg, J., Granvesen, P., Krog, J.P., and Nielsen, C.R., “Fast Mixing by Lamination,” Proceedings. An Investigation of Micro Structures, Sensors, Actuators, Machines and Systems. IEEE, pp.441-446, 1996.

[16]Jr-Hung T., and Liwei L., “Active microfluidic mixer and gas bubble filter driven by thermal bubble micropump,” Sensors & Actuators A, 97-98, pp. 665-671, 2002.

[17]Hao C., and Jens-Christian M., “Topologic mixing on a microfluidic chip,” APPLIED PHYSICS LETTERS, Volume 84, pp.2193-2195, 2004.

[18]詹至剛, ”半導體電熱式微致動器之分析與設計”, 大同大學機械工程研究所碩士論文, 2003.

[19]Kanaan K., “Semiconductor Devices,” Prentic-Hall International, Inc. Ch3-Ch4, 1998.

[20]Donald A. N., “Semiconductor Physical & Devices, 3/E” McGraw-Hill, Inc. Ch4-Ch5, 2002.

[21]Simon M. S., “Semiconductor devices, physics and technology, 2nd ed.” John Wiley & Sons, Inc. Ch2-Ch3, 2001.

[22]S. P. Timoshenko, Journal of Optical Society of America, 11, 233 (1925).

[23]Roard, Raymond J. & Young, Warren C. “Formulas for Stress and Strain – Fifth Edition,” McGraw-Hill, Inc. 1975.

[24]S. P. Timoshenko, J. M. Gere, “Mechanics Of Materials,” Litton Educational Publishing, Inc. 1972.

[25]Michael Q. and Julian S., “Semiconductor Manufacturing Technology” Prentice Hall, Inc. 2001.

[26]Hong X., “Introduction to Semiconductor Manufacturing Technology” Prentice Hall, Inc. 2001.

[27]James D. P., Michael D. D., and Peter B. G., “SILICON VLSI TECHNOLOGY – Fundamentals, Practice and Modeling” Prentice Hall, Inc. 2001.

[28]Tai-Ran H., “MEMS & MICROSYSTEMS – Design and Manufacture” McGraw Hill, Inc. 2002.

[29]J. P. Holman, “HEAT TRANSFER – SIXTH EDITION ” McGraw Hill, Inc. Ch6, 1986.

[30]http://140.117.59.198/field/mems_2.htm

[31]吳志輝, ”μ-PIV技術的發展及其在微流體研究上的應用”, 交通大學機械工程學系碩士論文, 2004.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top