跳到主要內容

臺灣博碩士論文加值系統

(44.192.247.184) 您好!臺灣時間:2023/02/06 11:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:魏鴻文
研究生(外文):Hung-Wen Wei
論文名稱:關節軟骨與下方骨基質力學性質改變對於關節接觸應力分佈影響之參數分析
論文名稱(外文):Parametric Analysis of the Joint Contact Stress Distribution under the Influence of Mechanical Properties of Cartilage and Underlying Bone
指導教授:鄭誠功鄭誠功引用關係
指導教授(外文):Cheng-Kung Cheng
學位類別:博士
校院名稱:國立陽明大學
系所名稱:醫學工程研究所
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:128
中文關鍵詞:髖關節有限元素法關節軟骨軟骨下骨股骨頭股骨頸退化性關節炎
外文關鍵詞:hip jointfinite element analysisarticular cartilagesubchondral bonefemoral headfemoral neckosteoarthritis
相關次數:
  • 被引用被引用:2
  • 點閱點閱:290
  • 評分評分:
  • 下載下載:35
  • 收藏至我的研究室書目清單書目收藏:0
除了生物化學及細胞改變之外,力學因素對於荷重關節的軟骨型態改變及軟骨下方骨基座的重塑佔有重要之角色。有許多研究利用有限元素法對於關節接觸進行應力分析,但並無相關研究集中針對髖關節部位,探討軟骨、軟骨下骨及骨基座的力學性質改變對於關節接觸應力之敏感程度,尤其在關節接觸表面以及軟骨與軟骨下骨等特徵位置的應力分佈變化。本研究建立一個髖關節二維有限元素模型,分別針對股骨頭軟骨厚度、軟骨下骨厚度與彈性模數、股骨頭彈性模數及股骨頸彈性模數等參數改變來進行各項分析。由結果得知,在軟骨與軟骨下骨介面的最高之最大剪應力,其對於軟骨厚度參數改變之敏感度皆要比軟骨下骨厚度或是彈性模數等力學參數的改變要來得高;因此對於關節接觸應力,軟骨厚度變化為最主要之力學影響參數。此外,對於軟骨下方骨基座力學性質的改變,相較於股骨頭及股骨頸而言,軟骨下骨彈性模數的改變,對於上方軟骨接觸應力為最主要之材料力學影響參數,因此對於軟骨退化過程具有重要之力學效應。此外,本研究結果可單純地就力學角度來說明退化性關節炎之軟骨破壞應該與較高的近端股骨勁度具有相關性。

Besides biochemical and cellular changes, it has been widely suggested that mechanical factors play an important role in cartilage geometry and bone remolding. Few studies have stressed on the sensitivity of stress distribution of different mechanical properties of the articular cartilage and the underlying bone, especially in cartilage surface and bone/cartilage interface. A finite element model of hip joint was established to study the stress distributions associated with the changes of cartilage thickness, subchondral bone thickness and modulus, femoral head modulus, and femoral neck modulus. Our results demonstrated that the decrease of cartilage thickness has more significant effect than the increase of subchondral bone modulus or thickness on the shear stress levels in subchondral bone/cartilage interface. Therefore, the decrease of cartilage thickness acts as a major influence on the distribution of the contact stresses. For the effects of mechanical property changes of the underlying bone, the contact stress of cartilage is more sensitive to the subchondral plate than that to the femoral head or neck. Thus the subchondral plate has a higher effect on the contact stress in cartilage. Our results could also offer a mechanical explanation that the cartilage failure with OA is associated with higher proximal bone stiffness.

第一章 前言 1
1-1 關節軟骨的組成與解剖構造 1
1-2 軟骨下骨之組成與解剖構造 8
1-3 近端股骨之組成與解剖構造 10
1-4 骨質疏鬆症與退化性關節炎 12
1-5退化性關節炎發展過程中軟骨與下方骨基座力學性質之改變 15
1-6 關節接觸之有限元素分析研究回顧 24
1-7研究動機 26
1-8 研究目的 28
第二章 材料與方法 29
2-1 有限元素幾何外型建立 29
2-2 材料性質與元素建立 39
2-3 受力狀態及邊界條件 43
2-4 關節面接觸條件 44
2-5 收斂測試 45
2-6 軟骨及軟骨下骨力學參數改變之應力分析 47
2-7 軟骨下骨、股骨頭及股骨頸參數改變之應力分析 55
第三章 結果 58
3-1 有限元素模型之驗證 58
3-2 靜態分析:軟骨及軟骨下骨力學參數變化對於關節表面應力分佈之效應 60
3-3 靜態分析:軟骨及軟骨下骨力學參數變化對於軟骨與軟骨下骨介面應力分佈之效應 65
3-4 靜態分析:軟骨力學參數變化對於軟骨下骨應力分佈之效應 71
3-5 動態分析:軟骨下方大塊骨結構力學參數變化對於軟骨表面應力分佈之效應 74
3-6 動態分析:軟骨下方大塊骨結構力學參數變化對於軟骨與軟骨下骨介面應力分佈之效應 81
3-7 動態分析:軟骨下方大塊骨結構力學參數變化對於軟骨應變能密度之效應 84
第四章 討論 86
4-1 有限元素模型之限制 86
4-2 軟骨退化過程之探討與模型限制 87
4-2.1 軟骨退化過程之張力力學行為 88
4-2.2 軟骨退化過程之壓力力學行為 89
4-2.3 軟骨退化過程之剪力力學行為 91
4-2.4 模擬軟骨退化過程之模型限制 92
4-3 分析參數之討論 95
4-4 靜態分析:軟骨力學參數變化對於接觸應力之效應 99
4-5 靜態分析:軟骨下骨力學參數變化對於接觸應力之效應 101
4-6 動態分析:軟骨下骨力學參數變化對於接觸應力之效應 103
4-7 動態分析:軟骨下骨與股骨頭力學參數變化對於接觸應力之效應 104
4-8 動態分析:股骨頸力學參數變化對於接觸應力之效應 106
4-9 有限元素模型材料性質之限制 109
4-9.1 軟骨材料性質之限制 109
4-9.2 骨頭材料性質之限制 117
第五章 結論 123
參考文獻 125

1. Temenoff JS, Mikos AG. Review: Tissue engineering of articular cartilage. Biomaterial 2000; 21: 431-400.
2. Dounchis JS, Coutts RD, Amiel D. Cartilage repair with Autogenic Perichondrium cell/ Polyactic Acid Grafts: A Two-Year Study in Rabbits. J Orthop Res 2000; 18: 512-515.
3. O’Driscoll SW. The healing and regeneration of articular cartilage. J Bone Joint Surg 1998; 80-A: 1795-812.
4. Dretakis EK, Steriopoulos KA, Kontakis GM. Cervical hip fractures do not occur in arthrotic joints. Acta Ortho Scan 1998; 69: 384-386.
5. Nevitt MC, Lane NE, Scott JC, Hochberg MC, Pressman AR, Genant HK, Cummings SR. Radigraphic osteoarthritis of the hip and bone mineral density. Arthritis Rheum 1995; 38: 907-916.
6. Byers PD, Contepenni CA, Farkas TA. A post mortem study of the hip joint. Ann Rheum Dis 1970; 29: 15-31.
7. Pogrund H, Rutemberg M, Makin M, Robin G, Menczel J, Steiberg R. Osteoarthritis of the hip joint and osteoporosis: a radiological study in a random population sample in Jerusalem. Clin Orthop Relat Res 1982; 164: 130-135.
8. Karvonen RL, Negendank WG, Teitge RA, Reed AH, Miller PR, Fernandez-Madrid F. Factors affecting articular cartilage thickness in osteoarthritis and aging. J Rheumatol 1994; 21: 1310-1318.
9. Radin EL, Rose RM. The role of subchondral bone in the initiation and progression of cartilage damage. Clin Orthop Relat Res 1986; 213: 34-40.
10. Newberry WN, Zukosky DK, Haut RC. Subfracture insult to a knee joint causes alterations in the bone and in the functional stiffness of overlying cartilage. J Orthop Res 1997; 15: 450-455.
11. Radin EL, Schaffler M, Gibson G, Tashman S. Osteoarthrosis as the result of repetitive trauma. In: Kuettner KE and Goldberg VM (Eds.), Osteoarthrosis Disorders. American Academy of Orthopaedic Surgeons, Rosemont, 1995; pp. 197-204.
12. Li B, Aspden RM. Mechanical and material properties of the subchondral bone plate from the femoral head of patients with osteoarthritis or osteoporosis. Ann Rheum Dis 1997; 56: 247-54.
13. Grynpas MD, Alpert B, Katz I, Lieberman I, Pritzker KPH. Subchondral bone in osteoarthritis. Calcif Tissue Int 1991; 49: 20-6.
14. Burr DB. The importance of subchondral bone in osteoarthrosis. Curr Opin Rheumatol 1998; 10: 256-62. Review.
15. Radin EL, Paul IL. Does cartilage compliance reduce skeletal impact loads? The relative force-attenuating properties of articular cartilage, synovial fluid, periarticular soft tissues and bone. Arthritis Rheum 1970; 13:139-44.
16. Li B and Aspden RM. Composition and mechanical properties of cancellous bone from the femoral head of patients with osteoporosis or osteoarthritis. J Bone Mater Res 1997; 12: 641-651.
17. 孫施盛、鄭誠功:退化性關節炎與骨質疏鬆性股骨頭之生物力學性質分析。國立陽明大學醫學工程研究所碩士論文,2002
18. Lotz JC, Cheal EJ, Hayes WC. Stress distributions within the proximal femur during gait and falls: implications for osteoporotic fracture. Osteoporos Int 1995; 5: 252—61.
19. Li B, Aspden RM. Material properties of bone from the femoral neck and calcar femorale of patients with osteoporosis or osteoarthritis. Osteoporos Int 1997; 7: 450—56.
20. Jordan GR, Loveridge N, Power J, Clarke MT, Reeve J. Increased cancellous bone in the femoral neck of patients with coxarthrosis (hip osteoarthritis): a positive remodeling imbalance favoring bone formation. Osteoporos Int 2003; 14: 160-165.
21. Brown TD, DiGioia AM 3rd.. A contact-coupled finite element analysis of the natural adult hip. J Biomech 1984; 17: 437-48.
22. Brown TD, Radin EL, Martin RB, Burr DB. Finite element studies of some juxtarticular stress changes due to localized subchondral stiffening. J Biomech 1984; 17:11-24.
23. Anderson DD, Brown TD, Yang KH, Radin EL. A dynamic finite element analysis of impulsive loading of the extension-splinted rabbit knee. J biomech eng 1990; 112: 119-28.
24. Anderson DD, Brown TD, Radin EL. The influence of basal cartilage calcification on dynamic juxtaarticular stress transmission. Clin Orthop Relat Res 1993; 286: 298-307.
25. Rapperport DJ, Carter DR, Schurman DJ. Contact finite element stress analysis of the hip joint. J Orthop Res 1985; 3: 435-46.
26. Shepherd DE, Seedhom BB. Thickness of human articular cartilage in joints of the lower limb. Ann Rheum Dis 1999; 58: 27-34.
27. Zaki M, Saad F, Al-Ebiary MN. Influence of Charnley hip neck-angle inclination on the stresses at stem/cement and bone/cement interfaces. Bio-Med Mater Eng 2002; 12: 411-21.
28. Mow VC and Soslowsky LJ. Friction, Lubrication, and Wear of Diarthrodial Joints. In: Mow VC and Hayes WC (Eds.), Basic Orthopaedic Biomechanics. Raven Press, New York, 1991; pp 245-292.
29. Setton LA, Elliott DM, Mow VC. Altered mechanics of cartilage with osteoarthritis: human osteoarthritis and an experimental model of joint degeneration. Osteoarthritis Cartilage 1999; 7: 2-14. Review
30. Adam C, Eckstein F, Milz S, Schulte E, Becker C, Putz R. The distribution of cartilage thickness in the knee-joints of old-aged individuals -- measurement by A-mode ultrasound. Clin Biomech 1998; 13: 1-10.
31. Silver FH, Bradica G., Tria A. Relationship among biomechanical, biochemical, and cellular changes associated with osteoarthritis. Crit Rev Biomed Eng 2001; 29: 373-91.
32. Mitrovic D, Quintero M, Stankovic A, Ryckewaert A. Cell density of adult human femoral condylar articular cartilage. Joints with normal and fibrillated surfaces. Lab Invest 1983; 49: 309-16.
33. Li X, Haut RC, Altiero NJ. An analytical model to study blunt impact response of the rabbit P-F joint. J Biomech Eng 1995; 117: 485-91.
34. Minns RJ, Birnie AJ, Abernethy PJ. A stress analysis of the patella, and how it relates to patella articular cartilage lesions. J Biomech 1979; 12: 699-711.
35. Armstrong C, Mow V, Wirth C. Biomechanics of impact-induced microdamage to articular cartilage - A possible genesis for chondromalacia patella. In: Finerman G. (Ed.), AAOS Symposium on Sports Medicine: The Knee. C.V. Mosby Co, St. Louis, 1985; pp. 70-84.
36. Flachsmann ER, Broom ND, Oloyede A. A biomechanical investigation of unconstrained shear failure of the osteochondral region under impact loading. Clin Biomech 1995; 10: 156-65.
37. Atkinson TS, Haut RC, Altiero NJ. Impact-induced fissuring of articular cartilage: an investigation of failure criteria. J Biomech Eng 1998; 120: 181-87.
38. Ateshian GA, Lai WM, Zhu WB, Mow VC. An asymptotic solution for the contact of two biphasic cartilage layers. J Biomech 1994; 27: 1347-60..
39. Jordan GR, Loveridge N, Bell KL, Power J, Dickson GR, Vedi S, Rushton N, Clarke MT, Reeve J. Increased femoral neck cancellous bone and connectivity in coxarthrosis (hip osteoarthritis). Bone 2003; 32: 86-95.
40. Alonso CG, Curiel MD, Carranza FH, Cano RP, Perez AD. Femoral bone mineral density, neck-shaft angle and mean femoral neck width as predictors of hip fracture in men and women. Multicenter Project for Research in Osteoporosis. Osteoporos Int 2000; 11: 714-20.
41. Moore RJ, Fazzalari NL, Manthey BA, Vernon-Roberts B. The relationship between head-neck-shaft angle, calcar width, articular cartilage thickness and bone volume in arthrosis of the hip. Br J Rheumatol 1994; 33: 432-6.
42. Arokoski JP, Arokoski MH, Jurvelin JS, Helminen HJ, Niemitukia LH, Kroger H. Increased bone mineral content and bone size in the femoral neck of men with hip osteoarthritis. Ann Rheum Dis 2002; 61: 145-50.
43. Werner H J, Martin H, Behrend D, Schmitz K-P, Schober H-C. The loss of stiffness as osteoporosis progresses. Med Eng Phys 1996; 18: 601-6.
44. Wong M, Ponticiello M, Kovanen V, Jurvelin JS. Volumetric changes of articular cartilage during stress relaxation in unconfined compression. J Biomech 2000; 33:1049-54.
45. Chang D, Lottman L, Chen A, Schinagl R, Albrecht D, Pedowitz R, Brossmann J, Frank L, Sah R. Depth-dependent, multi-axial properties of aged human patellar cartilage in tension. Transactions of the 45th Annual Meeting, Orthopedic Research Society 1999.
46. Huang C, Stankiewicz A, Ateshian G, Flatow E, Bigliani L, Mow V. Anistropy, inhomogeneity, and tension-compression nonlinearity of cartilage in finite deformation. Transactions of the 45th Annual Meeting, Orthopedic Research Society 1999.
47. Eberhardt AW, Keer LM, Lewis JL, Vithoontien V. An analytical model of joint contact. J Biomech Eng 1990; 112: 407-13.
48. Athanasiou KA, Rosenwasser MP, Buckwalter JA, Malinin TI, Mow VC. Interspecies comparisons of in situ intrinsic mechanical properties of distal femoral cartilage. J Orthop Res 1991; 9: 330-40.
49. Mak AF, Lai WM, Mow VC. Biphasic indentation of articular cartilage--I. Theoretical analysis. J Biomech 1987; 20: 703-14.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top