跳到主要內容

臺灣博碩士論文加值系統

(35.175.191.36) 您好!臺灣時間:2021/08/01 00:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:洪啟仁
研究生(外文):Chi-Jen Hung
論文名稱:β2-醣蛋白Ι基因5'端序列之選殖與分析
指導教授:姜安娜姜安娜引用關係
指導教授(外文):An-Na Chiang
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:生物化學研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
中文關鍵詞:β2-醣蛋白I脂蛋白元H順式調控序列β2醣蛋白I 基因5' 端區域短暫轉染法luciferase 報導質體選殖重組質體負向調控方向性啟動子氧化壓力過氧化氫電泳位移分析實驗結合活性肝癌核蛋白質連續序列刪除分析
外文關鍵詞:β2-glycoprotein Iβ2-GPIapolipoprotein Hβ2-GPI genecis-regulatory elements5'-flanking regionspromoter activitytransient transfection assaysHuh7 cellsGA repeatreporter gene3'- flanking dependentSerial deletion analysesreporter constructorientation-dependentGel mobility shift assaysEMSAH2O2oxidative stress
相關次數:
  • 被引用被引用:1
  • 點閱點閱:95
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要
β2-醣蛋白I (β2-glycoprotein I 簡稱β2-GPI) 又被稱作脂蛋白元H (apolipoprotein H 簡稱apoH),是血液中一種醣蛋白,其影響了不同的生理途徑,例如脂質代謝、血液凝集等。雖然人類血液中β2-醣蛋白I 的濃度隨著個體間不同而有大範圍之差異已被發現,但是對於β2-醣蛋白I 差異表現之決定因素卻所知甚少。因此釐清順式調控序列與β2醣蛋白I 基因調控之分子基礎則是目前重要的研究方向。
在本研究中許多特定 5' 端區域的序列被選殖到 luciferase 報導質體上而且以短暫轉染法送至 Huh7 細胞中以確認差異序列正向或負向調控 β2醣蛋白I 啟動子之活性。結果顯示有一段跨越 −2207 ~ −1734 之間的區域與-1734/+9重組質體相較之下,會減少57.1% 的報導活性,但是當序列延伸至 −3828 ~ −3642之間,其 luciferase 的活性會被回復至與 -1734/+9重組質體相同的活性值。由於該負向調控區域包含了GA repeat 及其相鄰的區域,因此將此區域稱為 GA repeat region,簡稱 GAR。GAR對報導基因的抑制是具有方向性的,而且將 GAR 包含或不包含其下游區域的序列,然後接至 SV40 啟動子上游,結果顯示GAR 必須有3'端序列參與啟動子的抑制調控。對 GAR 進行連續序列刪除分析的結果顯示,β2醣蛋白I 啟動子的負向調控必須有 GA repeat 的上游序列(GArUP) 參與。後來以電泳位移分析實驗確認GA repeat 和GArUP 之序列會相互作用並與肝癌核蛋白質結合,然而,GArUP 的結合能力比GA repeat弱。當處理0.3 至 1.0 mM H2O2 時,GA repeat/GArUP 與肝癌細胞核蛋白之間的結合活性會減少。然而,HNF-1的結合活性會在0.1 mM H2O2 的處理濃度下被增加,而當濃度增加至1.0 mM 時回復到基本狀態。我們實驗室過去研究指出β2醣蛋白I 的表現可被氧化壓力調控,而以上的結果可以支持這樣的說法。
Abstract
β2-glycoprotein I (β2-GPI), also known as apolipoprotein H, is a plasma glycoprotein involving in a variety of physiological pathways such as lipid metabolism, blood coagulation, etc. Although a wide range of interindividual variation in human plasma β2-GPI concentrations has been found, little determinant of β2-GPI variation has been studied. Therefore, it is important to clarify the molecular basis of the β2-GPI gene regulation through characterization of its cis-regulatory elements.
In this study, several 5'-flanking regions of β2GPI gene-luciferase fusion plasmids have been cloned and positive or negative regulation of β2GPI promoter activity was identified by transient transfection assays into Huh7 cells. A region spanning from −2207 ~ −1734 decreased the reporter activity by 57.1% compared with -1734/+9 construct, but extension from −3828 ~ −3642 reversed the luciferase activity to the level of -1734/+9 construct. The negative regulatory region shown above containing a GA repeat and its flanking sequence was designated as GA repeat region (GAR). The repression of reporter gene with GAR was orientation-dependent. In addition, GAR with or without its downstream region were inserted into SV40 promoter. The results showed that the inhibition of reporter construct with GAR was also 3'- flanking dependent. Serial deletion analyses revealed that the upstream of GA repeat (GArUP) was essential for down-regulation of β2-GPI promoter activity. Subsequent Gel mobility shift assays confirmed the interaction of GA repeat and GArUP with hepatoma nuclear protein but the binding was weak in GArUP than in GA repeat. The binding activity of protein complex between GA repeat/GArUP and the nuclear protein in hepatoma cells was decreased by H2O2 treatment from 0.3 to 1.0 mM. However, the binding activity of protein complex at HNF-1 binding site was enhanced at 0.1 mM H2O2, but the binding activity was reversed to basal level when H2O2 concentration was increased to 1.0 mM. Taken together, these findings support our previous observation that β2-GPI expression is regulated by oxidative stress.
1. Schultze, H.E., Heide, K., and Hampt, H. (1961) Uber einbisher unbekanntes niedermole kulares beta-2-Globulin des Human serums. Naturwissenschaften 23: 719-725.
2. Mehdi, H., Nunn, M., Steel, D.M., Whitehead, A.S., Perez, M., Walker, L., and Peeples, M.E. (1991) Nucleotide sequence and expression of the human gene encoding apolipoprotein H (beta-2-glycoprotein I). Gene 108, 293-298.
3. Polz, E., and Kostner, G.M. (1979) The binding of β2-glycoprotein I to human serum lipoproteins: Distribution among density fractions. FEBS Lett. 102, 183–186.
4. Nakaya, Y., Schaefer, E.J., and Brewer, H.B. (1980) Activation of human post-heparin lipase by apolipoprotein H (beta-2-glycoprotein I). Biochem. Biophys. Res. Commun. 95, 1168-1172.
5. Schousboe, I. (1985) beta 2-Glycoprotein I: a plasma inhibitor of the contact activation of the intrinsic blood coagulation pathway. Blood 66, 1086-1091.
6. Nimpf, J., Bevers, E.M., Bomans, P.H.H., Till, U., Wurm, H., Kostner, G. M., and Zwaal, R.F.A. (1986) Prothrombinase activity of human platelets is inhibited by β2-glycoprotein I. Biochim. Biophys. Acta. 884, 142–149.
7. Nimpf, J., Wurm, H., and Kostner, G.M. (1987) β2-glycoprotein I (apoH) inhibits the release reaction of human platelets during ADP-induced aggregation. Atherosclerosis 63,
109–114.
8. Brighton, T.A., Hogg, B.J., Dai, Y.P., Murray, B.H., Chong, B.H., and Chesterman, C.N. (1996) Beta 2-glycoprotein I in thrombosis: evidence for a role as a natural anticoagulant. Br. J. Haematol. 93, 185–194.
9. Halkier, T., and Magnussen, S. (1988) Contact activation of blood coagulation is inhibited by plasma factor XIIIb-chain. Thromb. Res. 51, 313–324.
10.Balasubramanian, K., Chandra, J., and Schroit, A.J. (1997) Immune clearance of phosphatidylserineexpressing cells by phagocytes. The role of β2-glycoprotein I in macrophage recognition. J. Biol. Chem. 272, 31113–31117.
11.Balasubramanian, K., and Schroit, A.J. (1998) Characterization of phosphatidylserine-dependent b2-glycoprotein I macrophage interactions. Implications for apoptotic cell clearance by phagocytes. J. Biol. Chem. 273, 29272-29277.
12. Savill, J., and Valerie, F. (2000) Corpse clearance defines the meaning of cell death Nature 407, 784-788.
13. Robert, A.S. (1994) Roubey Autoantibodies to Phospholipid-Binding Plasma Proteins: A New View of Lupus Anticoagulants and Other “Antiphospholipid” Autoantibodies Blood 84, 2854-2867.
14.Galli, M., Confurius, P., Maassen, C., Hemker, H.C., DeBaets, M.H., van Breda-Vriesman, P.J.C., Barbui, T., Zwaal, R.F.A., and Beveres, E.M. (1990) Anticadiolipin antibodies (ACA) directed not to cardiolipin but to a plasma protein cofactor. Lancet. 335, 1544–1547.
15. McNeil, H.P., Simpson, R.J., Chesterman, C.N., and Krilis, S.A. (1990) Anti-phospholipid antibodies are directed against a complex antigen that includes a lipid binding inhibitor of coagulation: β2-glycoprotein I (apolipoprotein H). Proc. Natl Acad. Sci. USA. 87, 4120–4124.
16. Roubey, R.A., Pratt, C.W., Buyon, J. P., and Winfield, J. B. (1992) Lupus anticoagulant activity of autoimmune anti-phospholipid antibodies is dependent upon β2-glycoprotein I. J. Clin. Invest. 90, 1100–1104.
17. Hasunuma, Y., Matsuura, E., Makita, Z., Katahira, T., Nishi, S., and Koike, T. (1997) Involvement of β2-glycoprotein I and anticardiolipin antibodies in oxidatively modified low-density lipoprotein uptake by macrophages. Clini. Exper. Immunol.. 107, 569–573.
18. Ross, R. (1993) The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature. 362, 801-809.
19. Lin, K.Y., Yang, D.L., Huang, K.T., Chang, M.S., Ding, P.Y.A., and Chiang, A.N. (2001) Evidence for inhibition of low density lipoprotein oxidation and cholesterol accumulation by apolipoprotein H (β2-glycoprotein I) Life Sci. 69, 707–719.
20. George, J., Afek, A., Gilburd, B., Aron-Maor, A., Shaish, A., Levkovitz, H., Blank, M., Harats, D., and Shoenfeld, Y. (1998) Induction of early atherosclerosis in LDL receptor deficient mice immunized with β2-glycoprotein I. Circulation 15, 1108–1115.
21. Afek, A., George, J., Shoenfeld, Y., Gilburd, B., Levy, Y., Shaish, A., Keren, P.,Janackovic, Z., Goldberg, I., Kopolovic, J., and Harats, D. (1999) Enhancement of atherosclerosis in beta-2-glycoprotein I-immunized apolipoprotein E-deficient mice. Pathobiology 67:19–25.
22. Jose, D., Alvesa, Paul, R.J., and Amesb. (2003) Atherosclerosis, oxidative stress and auto-antibodies in systemic lupus erythematosus and primary antiphospholipid syndrome. Immunobiol. 207, 23 -28.
23. Matsuura, Eiji., Kazuko, K., Takao, K., Yehuda, S., Munther, A.K., and Graham., R.V.H. (2003) Atherogenic autoantigen: oxidized LDL complexs with β2-Glycoprotein I Immunobiol. 207, 17 -22.
24. Yaniv, S., and Yehuda, S. (2003) Antiphospholipid antibodies: are they pro-atherogenic or an epiphenomenon of atherosclerosis ? Immunobiol. 207, 13 -16.
25. Wang, F.X., Feng., X.S., and Fang., S. (2002) Human Apolipoprotein H may have various orientations when attached to lpid layer. Biophys. J.. 83, 985–993.
26. Lozier, J., Takahashi, N., and Putnam., F.W. (1984) Complete amino acid sequence of human plasma beta 2-glycoprotein I Proc. Natl. Acad. Sci. U S A. 81,3640-3644.
27. Steinkasserer, A., Estaller, C., Weiss, E.H., Sim, R.B., and Day, A.J. (1991) Complete nucleotide and deduced amino acid sequence of human beta 2-glycoprotein I. Biochem. J. 277, 387
28. Bork, P., Downing, A.K., Kieffer, B., and Campbell, I.D. (1996) Structure and distribution of modules in extracellular proteins. Q. Rev. Biophys. 29, 119–167.
29. Hagihara, Y., Enjyoji, K., Omasa, T., Katakura, Y., Suga, K., Igarashi, M., Matsuura, E., Kato, H., Yoshimura, T., and Goto, Y. (1997) Structure and function of the recombinant fifth domain of human beta 2-glycoprotein I: effects of specific cleavage between Lys77 and Thr78. J. Biochem. 121, 128-137.
30. Hunt, J., and S. Krilis. (1994) The fifth domain of β2-glycoprotein I contains a phospholipid binding site (Cys281-Cys288) and a region recognized by anticardiolipin antibodies. J. Immunol. 152, 653-659.
31. Mehdi, H., Naqvi, A., and Kamboh, M. I., (2000) A hydrophobic sequence at position 313-316 (Leu-Ala-Phe-Trp) in the fifth domain of apolipoprotein H (β2-glycoprotein I) is crucial for cardiolipin binding. Eur. J. Biochem. 267, 1770-1776.
32. Schwarzenbacher, R., Zeth, K., Diederichs, K., Gries, A., Kostner, G.M., Laggner, P., and Prassl R. (1999) Crystal structure of human β2-glycoprotein I: implications for phospholipid binding and the antiphospholipid syndrome. EMBO. J. 18,6228-6239.
33. Cleve, H. (1968) Genetic studies on the deficiency of β2-glycoprotein I of human serum. Hum. Genet. 5, 294–304.
34. Koppe, A.L., Walter, H., Chopra, V.P., and Bajatzadeh, M. (1970) Investigations on the genetics and population genetics of the β2-glycoprotein I polymorphism. Hum. Genet. 9, 164–171.
35. Propert, D.N. (1978) The relationship of sex, smoking status, birth rank and parental age to β2-glycoprotein I levels and phenotypes in a sample of Australian Caucasian adults. Hum. Genet. 43, 281–288.
36. Walter, H., Hilling, M., Brachtel, R., and Hitzeroth, H.W. (1979) On the population genetics of β2-glycoprotein I. Hum. Hered. 29, 236–241.
37. Mehdi, H., Manzi, S., Desai, P., Chen, Q., Nestlerode, C., Bontempo, F., Strom,S. C., Zarnegar, R., and Kamboh, M. I. (2003) A functional polymorphism at the transcriptional initiation site in β2-glycoprotein I (apolipoprotein H) associated with reduced gene expression and lower plasma levels of β2-glycoprotein I. Eur. J. Biochem. 270, 230–238.
38. Haagerup, A., Kristensen, T., and Kruse, T.A. (1991) Polymorphism and genetic mapping of the gene encoding human beta-2-glycoprotein I to chromosome 17. Cytogenet. Cell Genet. 58, 2005 only.
39. Steinkasserer, A., Cockburn, D.J., Black, D.M., Boyd, Y., Solomon, E., and Sim, R.B. (1992) Assignment of apolipoprotein H (APOH: beta-2-glycoprotein I) to human chromosome 17q23-qter; determination of the major expression site. Cytogenet. Cell Genet. 60: 31-33.
40. Okkels, H., Rasmussen, T.E., Sanghera, D.K., Kamboh, M.I., and Kristensen, T. (1999) Structure of the human β2-glycoprotein I (apolipoprotein H) gene. Eur. J. Biochem. 259, 435–440.
41. Wang, H.H., and Chiang, A.N. (2004) Cloning and Characterization of the Human β2-Glycoprotein I (β2-GPI) Gene Promoter: Roles of the Atypical TATA Box and HNF-1α in Regulating β2-GPI Promoter Activity. Biochem. J. 380, 455-463.
42. 王學孝 脂蛋白元 H 之結構與功能研究 國立陽明大學碩士論文 西元1999年
43. 石晏任 脂蛋白元H 基因5'-側邊序列的分子分析及氧化壓力對於脂蛋白元H在轉錄層次調控的影響 國立陽明大學碩士論文 西元2001年
44. 畢君慧 氧化壓力對 β2-醣蛋白 I 表現之影響 國立陽明大學碩士論文 西元2002年
45. Yannick, M., and Robert, B. (1999) Repression of gene expression by oxidative stress.
Biochem. J. 342, 481-496.
46. Chi, H.S. (2002) Recent Advances in the Diagnosis of Antiphospholipid Syndrome International Journal of Hematology. 76, 47-51.
47. Britten, R.J., and Kohne, D.E. (1968) Repeated sequences in DNA. Hundreds of t housands of copies of DNA sequences have been incorporated into the genomes of higher organisms. Science 161, 529-540.
48. Ohno, S. (1972) So much “junk” DNA in our genome. Brookhaven Symposia in Biology 23, 366-370.
49. Zakian, V.A. (1996) Telomere functions: lessons from yeast. trends in Cell Biology. 6, 29-33.
50. Macera, M.J, Verma, R.S., Conte, R.A., Bialer, M.G., and Klein, V.R. (1996) Mechanisms of the origin of a G-positive band within the secondary constriction region of human chromosome 9. Cytogenet. Cell Genet 69, 235-239.
51. Jenuwein, T., Forrester, W.C., Fernandez-Herrero, L.A., Laible, G., Dull, M., and Grosschedl, R. (1997) Extension of chromatin accessibility by nuclear matrix attachment regions. Nature 385, 269-272.
52. Handen, J.S, and Rosenberg, H.F. (1997) Intronic Enhancer Activity of the Eosinophil-derived Neurotoxin (RNS2) and Eosinophil Cationic Protein (RNS3) Genes Is Mediated by an NFAT-1 Consensus Binding Sequence. J. Biol. Chem. 272, 1665-1669.
53. Shelley, C.S., and Baralle, F.E. (1987) Dual tissue-specific expression of apo-AII is directed by an upstream enhancer. Nucleic Acids Res. 15, 3801–3821.
54. Goto, K., Heymont, J.L., Klein-Nulend, J., Kronenberg, H.M., and Demay, M.B. (1996) Identification of an osteoblastic silencer element in the first intron of the rat osteocalcin gene. Biochemistry 35, 11005-11011.
55. Pankov, R., Neznanov, N., Umezawa, A., and Oshima, R.G. (1994) AP-1, ETS, and transcriptional silencers regulate retinoic acid-dependent induction of keratin 18 in embryonic cells. Mol. Cell. Biol. 14, 7744-7757.
56. Kallunki, P., Jenkinson, S., Edelman, G.M., and Jones, F.S. (1995) Silencer elements modulate the expression of the gene for the neuron-glia cell adhesion molecule, Ng-CAM. J. Biol. Chem. 270, 21291-21298.
57. Bossu, J.P., Chartier, F.L., Fruchart, J.C., Auwerx, J., Staels, B., and Laine, B. (1996) Two regulatory elements of similar structure and placed in tandem account for the repressive activity of the first intron of the human apolipoprotein A-II gene. Biochem. J. 318, 547-553.
58. Tripathi, J., and Brahmachari, S.K. (1991) Distribution of simple repetitive (TG/GA)n and (CT/GA)n sequences in human and rodent genomes. J. Biomol. Struct. Dyn. 9, 387–397.
59.Birnboim, H.C., Sederoff, R.R., and Paterson, M.C. (1979) Distribution of polypyrimidine•polypurine segments in DNA from diverse organisms. Eur. J. Biochem., 98, 301–307.
60. Lu, Q., Teare, J. M., Granok, H., Swede, M.J., Xu, J., and Elgin, S.C.R. (2003) The capacity to form H-DNA cannot substitute for GAGA factor binding to a (CT)n{middle dot}(GA)n regulatory site. Nucleic Acids Res. 31, 2483 - 2494.
61. Chung,Y.T., and Keller, E.B. (1990) Regulatory elements mediating transcription from the Drosophila melanogaster actin 5C proximal promoter. Mol. Cell. Biol. 10, 206–216.
62. Glaser, R.L., Thomas, G.H., Siegfried, E.S., Elgin, S.C.R., and Lis, J.T. (1990) Optimal heat-induced expression of the Drosophila hsp26 gene requires a promoter sequence containing (CT)n•(GA)n repeats. J. Mol. Biol. 211, 751–761.
63. Kohwi, Y., and Kohwi-Shigematsu, T. (1991) Altered gene expression correlates with DNA structure. Genes Dev. 5, 2547–2554.
64. Fabregat, I., Koch, K.S., Aoki, T., Atkinson, A.E., Dang,H., Amosova,O., Fresco, J.R., Schildkraut, C.L., and Leffert, H.L. (2001) Functional pleiotropy of an intramolecular triplex-forming fragment from the 3'-UTR of the rat Pigr gene. Physiol. Genomics 5, 53–65.
65. Spek., C.A., Rogier, M., Bertina., Pieter, H., and Reitsma. (1999) Unique distance- and DNA-turn-dependent interactions in the human protein C gene promoter confer submaximal transcriptional activity. Biochem. J. 340, 513-518.
66. Tansey, W.P., Schaufele, F., Heslewood, M., Handford, C., Reudelhuber, T. L., and Cantanzaro, D. F. (1993) Distance-dependent Interactions between Basal, Cyclic AMP, and Thyroid Hormone Response Elements in the Rat Growth Hormone Promoter. J. Biol. Chem. 268, 14906-14911.
67. Dynan, W.S., and Tjian, R. (1983) The promoter-specific transcription factor Sp1 binds to upstream sequences in the SV40 early promoter. Cell 35, 79-87.
68. Pauly, M., Michele, T., Eric, W., and Pierre, C. (1992) The initiation accuracy of the SV40 early transcription is determined by the functional domains of two TATA elements. Nucleic Acids Research. 20, 975-982.
69. Fulvio, D.R., Valeria, C., Vittoria, C., Stefania, I., Adriana, B., and Vincenzo, Z. (2003) p21Cip1 Gene Expression Is Modulated by Egr1. J. Biol. Chem.. 278, 23360-23368.
70. Hambor, J.E., Mennone, J., Coon, M.E., Hanke, J.H., and Kavathas, P. (1993) Identification and characterization of an Alu-containing T cell–specific enhancer located in the last intron of the human CD8 alpha gene. Mol. Cell Biol. 13, 7056–7070.
71. Molnar, A., and Georgopoulos, K. (1994) The Ikaros gene encodes a family of functionally diverse zinc finger DNA-binding proteins. Science. 258, 808–812. Mol. Cell Biol. 14, 8292–8303.
72. Brown, K. E., Simon S. G., Stephen, T. S., Kyungmin, H., Matthias, M., and Amanda, G. F. (1997) Association of Transcriptionally Silent Genes with Ikaros Complexes at Centromeric Heterochromatin. Cell 91, 845–854.
73. Cobb, B.S., Susana, M.A., Gary, K., Karen, E.B., Amanda, G. F., and Stephen, T. S. (2000) Targeting of Ikaros to pericentromeric heterochromatin by direct DNA binding . Genes Dev. 14, 2146–2160.
74. Perdomo, J., and Merlin, C. (2002) The Ikaros family protein Eos associates with C-terminal-binding protein corepressors. Eur. J. Biochem. 269, 5885–5892
75. Molnar, A., Wu, P., Largespada, D.A., Vortkamp, A., Scherer, S., Copeland, N.G., Jenkins, N.A., Bruns, G., and Georgopoulos, K. (1996) The Ikaros gene encodes a family of lymphocyte-restricted zinc finger DNA binding proteins, highly conserved in human and mouse. J Immunol. 156, 585-592.
76. Perdomo., J, Melissa, H., Beng, C., and Merlin, C. (2000) Eos and Pegasus, Two Members of the Ikaros Family of Proteins with Distinct DNA Binding Activities. J Biol Chem. 275, 38347–38354.
77. Ghanshan, S., Heike, W., Mark, J.M., Heike, R., Amber, N., George, A.,Gutman.,Michael, D.C., and K.George C. (2000) Up-regulation of the IKCa1 Potassium Channel during T-cell Activation. J. Bio.l Chem. 275, 37137–37149.77.
78. Charolyn, K., Babichuk, R., and Chris, B. (1997) Mutational Analysis of the Murine Granzyme B Gene Promoter in Primary T Cells and a T Cell Clone. J. Biol. Chem. 272, 18564–18571.
79. Momeni, P., Glockner, G., Schmidt, O., von Holtum, D., Albrecht, B., Gillessen-Kaesbach, G., Hennekam, R., Meinecke, P., Zabel, B., Rosenthal, A., Horsthemke, B., and Ludecke, H.J. (2000) Mutations in a new gene, encoding a zinc-finger protein, cause tricho-rhino–phalangeal syndrome type I. Nat. Genet. 24, 71–74.
80. Chen, F., Kook, H., Milewski, R., Gitler, A.D., Lu, M.M., Li, J., Nazarian, R., Schnepp, R., Jen, K., Biben, C., Runke, G., Mackay, J.P., Novotny, J., Schwartz, R.J., Harvey, R.P., Mullins, M.C., and Epstein, J.A. (2002) Hop is an unusual homeobox gene that modulates cardiac development. Cell 110, 713-23.
81. Molkentin, J.D., Antos, C., Mercer, B., Taigen, T., Miano, J.M., and Olson, E.N. (2000) Direct activation of a GATA6 cardiac enhancer by Nkx2.5: evidence for a reinforcing regulatory network of Nkx2.5 and GATA transcription factors in the developing heart. Dev. Biol. 217, 301-309.
82. Shiojima, I., Komuro, I., Oka, T., Hiroi, Y., Mizuno, T., Takimoto, E., Monzen, K., Aikawa, R., Akazawa, H., Yamazaki, T., Kudoh, S., and Yazaki, Y. (1999) Context-dependent transcriptional cooperation mediated by cardiac transcription factors Csx/Nkx-2.5 and GATA-4. J. Biol. Chem. 274, 8231-8239.
83. Alexei., Degterev., Judith, A., and Foster. (1999) The role of NF-1 factors in regulation of elastin gene transcription. Matrix Biol.18, 295-307.
84. Apt, D., Liu, Y., and Bernard, H.U. (1994) Cloning and functional analysis of spliced isoforms of human nuclear factor I-X: interference with transcriptional activation by NFI/CTF in a cell type specific manner. Nucleic Acids Res. 22, 3825-3833.
85. NiceProt View of Swiss-Prot: P05412
86. Hargrove, G.M., Junco, A. and Wong, N.C.W. (1999) Hormonal regulation of
apolipoprotein AI. J. Mol. Endocrinology. 22, 103–111.
87. Muppala, V., LIN, C.S., and LEE, Y.H. (2000) The Role of HNF-1a in Controlling Hepatic Catalase Activity. Mol. Pharmacol. 57, 93–100.
88. Kamboh, M.I., Manzi, S., Mehdi, H., Fitzgerald, S., Sanghera, D.K., Kuller, L.H., and Atson, C.E. (1999) Genetic variation in apolipoprotein H (beta2-glycoprotein I) affects the occurrence of antiphospholipid antibodies and apolipoprotein H concentrations in systemic lupus erythematosus. Lupus. 8, 742-50.
89. Falke. D., and Juliano R.L. (2003) Selective gene regulation with designed transcription factors: implications for therapy. Cur.r Opin. Mol. Ther. 5, 161-166.
90.Ryuichi, M. (2004) Perspective in Progress of Cardiovascular Gene Therapy Pharmacol. Sci. 95, 1-8.
91. Morishita, R., Higaki, J., Tomita, N., and Ogihara, T. (1998) Application of transcription factor “decoy” strategy as means of gene therapy and study of gene expression in cardiovascular disease. Circ. Res. 82, 1023–1028.
92. Quandt, K., Frech, K., Karas, H., Wingender, E., and Werner, T. (1995) MatInd
and MatInspector: new fast and versatile tools for detection of consensus matches
in nucleotide sequence data. Nucleic Acids Res. 23, 4878–4884
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊