( 您好!臺灣時間:2021/07/30 16:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::


研究生(外文):Hsueh-Hsiao Wang
論文名稱(外文):Studies on the protective factors in the process of atherosclerosis
指導教授(外文):An-Na Chiang
外文關鍵詞:atherosclerosisapolipoproteinhepatic nuclear factorgene regulationpolyunsaturated fatty acidpromoter
  • 被引用被引用:0
  • 點閱點閱:172
  • 評分評分:
  • 下載下載:40
  • 收藏至我的研究室書目清單書目收藏:0
β2-glycoprotein I (β2-GPI)是主要由肝臟合成的血漿醣蛋白,但現今β2-GPI基因層次的調控仍未闡明,為了瞭解β2-GPI基因之調控機制,我選殖並分析了 4.1 kb 長度的β2-GPI基因5''端調控區,並利用刪除及定點突變法發現了一段非標準的TATA box及HNF-1結合區域主導β2-GPI近位啟動子的活性,電泳位移實驗確認了HNF-1α這個蛋白質與在TATA box下游HNF-1序列間的交互作用,又進一步在肝癌細胞Huh7與不表現HNF-1的HeLa細胞株中外送HNF-1α表現質體證明了HNF-1α橫貫活化β2-GPI啟動子的能力,這些結果顯示非標準的TATA box 及HNF-1結合序列在細胞表現特異性上的重要角色;此外我們也分析了氧化壓力對β2-GPI基因表現的影響,在肝癌細胞中過氧化氫及phorbol ester會降低β2-GPI的啟動子活性並改變細胞核蛋白質與β2-GPI近位啟動子間的作用模式,但在心臟動脈血管平滑肌細胞中,氧化壓力卻會增加β2-GPI的表現。這顯示在氧化壓力下β2-GPI會呈現一差異性的表現模式,更指出了在有代謝性症狀與疾病患者體內β2-GPI之表現變化或有臨床上的重要性。
動脈粥狀硬化之病理過程會受魚油或中草藥等食物因子的影響,最近的研究顯示飲食中的多元不飽和脂肪酸(PUFAs)會調控過氧化酶體增生活化接受器(PPARs)的活性,PPARs是細胞核內受配體活化之轉錄因子,它會與視黃酸接受器(RXR)形成異二聚體後與PPAR調控區域(PPREs)結合影響其標地基因之表現。由於PPARs生理功能上所調控的基因被認為具有抗動脈硬化的潛力,我們又在apoE剔除小鼠中發現魚油能降低動脈粥狀硬化損傷,因而進一步分析PUFAs對脂蛋白元AI (apoAI)基因上游受PPARα調控之序列(PPREα)及帶有肝臟X接受器α (LXRα)基因上游受PPARγ調控之序列(PPREγ)之橫貫活化能力。利用具有基因啟動子調控區及luciferase之基因載體篩選PPARα及PPARγ之活化配體,結果顯示n-3 PUFAs能透過PPREγ活化LXRα基因表現以及增加細胞中ATP binding cassette A1 (ABCA1)的表現,這可能降低泡沫細胞中膽固醇的堆積。此外亦在中草藥之水及酒精萃取物中發現具有活化apoAI及LXRα標的基因之成分,此種報導質體分析系統具有應用食療保健在防治動脈粥狀硬化研究之潛力。
Atherosclerosis, the most clinical manifestation of coronary artery disease, is responsible for the main cause of death in developed countries. To understand the protective interventions, we focus on endogenous and exogenous factors contributing to anti-atherogenesis.
β2-Glycoprotein I (β2-GPI) is a plasma glycoprotein primarily synthesized in the liver. The regulation of β2-GPI gene expression has not been clarified. To gain more insight into the control mechanism of β2-GPI gene expression, we cloned the 4.1-kb 5′-flanking region and characterized the proximal promoter of the β2-GPI gene. Truncation and site-directed mutageneses of putative cis-elements within this region showing an atypical TATA box and a hepatic nuclear factor-1 (HNF-1) element were both essential for the β2-GPI promoter activity. Subsequent gel mobility shift assays confirmed the interaction of HNF-1α with the HNF-1 site residing downstream of the TATA box. Cotransfection of β2-GPI promoter-luciferase vector with HNF-1α expression vector in Huh7 and HNF-1-deficient HeLa cells demonstrated the trans-activation effect of HNF-1α on β2-GPI promoter activity. These data suggest that the atypical TATA box and HNF-1 cis-element are both critical for β2-GPI transcription and the HNF-1α may play an important role in cell-specific regulation of β2-GPI gene expression. Moreover, we investigated the role of oxidative stress in the regulation of β2-GPI expression. In hepatoma cells, hydrogen peroxide and phorbol ester decreased the transcriptional activity of β2-GPI reporter constructs and altered the binding pattern between nuclear proteins and human β2-GPI proximal promoter. However, the mRNA levels of endogenous β2-GPI were activated by phorbol ester and hydrogen peroxide treatment in human coronary artery smooth muscle cell. The differential regulation of β2-GPI under oxidative stress, implying that the interindividual variation of β2-GPI levels in subjects with various metabolic syndrome and disease states may have clinical importance.
The process of atherosclerosis can also be modulated through dietary factors. Recent studies have shown that polyunsaturated fatty acids (PUFAs) regulate the activity of peroxisome proliferator-activated receptors (PPARs). PPARs are a family of ligand-activated nuclear transcriptional factors that bind to its peroxisome proliferator response elements (PPREs) as a heterodimer with a retinoid X receptor (RXR) and regulate their target gene expression. From recent reports, the physiological function of PPAR-mediated gene expression might have anti-atherosclerosis potential. We used apoE knockout mice to assess the role of fish oil in the development of atherosclerosis and the result showed that supplementation with fish oil reduced atherosclerotic lesions. We further investigated whether PUFAs contribute to the trans-activation of apoAI and LXRα genes via PPREα and PPREγ, respectively. Transient transfection experiments with plasmids containing PPREs in front of the luciferase reporter gene is responsible for the screening PPARα and PPARγ agonists. The results showed that n-3 PUFAs transactivated PPREγ of LXRα and enhanced ATP binding cassette A1 (ABCA1) expression, which might decrease cholesterol accumulation during foam cell formation. Moreover, water and alcohol extract of several herbal medicines has implicated in the trans-activation of apoAI and LXRα target genes. This reporter assay system creates a potentially opportunity for the dietary manipulation of atherosclerosis.
1 行政院衛生署. (2002) 衛生統計(二)生命統計,台灣地區縣市死因統計結果
2 Boullier A, Bird DA, Chang MK, Dennis EA, Friedman P, Gillotre-Taylor K, Horkko S, Palinski W, Quehenberger O, Shaw P, Steinberg D, Terpstra V, Witztum JL.Scavenger receptors, oxidized LDL, and atherosclerosis. Ann N Y Acad Sci. 2001 Dec;947:214-22;
3 Ross, R. (1999). Atherosclerosis—an inflammatory disease. N. Eng. J. Med 340, 115–126.
4 Navab M, Berliner JA, Watson AD, Hama SY, Territo MC, Lusis AJ, Shih DM, Van Lenten BJ, Frank JS, Demer LL, Edwards PA, Fogelman AM. The Yin and Yang of oxidation in the development of the fatty streak. Arterioscler Thromb Vasc Biol. 1996 Jul;16(7):831-42.
5 Gould AL, Rossouw JE, Santanello NC, Heyse JF, Furberg CD.Cholesterol reduction yields clinical benefit: impact of statin trials. Circulation. 1998 Mar 17;97(10):946-52.
6 Brown MS, Goldstein JL. The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell. 1997 May 2;89(3):331-40.
7 Schwenke DC, Carew TE. Initiation of atherosclerotic lesions in cholesterol-fed rabbits. I. Focal increases in arterial LDL concentration precede development of fatty streak lesions. Arteriosclerosis. 1989 Nov-Dec;9(6):895-907.
8 Williams, K.J., and Tabas, I. The response-to-retention hypothesis of atherogenesis reinforced. Curr Opin Lipidol. 1998 Oct;9(5):471-4.
9 Cybulsky MI, Gimbrone MA Jr. Endothelial expression of a mononuclear leukocyte adhesion molecule during atherogenesis. Science. 1991 Feb 15;251(4995):788-91.
10 Collins RG, Velji R, Guevara NV, Hicks MJ, Chan L, Beaudet AL.P-Selectin or intercellular adhesion molecule (ICAM)-1 deficiency substantially protects against atherosclerosis in apolipoprotein E-deficient mice. J Exp Med. 2000 Jan 3;191(1):189-94
11 Dong ZM, Chapman SM, Brown AA, Frenette PS, Hynes RO, Wagner DD. The combined role of P- and E-selectins in atherosclerosis. J Clin Invest. 1998 Jul 1;102(1):145-52.
12 Paulsson G, Zhou X, Tornquist E, Hansson GK. Oligoclonal T cell expansions in atherosclerotic lesions of apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol. 2000 Jan;20(1):10-7.
13 Lee, R.T., and Libby, P. The unstable atheroma. Arterioscler Thromb Vasc Biol. 1997 Oct;17(10):1859-67.
14 Lozier, J., Takahashi, N. and Putnam, F. W. (1984) Complete amino acid sequence of human plasma β2-glycoprotein I. Proc. Natl. Acad. Sci. U.S.A. 81, 3640–3364
15 Polz, E. and Kostner, G. M. (1979) The binding of β2-glycoprotein I to human serum lipoproteins: Distribution among density fractions. FEBS Lett. 102, 183–186
16 Steinkasserer A, Estaller C, Weiss EH, Sim RB, Day AJ. Complete nucleotide and deduced amino acid sequence of human beta 2-glycoprotein I. Biochem J. 1991;277:387
17 Kato H, Enjyoji K. Amino acid sequence and location of the disulfide bonds in bovine beta 2 glycoprotein I: the presence of five Sushi domains. Biochemistry. 1991;30:11687
18 Bendixen E, Halkier T, Magnusson S, Sottrup-Jensen L, Kristensen T. Complete primary structure of bovine beta 2-glycoprotein I: localization of the disulfide bridges. Biochemistry. 1992;31:3611
19 Klickstein, L. B., Wong, W. W., Smith, J. A.,Weis, J. H., Wilson, J. G. and Fearon, D. T. (1987) Human C3b/C4b receptor (CR1) demonstration of long homologous repeating domains that are composed of the short consensus repeats characteristic of C3/C4 binding proteins. J. Exp. Med. 165, 1095–1112
20 Kristensen T, D''Eustachio P, Ogata RT, Chung LP, Reid KB, Tack BF. The superfamily of C3b/C4b-binding proteins. Fed Proc. 1987;46:2463
21 Aoyama Y, Chan YL, Wool IG. The primary structure of rat beta 2-glycoprotein I. Nucleic Acids Res. 1989;17:6401
22 Nonaka M, Matsuda Y, Shiroishi T, Moriwaki K, Nonaka M, Natsuume-Sakai S. Molecular cloning of mouse beta 2-glycoprotein I and mapping of the gene to chromosome 11. Genomics. 1992; 13:1082
23 Sellar GC, Keane J, Mehdi H, Peeples ME, Browne N, Whitehead AS. Characterization and acute phase modulation of canine apolipoprotein H (beta 2-glycoprotein I). Biochem Biophys Res Commun. 1993;191:1288
24 Steinkasserer A, Barlow PN, Willis AC, Kertesz Z, Campbell ID, Sim RB, Norman DG. Activity, disulphide mapping and structural modelling of the fifth domain of human beta 2-glycoprotein I. FEBS Lett. 1992;313:193
25 Schwarzenbacher, R., Zeth, K., Diederichs, K., Gries, A., Kostner, G. M., Laggner, P. and Prassl, R. (1999) Crystal structure of human β2-glycoprotein I: implications for phospholipid binding and the antiphospholipid syndrome. EMBO J. 18, 6228−6239
26 Inanc M, Radway-Bright EL, Isenberg DA. Beta 2-Glycoprotein I and anti-beta 2-glycoprotein I antibodies: where are we now? Br J Rheumatol. 1997;36:1247
27 Mehdi H, Yang X, Peeples ME.An altered form of apolipoprotein H binds hepatitis B virus surface antigen most efficiently. Virology. 1996 Mar 1;217(1):58-66.
28 Reid KB, Day AJ. Structure-function relationships of the complement components. Immunol Today. 1989;10:177
29 Nakaya Y, Schaefer EJ, Brewer HB Jr. Activation of human post heparin lipoprotein lipase by apolipoprotein H (beta 2-glycoprotein I). Biochem Biophys Res Commun. 1980;95:1168
30 McNally T, Crook M, Mackie IJ, Isenberg DA, Machin SJ. Beta 2 glycoprotein-I antigen is increased in primary hyperlipidaemia. Br J Haematol. 1994;88:424
31 Henry ML, Everson B, Ratnoff OD. Inhibition of the activation of Hageman factor (factor XII) by beta 2-glycoprotein I. J Lab Clin Med. 1988;111:519
32 Nimpf J, Bevers EM, Bomans PH, Till U, Wurm H, Kostner GM, Zwaal RF. Prothrombinase activity of human platelets is inhibited by beta 2-glycoprotein-I. Biochim Biophys Acta. 1986;884:142
33 Mori T, Takeya H, Nishioka J, Gabazza EC, Suzuki K. Beta 2-Glycoprotein I modulates the anticoagulant activity of activated protein C on the phospholipid surface. Thromb Haemost. 1996;75:49
34 Sheng, Y., Reddel, S. W., Herzog, H., Wang, Y. X., Brighton, T., France, M. P., Robertson, S. A. and Krilis, S. A. (2001) Impaired thrombin generation in β2-glycoprotein I null mice. J. Biol. Chem. 276, 13817−13821
35 George J, Blank M, Gilburd B, Hojnik M, Shenkman B, Tamarin I, Varon D, Matsuura E, Koike T, Shoenfeld Y. Immunologic characterization and functional properties of murine antibodies raised against deleted mutants of human beta 2-glycoprotein I. Int Immunol. 1997;9:913
36 Simantov R, LaSala JM, Lo SK, Gharavi AE, Sammaritano LR, Salmon JE, Silverstein RL. Activation of cultured vascular endothelial cells by antiphospholipid antibodies. J Clin Invest. 1995;96:2211
37 Galli M, Comfurius P, Barbui T, Zwaal RF, Bevers EM. Anticoagulant activity of beta 2-glycoprotein I is potentiated by a distinct subgroup of anticardiolipin antibodies. Thromb Haemost. 1992;68:297
38 Matsuda J, Saitoh N, Tsukamoto M, Gohchi K, Asami K, Hashimoto M. Measurement of beta 2-glycoprotein I (apolipoprotein H)-independent anticardiolipin antibody in human immunodeficiency virus-1-positive and -negative hemophiliacs. Am J Hematol. 1993;43:146
39 Horkko S, Miller E, Branch DW, Palinski W, Witztum JL. The epitopes for some antiphospholipid antibodies are adducts of oxidized phospholipid and beta2 glycoprotein 1 (and other proteins). Proc Natl Acad Sci U S A. 1997;94:10356
40 Hasunuma Y, Matsuura E, Makita Z, Katahira T, Nishi S, Koike T. Involvement of beta 2-glycoprotein I and anticardiolipin antibodies in oxidatively modified low-density lipoprotein uptake by macrophages. Clin Exp Immunol. 1997;107:569
41 Kobayashi K, Matsuura E, Liu Q, Furukawa J, Kaihara K, Inagaki J, Atsumi T, Sakairi N, Yasuda T, Voelker DR, Koike T.A specific ligand for beta(2)-glycoprotein I mediates autoantibody-dependent uptake of oxidized low density lipoprotein by macrophages. J. Lipid Res. 2001 42 697-709.
42 George J, Afek A, Gilburd B, Blank M, Levy Y, Aron-Maor A, Levkovitz H, Shaish A, Goldberg I, Kopolovic J, Harats D, Shoenfeld Y. Induction of early atherosclerosis in LDL-receptor-deficient mice immunized with beta2- glycoprotein I. Circulation. 1998;98:1108
43 Glass CK, Witztum JL. Atherosclerosis: The road ahead. Cell. 2001;104:503
44 Janero DR. Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free Radic Biol Med. 1990;9:515
45 Gieseg SP, Esterbauer H. Low density lipoprotein is saturable by pro- oxidant copper. FEBS Lett. 1994;343:188
46 Lin KY, Pan JP, Yang DL, Huang KT, Chang MS, Ding PY, Chiang AN. Evidence for inhibition of low density lipoprotein oxidation and cholesterol accumulation by apolipoprotein H (beta2-glycoprotein I). Life Sci. 2001;69:707
47 Berliner JA, Heinecke JW. The role of oxidized lipoproteins in atherogenesis. Free Radic Biol Med. 1996;20:707
48 Napoli C, de Nigris F, Palinski W. Multiple role of reactive oxygen species in the arterial wall. J Cell Biochem. 2001;82(4):674-82.
49 Griendling KK, Sorescu D, Lassegue B, Ushio-Fukai M. Modulation of protein kinase activity and gene expression by reactive oxygen species and their role in vascular physiology and pathophysiology. Arterioscler Thromb Vasc Biol. 2000 ;20:2175
50 Haagerup, A., Kristensen, T. and Kruse, T. (1991) Polymorphism and genetic mapping of the gene encoding human β2-glycoprotein I to chromosome 17. Cytogenet. Cell. Genet. 58, 2005
51 Steinkasserer, A., Cockburn, D. J., Black, D. M., Boyd, Y., Solomon, E. and Sim, R. B. (1992) Assignment of apolipoprotein H (APOH: β2-glycoprotein I) to human chromosome 17q23-qter; determination of the major expression site. Cytogenet. Cell. Genet. 60, 31–33
52 Siebert PD, Chenchik A, Kellogg DE, Lukyanov KA, Lukyanov SA. An improved PCR method for walking in uncloned genomic DNA. Nucleic Acids Res. 1995;23:1087
53 Heinemeyer T, Wingender E, Reuter I, Hermjakob H, Kel AE, Kel OV, Ignatieva EV, Ananko EA, Podkolodnaya OA, Kolpakov FA, Podkolodny NL, Kolchanov NA. Databases on Transcriptional Regulation: TRANSFAC, TRRD, and COMPEL.Nucleic Acids Res. 1998;26:364
54 Berger J, Moller DE. The mechanisms of action of PPARs. Annu Rev Med. 2002;53:409-35.
55 Berger J, Bailey P, Biswas C, Cullinan CA, Doebber TW, Hayes NS, Saperstein R, Smith RG, Leibowitz MD. Thiazolidinediones produce a conformational change in peroxisomal proliferator-activated receptor-gamma: binding and activation correlate with antidiabetic actions in db/db mice. Endocrinology. 1996 Oct;137(10):4189-95.
56 Frick MH, Elo O, Haapa K, Heinonen OP, Heinsalmi P, Helo P, Huttunen JK, Kaitaniemi P, Koskinen P, Manninen V, et al.Helsinki Heart Study: primary-prevention trial with gemfibrozil in middle-aged men with dyslipidemia. Safety of treatment, changes in risk factors, and incidence of coronary heart disease. N Engl J Med. 1987 Nov 12;317(20):1237-45.
57 Rubins HB, Robins SJ, Collins D, Fye CL, Anderson JW, Elam MB, Faas FH, Linares E, Schaefer EJ, Schectman G, Wilt TJ, Wittes J.Gemfibrozil for the secondary prevention of coronary heart disease in men with low levels of high-density lipoprotein cholesterol. Veterans Affairs High-Density Lipoprotein Cholesterol Intervention Trial Study Group. N Engl J Med. 1999 Aug 5;341(6):410-8.
58 Laudet V, Hanni C, Coll J, Catzeflis F, Stehelin D.. 1992. Evolution of the nuclear receptor gene superfamily. EMBO J. 11:1003–13
59 Xu HE, Lambert MH, Montana VG, Parks DJ, Blanchard SG, Brown PJ, Sternbach DD, Lehmann JM, Wisely GB, Willson TM, Kliewer SA, Milburn MV. Molecular recognition of fatty acids by peroxisome proliferator-activated receptors. Mol Cell. 1999 Mar;3(3):397-403.
60 Nolte RT, Wisely GB, Westin S, Cobb JE, Lambert MH, Kurokawa R, Rosenfeld MG, Willson TM, Glass CK, Milburn MV. 1998. Ligand binding and co-activator assembly of the peroxisome proliferatoractivated receptor-gamma. Nature 395: 137–43
61 Werman A, Hollenberg A, Solanes G, Bjorbaek C, Vidal-Puig AJ, Flier JS. Ligand-independent activation domain in the N terminus of peroxisome proliferator-activated receptor gamma (PPARgamma). Differential activity of PPARgamma1 and -2 isoforms and influence of insulin. J Biol Chem. 1997 Aug 8;272(32):20230-5.
62 Miyata KS, McCaw SE, Marcus SL, Rachubinski RA, Capone JP. The peroxisome proliferator-activated receptor interacts with the retinoid X receptor in vivo. Gene. 1994 Oct 21;148(2):327-30.
63 Mangelsdorf DJ, Borgmeyer U, Heyman RA, Zhou JY, Ong ES, Oro AE, Kakizuka A, Evans RM. Characterization of three RXR genes that mediate the action of 9-cis retinoic acid. Genes Dev. 1992 Mar;6(3):329-44.
64 IJpenberg A, Jeannin E, Wahli W, Desvergne B. Polarity and specific sequence requirements of peroxisome proliferator-activated receptor (PPAR)/retinoid X receptor heterodimer binding to DNA. A functional analysis of the malic enzyme gene PPAR response element. J Biol Chem. 1997 Aug 8;272(32):20108-17.
65 Torchia J, Rose DW, Inostroza J, Kamei Y, Westin S, Glass CK, Rosenfeld MG. The transcriptional co-activator p/CIP binds CBP and mediates nuclear-receptor function. Nature. 1997 Jun 12;387(6634):677-84.
66 Zhu Y, Qi C, Calandra C, Rao MS, Reddy JK. Cloning and identification of mouse steroid receptor coactivator-1 (mSRC-1), as a coactivator of peroxisome proliferator-activated receptor gamma. Gene Expr. 1996;6(3):185-95.
67 Zhu Y, Qi C, Jain S, Rao MS, Reddy JK.Isolation and characterization of PBP, a protein that interacts with peroxisome proliferator-activated receptor. J Biol Chem. 1997 Oct 10;272(41):25500-6.
68 Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell. 1998 Mar 20;92(6):829-39.
69 Miyata KS, McCaw SE, Meertens LM, Patel HV, Rachubinski RA, Capone JP. Receptor-interacting protein 140 interacts with and inhibits transactivation by, peroxisome proliferator-activated receptor alpha and liver-X-receptor alpha. Mol Cell Endocrinol. 1998 Nov 25;146(1-2):69-76.
70 Heinlein CA, Ting HJ, Yeh S, Chang C. Identification of ARA70 as a ligand-enhanced coactivator for the peroxisome proliferator-activated receptor gamma. J Biol Chem. 1999 Jun 4;274(23):16147-52.
71 Camp HS, Tafuri SR.Regulation of peroxisome proliferator-activated receptor gamma activity by mitogen-activated protein kinase. J Biol Chem. 1997 Apr 18;272(16):10811-6.
72. Lazennec, G., Canaple, L., Saugy, D., and Wahli, W. (2000). Activation of peroxisome proliferator-activated receptors (PPARs) by their ligands and protein kinase A activators. Mol. Endocrinol. 14, 1962-1975.
73 Sher T, Yi HF, McBride OW, Gonzalez FJ. cDNA cloning, chromosomal mapping, and functional characterization of the human peroxisome proliferator activated receptor. Biochemistry. 1993 Jun 1;32(21):5598-604.
74 Yoshikawa T, Brkanac Z, Dupont BR, Xing GQ, Leach RJ, Detera-Wadleigh SD. Assignment of the human nuclear hormone receptor, NUC1 (PPARD), to chromosome 6p21.1-p21.2. Genomics. 1996 Aug 1;35(3):637-8.
75 Greene ME, Blumberg B, McBride OW, Yi HF, Kronquist K, Kwan K, Hsieh L, Greene G, Nimer SD. Isolation of the human peroxisome proliferator activated receptor gamma cDNA: expression in hematopoietic cells and chromosomal mapping. Gene Expr. 1995;4(4-5):281-99.
76 Braissant O, Foufelle F, Scotto C, Dauca M, Wahli W. Differential expression of peroxisome proliferator-activated receptors (PPARs): tissue distribution of PPAR-alpha, -beta, and -gamma in the adult rat. Endocrinology. 1996 Jan;137(1):354-66.
77 Auboeuf D, Rieusset J, Fajas L, Vallier P, Frering V, Riou JP, Staels B, Auwerx J, Laville M, Vidal H. Tissue distribution and quantification of the expression of mRNAs of peroxisome proliferator-activated receptors and liver X receptor-alpha in humans: no alteration in adipose tissue of obese and NIDDM patients. Diabetes. 1997 Aug;46(8):1319-27.
78 Martin G, Schoonjans K, Lefebvre AM, Staels B, Auwerx J. Coordinate regulation of the expression of the fatty acid transport protein and acyl-CoA synthetase genes by PPARalpha and PPARgamma activators. J Biol Chem. 1997 Nov 7;272(45):28210-7.
79 Brady PS, Marine KA, Brady LJ, Ramsay RR. Co-ordinate induction of hepatic mitochondrial and peroxisomal carnitine acyltransferase synthesis by diet and drugs. Biochem J. 1989 May 15;260(1):93-100.
80 Marcus SL, Miyata KS, Zhang B, Subramani S, Rachubinski RA, Capone JP. Diverse peroxisome proliferator-activated receptors bind to the peroxisome proliferator-responsive elements of the rat hydratase/dehydrogenase and fatty acyl-CoA oxidase genes but differentially induce expression. Proc Natl Acad Sci U S A. 1993 Jun 15;90(12):5723-7.
81 Staels B, Dallongeville J, Auwerx J, Schoonjans K, Leitersdorf E, Fruchart JC. Mechanism of action of fibrates on lipid and lipoprotein metabolism. Circulation. 1998 Nov 10;98(19):2088-93.
82 Elbrecht A, Chen Y, Cullinan CA, Hayes N, Leibowitz M, Moller DE, Berger J. Molecular cloning, expression and characterization of human peroxisome proliferator activated receptors gamma 1 and gamma 2. Biochem Biophys Res Commun. 1996 Jul 16;224(2):431-7.
83 Fajas L, Auboeuf D, Raspe E, Schoonjans K, Lefebvre AM, Saladin R, Najib J, Laville M, Fruchart JC, Deeb S, Vidal-Puig A, Flier J, Briggs MR, Staels B, Vidal H, Auwerx J. The organization, promoter analysis, and expression of the human PPARgamma gene. J Biol Chem. 1997 Jul 25;272(30):18779-89.
84 Tontonoz P, Hu E, Spiegelman BM. Stimulation of adipogenesis in fibroblasts by PPAR gamma 2, a lipid-activated transcription factor. Cell. 1994 Dec 30;79(7):1147-56.
85 Masugi J, Tamori Y, Kasuga M. Inhibition of adipogenesis by a COOH-terminally truncated mutant of PPARgamma2 in 3T3-L1 cells. Biochem Biophys Res Commun. 1999 Oct 14;264(1):93-9.
86 Gurnell M, Wentworth JM, Agostini M, Adams M, Collingwood TN, Provenzano C, Browne PO, Rajanayagam O, Burris TP, Schwabe JW, Lazar MA, Chatterjee VK. A dominant-negative peroxisome proliferator-activated receptor gamma (PPARgamma) mutant is a constitutive repressor and inhibits PPARgamma-mediated adipogenesis. J Biol Chem. 2000 Feb 25;275(8):5754-9
87 Kelly LJ, Vicario PP, Thompson GM, Candelore MR, Doebber TW, Ventre J, Wu MS, Meurer R, Forrest MJ, Conner MW, Cascieri MA, Moller DE. Peroxisome proliferator-activated receptors gamma and alpha mediate in vivo regulation of uncoupling protein (UCP-1, UCP-2, UCP-3) gene expression. Endocrinology. 1998 Dec;139(12):4920-7.
88 Amri EZ, Bonino F, Ailhaud G, Abumrad NA, Grimaldi PA. Cloning of a protein that mediates transcriptional effects of fatty acids in preadipocytes. Homology to peroxisome proliferator-activated receptors.
J Biol Chem. 1995 Feb 3;270(5):2367-71.
89 Kliewer SA, Lenhard JM, Willson TM, Patel I, Morris DC, Lehmann JM. A prostaglandin J2 metabolite binds peroxisome proliferator-activated receptor gamma and promotes adipocyte differentiation. Cell. 1995 Dec 1;83(5):813-9.
90 Peters JM, Lee SS, Li W, Ward JM, Gavrilova O, Everett C, Reitman ML, Hudson LD, Gonzalez FJ. Growth, adipose, brain, and skin alterations resulting from targeted disruption of the mouse peroxisome proliferator-activated receptor beta(delta). Mol Cell Biol. 2000 Jul;20(14):5119-28.
91. Bishop-Bailey D. (2000).Peroxisome proliferator-activated receptors in the cardiovascular system. Br J Pharmacol. 129, 823-34.
92. Delerive P, De Bosscher K, Besnard S, Vanden Berghe W, Peters JM, Gonzalez FJ, Fruchart JC, Tedgui A, Haegeman G, Staels B. (1999). Peroxisome proliferator-activated receptor alpha negatively regulates the vascular inflammatory gene response by negative cross-talk with transcription factors NF-kappaB and AP-1. J Biol Chem. 274, 32048-54.
93 Marx N, Kehrle B, Kohlhammer K, Grub M, Koenig W, Hombach V, Libby P, Plutzky J. PPAR activators as antiinflammatory mediators in human T lymphocytes: implications for atherosclerosis and transplantation-associated arteriosclerosis. Circ Res. 2002 Apr 5;90(6):703-10.
94. Chinetti G, Griglio S, Antonucci M, Torra IP, Delerive P, Majd Z, Fruchart JC, Chapman J, Najib J, Staels B. (1998). Activation of proliferator-activated receptors alpha and gamma induces apoptosis of human monocyte-derived macrophages. J Biol Chem. 273, 25573-80.
95. Marx, N., Schonbeck, U., Lazar, M.A., Libby, P., and Plutzky, J. (1998). Peroxisome proliferator-activated receptor gamma activators inhibit gene expression and migration in human vascular smooth muscle cells. Circ. Res. 83, 1097-1103.
96 Han KH, Chang MK, Boullier A, Green SR, Li A, Glass CK, Quehenberger O.Oxidized LDL reduces monocyte CCR2 expression through pathways involving peroxisome proliferator-activated receptor gamma. J Clin Invest. 2000 Sep;106(6):793-802.
97. Ricote, M., Li, A.C., Willson, T.M., Kelly, C.J., and Glass, C.K. (1998). The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation. Nature 391, 79-82.
98 Marx N, Mach F, Sauty A, Leung JH, Sarafi MN, Ransohoff RM, Libby P, Plutzky J, Luster AD.Peroxisome proliferator-activated receptor-gamma activators inhibit IFN-gamma-induced expression of the T cell-active CXC chemokines IP-10, Mig, and I-TAC in human endothelial cells. J Immunol. 2000 Jun 15;164(12):6503-8.
99 Marx N, Sukhova GK, Collins T, Libby P, Plutzky J. PPARalpha activators inhibit cytokine-induced vascular cell adhesion molecule-1 expression in human endothelial cells. Circulation. 1999 Jun 22;99(24):3125-31.
100 Xu X, Otsuki M, Saito H, Sumitani S, Yamamoto H, Asanuma N, Kouhara H, Kasayama S. PPARalpha and GR differentially down-regulate the expression of nuclear factor-kappaB-responsive genes in vascular endothelial cells. Endocrinology. 2001 Aug;142(8):3332-9.
101 Staels B, Auwerx J. Regulation of apo A-I gene expression by fibrates. Atherosclerosis. 1998 Apr;137 Suppl:S19-23.
102 Chawla A, Boisvert WA, Lee CH, Laffitte BA, Barak Y, Joseph SB, Liao D, Nagy L, Edwards PA, Curtiss LK, Evans RM, Tontonoz P. A PPAR gamma-LXR-ABCA1 pathway in macrophages is involved in cholesterol efflux and atherogenesis. Mol Cell. 2001 Jan;7(1):161-71.
103 Akiyama TE, Sakai S, Lambert G, Nicol CJ, Matsusue K, Pimprale S, Lee YH, Ricote M, Glass CK, Brewer HB Jr, Gonzalez FJ. Conditional disruption of the peroxisome proliferator-activated receptor gamma gene in mice results in lowered expression of ABCA1, ABCG1, and apoE in macrophages and reduced cholesterol efflux. Mol Cell Biol. 2002 Apr;22(8):2607-19.
104 Torra IP, Chinetti G, Duval C, Fruchart JC, Staels B. Peroxisome proliferator-activated receptors: from transcriptional control to clinical practice. Curr Opin Lipidol. 2001 Jun;12(3):245-54.
105. Oliver WR Jr, Shenk JL, Snaith MR, Russell CS, Plunket KD, Bodkin NL, Lewis MC, Winegar DA, Sznaidman ML, Lambert MH, Xu HE, Sternbach DD, Kliewer SA, Hansen BC, Willson TM. (2001). A selective peroxisome proliferator-activated receptor delta agonist promotes reverse cholesterol transport. Proc Natl Acad Sci U S A. 98, 5306-11.
106 Vosper H, Patel L, Graham TL, Khoudoli GA, Hill A, Macphee CH, Pinto I, Smith SA, Suckling KE, Wolf CR, Palmer CN.The peroxisome proliferator-activated receptor delta promotes lipid accumulation in human macrophages. J Biol Chem. 2001 Nov 23;276(47):44258-65. Epub 2001 Sep 13.
107 Herold PM, Kinsella JE. Fish oil consumption and decreased risk of cardiovascular disease: a comparison of findings from animal and human feeding trials. Am J Clin Nutr. 1986 Apr;43(4):566-98.
108 Nagy L, Tontonoz P, Alvarez JG, Chen H, Evans RM. Oxidized LDL regulates macrophage gene expression through ligand activation of PPARgamma. Cell. 1998 Apr 17;93(2):229-40.
109 Davies SS, Pontsler AV, Marathe GK, Harrison KA, Murphy RC, Hinshaw JC, Prestwich GD, Hilaire AS, Prescott SM, Zimmerman GA, McIntyre TM. Oxidized alkyl phospholipids are specific, high affinity peroxisome proliferator-activated receptor gamma ligands and agonists. J Biol Chem. 2001 May 11;276(19):16015-23.
110 Sugihara N, Tsuruta Y, Date Y, Furuno K, Kohashi K. High peroxidative susceptibility of fish oil polyunsaturated fatty acid in cultured rat hepatocytes. Toxicol Appl Pharmacol. 1994 May;126(1):124-8.
111 Reaven PD, Witztum JL. Oxidized low density lipoproteins in atherogenesis: role of dietary modification. Annu Rev Nutr. 1996;16:51-71.
112 Maziere C, Dantin F, Conte MA, Degonville J, Ali D, Dubois F, Maziere JC.Polyunsaturated fatty acid enrichment enhances endothelial cell-induced low-density-lipoprotein peroxidation. Biochem J. 1998 Nov 15;336 ( Pt 1):57-62.
113 Suzukawa M, Abbey M, Howe PR, Nestel PJ.Effects of fish oil fatty acids on low density lipoprotein size, oxidizability, and uptake by macrophages. J Lipid Res. 1995 Mar;36(3):473-84.
114 Sambrook, J., Fritsch, E. F. and Maniatis, E. F. (1989) Molecular Cloning: A Laboratory Manual, 2nd Ed., Cold Spring Harbor Laboratory Press. Cold Spring Harbor, NY.
115 Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970;227:680
116 Alvarez L, Sanchez-Gongora E, Mingorance J, Pajares MA, Mato JM. Characterization of rat liver-specific methionine adenosyltransferase gene promoter. Role of distal upstream cis-acting elements in the regulation of the transcriptional activity. J Biol Chem. 1997 Sep 5;272(36):22875-83.
117 You, L. R., Chen, C. M., Yeh, T. S., Tsai, T. Y., Mai, R. T., Lin, C. H. and Lee, Y. H. (1999) Hepatitis C virus core protein interacts with cellular putative RNA helicase. J. Virol. 73, 2841–2853
118 Suzukawa M, Abbey M, Clifton P, Nestel PJ. Enhanced capacity of n-3 fatty acid-enriched macrophages to oxidize low density lipoprotein mechanisms and effects of antioxidant vitamins. Atherosclerosis. 1996 Aug 2;124(2):157-69.
119 Vu-Dac N, Chopin-Delannoy S, Gervois P, Bonnelye E, Martin G, Fruchart JC, Laudet V, Staels B. The nuclear receptors peroxisome proliferator-activated receptor alpha and Rev-erbalpha mediate the species-specific regulation of apolipoprotein A-I expression by fibrates. J Biol Chem. 1998 Oct 2;273(40):25713-20.
120 Fajas L, Schoonjans K, Gelman L, Kim JB, Najib J, Martin G, Fruchart JC, Briggs M, Spiegelman BM, Auwerx J. Regulation of peroxisome proliferator-activated receptor gamma expression by adipocyte differentiation and determination factor 1/sterol regulatory element binding protein 1: implications for adipocyte differentiation and metabolism. Mol Cell Biol. 1999 Aug;19(8):5495-503.
121 Juge-Aubry C, Pernin A, Favez T, Burger AG, Wahli W, Meier CA, Desvergne B. DNA binding properties of peroxisome proliferator-activated receptor subtypes on various natural peroxisome proliferator response elements. Importance of the 5''-flanking region. J Biol Chem. 1997 Oct 3;272(40):25252-9.
122 Okkels H, Rasmussen TE, Sanghera DK, Kamboh MI, Kristensen T. Structure of the human beta2-glycoprotein I (apolipoprotein H) gene. Eur J Biochem. 1999;259:435
123 Reese, M. G. (2001) Application of a time-delay neural network to promoter annotation in the Drosophila melanogaster genome. Comput. Chem. 26, 51–56
124 Knudsen, S. (1999) Promoter 2.0: for the recognition of PolII promoter sequences. Bioinformatics 15, 356–361
125 Mehdi, H., Manzi, S., Desai, P., Chen, Q., Nestlerode, C., Bontempo, F., Strom, S. C., Zarnegar, R. and Kamboh, M. I. (2003) A functional polymorphism at the transcriptional initiation site in β2-glycoprotein I (apolipoprotein H) associated with reduced gene expression and lower plasma levels of β2-glycoprotein I. Eur. J. Biochem. 270, 230–238
126 Baumhueter, S., Courtois, G. and Crabtree, G. R. (1988) A variant nuclear protein in dedifferentiated hepatoma cells binds to the same functional sequences in the β-fibrinogen gene promoter as HNF-1. EMBO J. 7, 2485–2493
127 Mendel, D. B., Hansen, L. P., Graves, M. K., Conley, P. B. and Crabtree, G. R. (1991) HNF-1α and HNF-1β (vHNF-1) share dimerization and homeo domains, but not activation domains, and form heterodimers in vitro. Genes Dev. 5, 1042–1056
128 Song, Y. H., Ray, K., Liebhaber, S. A. and Cooke, N. E. (1998) Vitamin D-binding protein gene transcription is regulated by the relative abundance of hepatocyte nuclear factors 1α and 1β. J. Biol. Chem. 273, 28408–28418
129 王學孝,姜安娜. (2000) 脂蛋白元H之結構與功能研究. 碩士論文
130 Eyries M, Agrapart M, Alonso A, Soubrier F. Phorbol ester induction of angiotensin-converting enzyme transcription is mediated by Egr-1 and AP-1 in human endothelial cells via ERK1/2 pathway. Circ Res. 2002 Nov 15;91(10):899-906.
131 Nichols M, Weih F, Schmid W, DeVack C, Kowenz-Leutz E, Luckow B, Boshart M, Schutz G. Phosphorylation of CREB affects its binding to high and low affinity sites: implications for cAMP induced gene transcription. EMBO J. 1992 Sep;11(9):3337-46.
132 Stadtman ER, Oliver CN. Metal-catalyzed oxidation of proteins: physiological consequences. J Biol Chem. 1991;266:2005
133 Breimer L. Repair of DNA damage induced by reactive oxygen species. Free Radic Res Commun. 1991;14:159
134 Halliwell B, Gutteridge JMC. Lipid peroxidation, oxygen radicals, cell damage, and antioxidant therapy. Lancet. 1984;1:1396
135 Halliwell B. Free radicals, antioxidants, and human disease: curiosity, cause, or consequence? Lancet. 1994;344:721
136 Knight JA. Reactive oxygen species and the neurodegenerative disorders. Ann Clin Lab Sci. 1997;27:11
137 Westhuyzen J. The oxidation hypoghesis of atherosclerosis:an update. Ann Clin Lav Sci. 1997;27:1
138 Steinberg D. Role of oxidized LDL and antioxidants in atherosclerosis. Adv Exp Med Biol. 1995;369:39
139 Niki E, Noguchi N. Effects of antioxidants against atherosclerosis. Mol Cell Biochem. 2002 May-Jun;234-235(1-2):19-25.
140 Miller GJ, Miller NE. Plasma high density lipoprotein concentration and development of ischemic heart disease. Lancet. 1975;1:16
141 Gordon T, Castelli WP, Hjortland MC, Kannel WB, Dawber TR. High-density lipoprotein as a protective factor against coronary heart disease. Am J Med. 1977;62:707
142 Brewer HB Jr, Santamarina-Fojo S. Clinical significance of high-density lipoproteins and the development of atherosclerosis: focus on the role of the adenosine triphosphate-binding cassette protein A1 transporter. Am J Cardiol. 2003 Aug 21;92(4B):10K-16K.
143 Pieters MN, Schouten D, Van Berkel TJC. In vitro and in vivo evidence for the role of HDL in reverse cholesterol transport. Biochim Biophys Acta. 1994;1225:125
144 Fielding CJ, Fielding PE. Molecular physiology of reverse cholesterol transport. J Lipid Res. 1995;36:211
145 Ohta T, Takata K, Horiuchi S, Morino Y, Matsuda I. Protective effect of lipoproteins containing apoprotein A-I on Cu2+-catalyzed oxidation of human low density lipoprotein. FEBS let. 1989;257:435
146 Kunitake ST, Jarvis MR, Hamilton RL, Kane JP. Binding of transition metals by apolipoprotein A-I-containing plasma lipoproteins: Inhibition of oxidation of low density lipoproteins. Proc Natl Acad Sci USA. 1992;89:6993
147 Shih DM, Xia YR, Wang XP, Miller E, Castellani LW, Subbanagounder G, Cheroutre H, Faull KF, Berliner JA, Witztum JL, Lusis AJ. Combined serum paraoxonase knockout/apolipoprotein E knockout mice exhibit increased lipoprotein oxidation and atherosclerosis. J Biol Chem. 2000 Jun 9;275(23):17527-35.
148 Karathanasis SK, Ferris E, Haddad IA. DNA inversion within the apolipoproteins AI/CIII/AIV-encoding gene cluster of certain patients with premature atherosclerosis. Proc Natl Acad Sci U S A. 1987 Oct;84(20):7198-202.
149 Myklebost O, Rogne S.A physical map of the apolipoprotein gene cluster on human chromosome 19. Hum Genet. 1988 Mar;78(3):244-7.
150 Cereghini, S., Raymondjean, M., Carranca, A. G., Herbomel, P. and Yaniv, M. (1987) Factors involved in control of tissue-specific expression of albumin gene. Cell 50, 627–638
151 Bois-Joyeux, B. and Danan, J. L. (1994) Members of the CAAT/enhancer-binding protein, hepatocyte nuclear factor-1 and nuclear factor-1 families can differentially modulate the activities of the rat α-fetoprotein promoter and enhancer. Biochem. J. 301, 49−55
152 Faust, D. M., Catherin, A. M., Barbaux, S., Belkadi, L., Imaizumi-Scherrer, T. and Weiss, M. C. (1996) The activity of the highly inducible mouse phenylalanine hydroxylase gene promoter is dependent upon a tissue-specific, hormone-inducible enhancer. Mol. Cell. Biol. 16, 3125−3137
153 Xanthopoulos KG, Prezioso VR, Chen WS, Sladek FM, Cortese R, Darnell JE Jr. The different tissue transcription patterns of genes for HNF-1, C/EBP, HNF-3, and HNF-4, protein factors that govern liver-specific transcription. Proc Natl Acad Sci U S A. 1991 May 1;88(9):3807-11.
154 Dunn CA, Medstrand P, Mager DL.An endogenous retroviral long terminal repeat is the dominant promoter for human beta1,3-galactosyltransferase 5 in the colon. Proc Natl Acad Sci U S A. 2003 Oct 28;100(22):12841-6.
155 Lewis, B. A., Kim, T. K. and Orkin, S. H. (2000) A downstream element in the human β-globin promoter: Evidence of extended sequence-specific transcription factor IID contacts. Proc. Natl. Acad. Sci. U.S.A. 97, 7172−7177
156 Nicosia A, Tafi R, Monaci P. Trans-dominant inhibition of transcription activator LFB1. Nucleic Acids Res. 1992 Oct 25;20(20):5321-8.
157 Soutoglou, E., Papafotiou, G., Katrakili, N., Talianidis, I. (2000) Transcriptional activation by hepatocyte nuclear factor-1 requires synergism between multiple coactivator proteins. J. Biol. Chem. 275, 12515–12520
158 Knutson, A., Castano, E., Oelgeschlager, T., Roeder, R. G. and Westin, G. (2000) Downstream promoter sequences facilitate the formation of a specific transcription factor IID-promoter complex topology required for efficient transcription from the megalin/low density lipoprotein receptor-related protein 2 promoter. J. Biol. Chem. 275, 14190–14197
159 Wu, C. H., Madabusi, L., Nishioka, H., Emanuel, P., Sypes, M., Arkhipova, I. and Gilmour, D. S. (2001) Analysis of core promoter sequences located downstream from the TATA element in the hsp70 promoter from Drosophila melanogaster. Mol. Cell. Biol. 21, 1593–1602
160 Schulze-Osthoff K, Los M, Baeuerle PA. Redox signalling by transcription factors NF-kappa B and AP-1 in lymphocytes. Biochem Pharmacol. 1995 Sep 7;50(6):735-41.
161 Roebuck KA. Oxidant stress regulation of IL-8 and ICAM-1 gene expression: differential activation and binding of the transcription factors AP-1 and NF-kappaB Int J Mol Med. 1999 Sep;4(3):223-30.
162 Shin WS, Hong YH, Peng HB, De Caterina R, Libby P, Liao JK. Nitric oxide attenuates vascular smooth muscle cell activation by interferon-gamma. The role of constitutive NF-kappa B activity. J Biol Chem. 1996 May 10;271(19):11317-24.
163 Lipskaia L, Pourci ML, Delomenie C, Combettes L, Goudouneche D, Paul JL, Capiod T, Lompre AM. Phosphatidylinositol 3-kinase and calcium-activated transcription pathways are required for VLDL-induced smooth muscle cell proliferation. Circ Res. 2003 May 30;92(10):1115-22.
164 石晏任,姜安娜. (2001) 脂蛋白元H 基因5''側邊序列的分子分析及氧化壓力對於脂蛋白元H 基因在轉錄層次調控的影響. 碩士論文
165 Rebbeor JF, Wang W, Clifton D, Ballatori N. Glutathione S-conjugate formation and metabolism in HepG2 cells: a cell model of mercapturic acid biosynthesis. J Toxicol Environ Health A. 1998 Apr 24;53(8):651-63.
166 Mehdi H, Nunn M, Steel DM, Whitehead AS, Perez M, Walker L, Peeples ME. Nucleotide sequence and expression of the human gene encoding apolipoprotein H (beta 2-glycoprotein I). Gene. 1991 Dec 15;108(2):293-8.
167 Kaur J, Dhaunsi GS, Turner RB. Interleukin-1 and nitric oxide increase NADPH oxidase activity in human coronary artery smooth muscle cells. Med Princ Pract. 2004 Jan-Feb;13(1):26-9.
168 Ushio-Fukai M, Alexander RW, Akers M, Griendling KK. p38 Mitogen-activated protein kinase is a critical component of the redox-sensitive signaling pathways activated by angiotensin II. Role in vascular smooth muscle cell hypertrophy. J Biol Chem. 1998;273:15022
169 Viedt C, Soto U, Krieger-Brauer HI, Fei J, Elsing C, Kubler W, Kreuzer J. Differential activation of mitogen-activated protein kinases in smooth muscle cells by angiotensin II: involvement of p22phox and reactive oxygen species. Arterioscler Thromb Vasc Biol. 2000;20:940
170 Huot J, Houle F, Rousseau S, Deschesnes RG, Shah GM, Landry J. SAPK2/p38-dependent F-actin reorganization regulates early membrane blebbing during stress-induced apoptosis. J Cell Biol. 1998;143:1361
171 Barchowsky A, Munro SR, Morana SJ, Vincenti MP, Treadwell M. Oxidant-sensitive and phosphorylation-dependent activation of NF-kappa B and AP-1 in endothelial cells. Am J Physiol. 1995;269:829
172 Uchida K, Shiraishi M, Naito Y, Torii Y, Nakamura Y, Osawa T. Activation of stress signaling pathways by the end product of lipid peroxidation. 4-hydroxy-2-nonenal is a potential inducer of intracellular peroxide production. J Biol Chem. 1999;274:2234
173 Harris WS. Fish oils and plasma lipid and lipoprotein metabolism in humans: a critical review. J Lipid Res. 1989 Jun;30(6):785-807. Review.
174 Speizer LA, Watson MJ, Brunton LL. Differential effects of omega-3 fish oils on protein kinase activities in vitro. Am J Physiol. 1991 Jul;261(1 Pt 1):E109-14.
175 Sumida C, Graber R, Nunez E. Role of fatty acids in signal transduction: modulators and messengers. Prostaglandins Leukot Essent Fatty Acids. 1993 Jan;48(1):117-22.
176 Yeldandi AV, Rao MS, Reddy JK. Hydrogen peroxide generation in peroxisome proliferator-induced oncogenesis. Mutat Res. 2000 Mar 17;448(2):159-77.
177 Higdon JV, Du SH, Lee YS, Wu T, Wander RC.Supplementation of postmenopausal women with fish oil does not increase overall oxidation of LDL ex vivo compared to dietary oils rich in oleate and linoleate. J Lipid Res. 2001 Mar;42(3):407-18.
178 Mitjavila MT, Rodriguez MC, Saiz MP, Lloret S, Moreno JJ.Effect of degree of unsaturation in dietary fatty acids on arachidonic acid mobilization by peritoneal macrophages. Lipids. 1996 Jun;31(6):661-6.
179 Stockton RA, Jacobson BS.Modulation of cell-substrate adhesion by arachidonic acid: lipoxygenase regulates cell spreading and ERK1/2-inducible cyclooxygenase regulates cell migration in NIH-3T3 fibroblasts. Mol Biol Cell. 2001 Jul;12(7):1937-56.
180 Moreno JJ, Carbonell T, Sanchez T, Miret S, Mitjavila MT.Olive oil decreases both oxidative stress and the production of arachidonic acid metabolites by the prostaglandin G/H synthase pathway in rat macrophages. J Nutr. 2001 Aug;131(8):2145-9.
181 Yoo HY, Chang MS, Rho HM.Induction of the rat Cu/Zn superoxide dismutase gene through the peroxisome proliferator-responsive element by arachidonic acid. Gene. 1999 Jun 24;234(1):87-91.
182 Girnun GD, Domann FE, Moore SA, Robbins ME. Identification of a functional peroxisome proliferator-activated receptor response element in the rat catalase promoter. Mol Endocrinol. 2002 Dec;16(12):2793-801.
183 van Eck M, Bos IS, Kaminski WE, Orso E, Rothe G, Twisk J, Bottcher A, Van Amersfoort ES, Christiansen-Weber TA, Fung-Leung WP, Van Berkel TJ, Schmitz G. Leukocyte ABCA1 controls susceptibility to atherosclerosis and macrophage recruitment into tissues. Proc Natl Acad Sci U S A. 2002 Apr 30;99(9):6298-303.
184 Krey G, Braissant O, L''Horset F, Kalkhoven E, Perroud M, Parker MG, Wahli W. Fatty acids, eicosanoids, and hypolipidemic agents identified as ligands of peroxisome proliferator-activated receptors by coactivator-dependent receptor ligand assay. Mol Endocrinol. 1997 Jun;11(6):779-91.
185 Hirafuji M, Machida T, Hamaue N, Minami M. Cardiovascular protective effects of n-3 polyunsaturated fatty acids with special emphasis on docosahexaenoic acid. J Pharmacol Sci. 2003 Aug;92(4):308-16.
186 McLennan P, Howe P, Abeywardena M, Muggli R, Raederstorff D, Mano M, Rayner T, Head R. The cardiovascular protective role of docosahexaenoic acid. Eur J Pharmacol. 1996 Apr 4;300(1-2):83-9.
187 Inoue I, Noji S, Shen MZ, Takahashi K, Katayama S.The peroxisome proliferator-activated receptor alpha (PPAR alpha) regulates the plasma thiobarbituric acid-reactive substance (TBARS) level. Biochem Biophys Res Commun. 1997 Aug 28;237(3):606-10.
188 Thies F, Garry JM, Yaqoob P, Rerkasem K, Williams J, Shearman CP, Gallagher PJ, Calder PC, Grimble RF.Association of n-3 polyunsaturated fatty acids with stability of atherosclerotic plaques: a randomised controlled trial. Lancet. 2003 Feb 8;361(9356):477-85.
189 Wu YJ, Hong CY, Lin SJ, Wu P, Shiao MS.Increase of vitamin E content in LDL and reduction of atherosclerosis in cholesterol-fed rabbits by a water-soluble antioxidant-rich fraction of Salvia miltiorrhiza. Arterioscler Thromb Vasc Biol. 1998 Mar;18(3):481-6.
190 Wong KL, Chan P, Huang WC, Yang TL, Liu IM, Lai TY, Tsai CC, Cheng JT. Effect of tetramethylpyrazine on potassium channels to lower calcium concentration in cultured aortic smooth muscle cells. Clin Exp Pharmacol Physiol. 2003 Oct;30(10):793-8.
191 Prieto JM, Recio MC, Giner RM, Manez S, Giner-Larza EM, Rios JL. Influence of traditional Chinese anti-inflammatory medicinal plants on leukocyte and platelet functions. J Pharm Pharmacol. 2003 Sep;55(9):1275-82.
第一頁 上一頁 下一頁 最後一頁 top