跳到主要內容

臺灣博碩士論文加值系統

(34.204.180.223) 您好!臺灣時間:2021/08/05 23:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳香瑾
研究生(外文):Shiang-Chin Chen
論文名稱:維他命B1缺乏對腦皮層神經細胞影響之研究
論文名稱(外文):Studies of the cellular responses to thiamine deficiency in cortical neuron cells
指導教授:陳芬芳陳芬芳引用關係
指導教授(外文):Fung-Fang Wang
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:生物化學研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:64
中文關鍵詞:維他命B1腦皮層神經細胞維他命B1缺乏
外文關鍵詞:thiamineamproliumthiamine deficiencycortex neuron
相關次數:
  • 被引用被引用:0
  • 點閱點閱:170
  • 評分評分:
  • 下載下載:22
  • 收藏至我的研究室書目清單書目收藏:0
維他命B1是一個參與在許多有氧及氧化代謝的重要輔酶,哺乳動物並無法自行合成,故缺乏時常造成病症。本研究以腦皮層神經細胞為模型,利用維他命B1相似物amprolium來抑制細胞吸收維他命B1,進而探討探討維他命B1缺乏對細胞之影響。藉由直接的細胞型態、細胞計數,觀察到維他命B1缺乏使得腦皮層神經細胞缺失,而由其細胞週期及TUNEL實驗等分析證明,細胞的減少在於細胞進行程序性凋亡,並伴隨著caspase 3、8、9活性的上升及下游PARP蛋白之切割。此外,細胞內活性氧分子含量(ROS)也會隨著維他命B1缺乏而上升,但活性氧分子抑制劑卻無法挽救細胞之死亡,故推測維他命B1缺乏所造成的細胞死亡並非由ROS所主控。另一方面, ERK及JNK的磷酸化皆有降低的趨勢。以ERK及JNK活性的抑制劑:PD 98059、U 0126以及SP 600125處理細胞,觀察到不論是否處於維他命B1缺乏的狀態,ERK活性之抑制劑並不會影響細胞的存活;相對的,JNK活性之抑制劑卻明顯造成腦皮層神經細胞嚴重死亡,這意味著JNK活性與細胞存活密切相關。在維他命B1缺乏的情況下,p53或是其Ser15蛋白磷酸化的量皆會上升,而負責運輸維他命B1的thiamine transporter (THTR-1)的mRNA量亦有增加。但上述分子的變化與維他命B1缺乏造成死亡的關聯,仍有待進一步的研究。
Vitamin B1 (Thiamine) plays a critical role in energy and oxidative metabolism, its deficiency can result in abnormal oxidative degradation of nutrients. By treatment of cells with the thiamine antagonist amprolium as a means of inducing thiamine deficiency, we showed that thiamine deficiency elicited apoptosis in cultured cortical neuronal cells. The apoptosis was accompanied by the activation of caspases 3, 8, and 9 and a two-fold increase of reactive oxygen species (ROS) was detected. Treatment of cells with ROS inhibitors, NAC and vitamin C, did not prevent the amprolium induced death of neuronal cells. Western blot analysis using antibodies specific for phosphorylated MAP kinases demonstrated that amprolium treatment led to a decrease in the level of phosphorylated JNK and ERK. Exposure of cells to the JNK inhibitor SP600125, but not ERK inhibitor PD98059 and U0126, resulted in severe neuron death, suggesting that the activity of JNK is important to the survival of cortex neurons. The expression of p53 and its Ser-15 phosphorylation form was increased; and RT-PCR analysis indicated that the level of THTR-1, a p53 target gene, was upregulated. Mechanisms underlying the deficiency of vitamin B1 induced apoptosis remain to be determined.
Baker, K. G., Halliday, G. M., Kril, J. J., and Harper, C. G. (1996). Chronic alcoholics without Wernicke-Korsakoff syndrome or cirrhosis do not lose serotonergic neurons in the dorsal raphe nucleus. Alcohol Clin Exp Res 20, 61-66. Bettendorff, L., Goessens, G., Sluse, F., Wins, P., Bureau, M., Laschet, J., and Grisar, T. (1995a). Thiamine deficiency in cultured neuroblastoma cells: effect on mitochondrial function and peripheral benzodiazepine receptors. J Neurochem 64, 2013-2021. Bettendorff, L., Sluse, F., Goessens, G., Wins, P., and Grisar, T. (1995b). Thiamine deficiency--induced partial necrosis and mitochondrial uncoupling in neuroblastoma cells are rapidly reversed by addition of thiamine. J Neurochem 65, 2178-2184. Boldyrev, A., Song, R., Dyatlov, V. A., Lawrence, D. A., and Carpenter, D. O. (2000). Neuronal cell death and reactive oxygen species. Cell Mol Neurobiol 20, 433-450. Boros, L. G., Steinkamp, M. P., Fleming, J. C., Lee, W. N., Cascante, M., and Neufeld, E. J. (2003). Defective RNA ribose synthesis in fibroblasts from patients with thiamine-responsive megaloblastic anemia (TRMA). Blood 102, 3556-3561. Boulares, A. H., Yakovlev, A. G., Ivanova, V., Stoica, B. A., Wang, G., Iyer, S., and Smulson, M. (1999). Role of poly(ADP-ribose) polymerase (PARP) cleavage in apoptosis. Caspase 3-resistant PARP mutant increases rates of apoptosis in transfected cells. J Biol Chem 274, 22932-22940. Bratton, S. B., MacFarlane, M., Cain, K., and Cohen, G. M. (2000). Protein complexes activate distinct caspase cascades in death receptor and stress-induced apoptosis. Exp Cell Res 256, 27-33. 37
Bredesen, D. E., Mehlen, P., and Rabizadeh, S. (2004). Apoptosis and dependence receptors: a molecular basis for cellular addiction. Physiol Rev 84, 411-430. Calingasan, N. Y., Baker, H., Sheu, K. F., and Gibson, G. E. (1995). Blood-brain barrier abnormalities in vulnerable brain regions during thiamine deficiency. Exp Neurol 134, 64-72. Calingasan, N. Y., Chun, W. J., Park, L. C., Uchida, K., and Gibson, G. E. (1999). Oxidative stress is associated with region-specific neuronal death during thiamine deficiency. J Neuropathol Exp Neurol 58, 946-958. Chen, J., Mehta, J. L., Haider, N., Zhang, X., Narula, J., and Li, D. (2004). Role of caspases in Ox-LDL-induced apoptotic cascade in human coronary artery endothelial cells. Circ Res 94, 370-376. Chipuk, J. E., a, KuwanT., Bouchier-Hayes, L., Droin, N. M., Newmeyer, D. D., Schuler, M., and Green, D. R. (2004). Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science 303, 1010-1014. Cho, D. G., Mulloy, M. R., Chang, P. A., Johnson, M. D., Aharon, A. S., Robison, T. A., Buckles, T. L., Byrne, D. W., and Drinkwater, D. C., Jr. (2004). Blockade of the extracellular signal-regulated kinase pathway by U0126 attenuates neuronal damage following circulatory arrest. J Thorac Cardiovasc Surg 127, 1033-1040. Chou, Y. C. (1998). Corticosterone exacerbates cyanide-induced cell death in hippocampal cultures: role of astrocytes. Neurochem Int 32, 219-226. Diaz, G. A., Banikazemi, M., Oishi, K., Desnick, R. J., and Gelb, B. D. (1999). Mutations in a new gene encoding a thiamine transporter cause thiamine-responsive megaloblastic anaemia syndrome. Nat Genet 22, 309-312.
38
Dutta, B., Huang, W., Molero, M., Kekuda, R., Leibach, F. H., Devoe, L. D., Ganapathy, V., and Prasad, P. D. (1999). Cloning of the human thiamine transporter, a member of the folate transporter family. J Biol Chem 274, 31925-31929. F.S. Porter, L. E. R., J.B.Jr. Sidbury (1969). Thiamine-responsive megaloblastic anemia. J Pediatr 74, 494-504. Fleming, J. C., Tartaglini, E., Steinkamp, M. P., Schorderet, D. F., Cohen, N., and Neufeld, E. J. (1999). The gene mutated in thiamine-responsive anaemia with diabetes and deafness (TRMA) encodes a functional thiamine transporter. Nat Genet 22, 305-308. Freshney, N. W., Rawlinson, L., Guesdon, F., Jones, E., Cowley, S., Hsuan, J., and Saklatvala, J. (1994). Interleukin-1 activates a novel protein kinase cascade that results in the phosphorylation of Hsp27. Cell 78, 1039-1049. Fridman, J. S., and Lowe, S. W. (2003). Control of apoptosis by p53. Oncogene 22, 9030-9040. Gibson, G. E., and Zhang, H. (2002). Interactions of oxidative stress with thiamine homeostasis promote neurodegeneration. Neurochem Int 40, 493-504. H. Mandel, M. B., A. Hazani, Y. Naveh (1984). Thiamine-dependent beriberi in the thiamine-responsive anemia syndrome. N Engl J Med 311, 836-838. Hazell, A. S., Butterworth, R. F., and Hakim, A. M. (1993). Cerebral vulnerability is associated with selective increase in extracellular glutamate concentration in experimental thiamine deficiency. J Neurochem 61, 1155-1158. Hazell, A. S., Todd, K. G., and Butterworth, R. F. (1998). Mechanisms 39
of neuronal cell death in Wernicke''s encephalopathy. Metab Brain Dis 13, 97-122. Hollstein, M., Rice, K., Greenblatt, M. S., Soussi, T., Fuchs, R., Sorlie, T., Hovig, E., Smith-Sorensen, B., Montesano, R., and Harris, C. C. (1994). Database of p53 gene somatic mutations in human tumors and cell lines. Nucleic Acids Res 22, 3551-3555. Ito, K., Nakazato, T., Yamato, K., Miyakawa, Y., Yamada, T., Hozumi, N., Segawa, K., Ikeda, Y., and Kizaki, M. (2004). Induction of apoptosis in leukemic cells by homovanillic acid derivative, capsaicin, through oxidative stress: implication of phosphorylation of p53 at Ser-15 residue by reactive oxygen species. Cancer Res 64, 1071-1078. Jiang, Q., Gu, Z., Zhang, G., and Jing, G. (2000). Diphosphorylation and involvement of extracellular signal-regulated kinases (ERK1/2) in glutamate-induced apoptotic-like death in cultured rat cortical neurons. Brain Res 857, 71-77. Jin, K., Mao, X. O., Zhu, Y., and Greenberg, D. A. (2002). MEK and ERK protect hypoxic cortical neurons via phosphorylation of Bad. J Neurochem 80, 119-125. Ke, Z. J., DeGiorgio, L. A., Volpe, B. T., and Gibson, G. E. (2003). Reversal of thiamine deficiency-induced neurodegeneration. J Neuropathol Exp Neurol 62, 195-207. Koedam, J. C., Steyn-Parve, E. P., and Van Rheenen, D. L. (1956). Thiamine deficiency after feeding pyrithiamine. Biochim Biophys Acta 19, 181-182. Kroemer, G. (1998). The mitochondrion as an integrator/coordinator of cell death pathways. Cell Death Differ 5, 547. Kuan, C. Y., Yang, D. D., Samanta Roy, D. R., Davis, R. J., Rakic, P.,
40
and Flavell, R. A. (1999). The Jnk1 and Jnk2 protein kinases are required for regional specific apoptosis during early brain development. Neuron 22, 667-676. Labay, V., Raz, T., Baron, D., Mandel, H., Williams, H., Barrett, T., Szargel, R., McDonald, L., Shalata, A., Nosaka, K., et al. (1999). Mutations in SLC19A2 cause thiamine-responsive megaloblastic anaemia associated with diabetes mellitus and deafness. Nat Genet 22, 300-304. Laforenza, U., Patrini, C., and Rindi, G. (1988). Distribution of thiamine, thiamine phosphates, and thiamine metabolizing enzymes in neuronal and glial cell enriched fractions of rat brain. J Neurochem 51, 730-735. Lane, D. P. (1992). Cancer. p53, guardian of the genome. Nature 358, 15-16. Langlais, P. J., Anderson, G., Guo, S. X., and Bondy, S. C. (1997). Increased cerebral free radical production during thiamine deficiency. Metab Brain Dis 12, 137-143. Langlais, P. J., and Zhang, S. X. (1993). Extracellular glutamate is increased in thalamus during thiamine deficiency-induced lesions and is blocked by MK-801. J Neurochem 61, 2175-2182. Levine, A. J. (1997). p53, the cellular gatekeeper for growth and division. Cell 88, 323-331. Liebermann, D. A., Hoffman, B., and Steinman, R. A. (1995). Molecular controls of growth arrest and apoptosis: p53-dependent and independent pathways. Oncogene 11, 199-210. Liu, Y., and Kulesz-Martin, M. (2001). p53 protein at the hub of cellular DNA damage response pathways through sequence-specific and non-sequence-specific DNA binding. Carcinogenesis 22, 851-860.
41
Lo, P. K., Chen, J. Y., Tang, P. P., Lin, J., Lin, C. H., Su, L. T., Wu, C. H., Chen, T. L., Yang, Y., and Wang, F. F. (2001). Identification of a mouse thiamine transporter gene as a direct transcriptional target for p53. J Biol Chem 276, 37186-37193. Lo, P. K., and Wang, F. F. (2002). Identification of transcriptional start sites and splicing of mouse thiamine transporter gene THTR-1 (Slc19a2). Biochim Biophys Acta 1576, 209-213. Luo, Y., Umegaki, H., Wang, X., Abe, R., and Roth, G. S. (1998). Dopamine induces apoptosis through an oxidation-involved SAPK/JNK activation pathway. J Biol Chem 273, 3756-3764. M.B. Viana, R. I. C. (1978). Thiamine-responsive megaloblastic anemia, sensorineural deafness, and diabetes mellitus: A new syndrome? J Pediatr 93, 235-238. Martindale, J. L., and Holbrook, N. J. (2002). Cellular response to oxidative stress: signaling for suicide and survival. J Cell Physiol 192, 1-15. Matsunaga, T., Kotamraju, S., Kalivendi, S. V., Dhanasekaran, A., Joseph, J., and Kalyanaraman, B. (2004). Ceramide-induced intracellular oxidant formation, iron signaling, and apoptosis in endothelial cells: protective role of endogenous nitric oxide. J Biol Chem. Mihara, M., Erster, S., Zaika, A., Petrenko, O., Chittenden, T., Pancoska, P., and Moll, U. M. (2003). p53 has a direct apoptogenic role at the mitochondria. Mol Cell 11, 577-590. Miyashita, T., and Reed, J. C. (1995). Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80, 293-299. Moscow, J. A., Gong, M., He, R., Sgagias, M. K., Dixon, K. H., Anzick, S. L., Meltzer, P. S., and Cowan, K. H. (1995). Isolation of a gene
42
encoding a human reduced folate carrier (RFC1) and analysis of its expression in transport-deficient, methotrexate-resistant human breast cancer cells. Cancer Res 55, 3790-3794. Muller, M., Wilder, S., Bannasch, D., Israeli, D., Lehlbach, K., Li-Weber, M., Friedman, S. L., Galle, P. R., Stremmel, W., Oren, M., and Krammer, P. H. (1998). p53 activates the CD95 (APO-1/Fas) gene in response to DNA damage by anticancer drugs. J Exp Med 188, 2033-2045. Nakano, K., and Vousden, K. H. (2001). PUMA, a novel proapoptotic gene, is induced by p53. Mol Cell 7, 683-694. Oda, E., Ohki, R., Murasawa, H., Nemoto, J., Shibue, T., Yamashita, T., Tokino, T., Taniguchi, T., and Tanaka, N. (2000). Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science 288, 1053-1058. Park, L. C., Calingasan, N. Y., Uchida, K., Zhang, H., and Gibson, G. E. (2000). Metabolic impairment elicits brain cell type-selective changes in oxidative stress and cell death in culture. J Neurochem 74, 114-124. Park, K. S., Lee, R. D., Kang, S. K., Han, S. Y., Park, K. L., Yang, K. H., Song, Y. S., Park, H. J., Lee, Y. M., Yun, Y. P., et al. (2004). Neuronal differentiation of embryonic midbrain cells by upregulation of peroxisome proliferator-activated receptor-gamma via the JNK-dependent pathway. Exp Cell Res 297, 424-433. Raff, M. (1998). Cell suicide for beginners. Nature 396, 119-122. Raff, M. C., Barres, B. A., Burne, J. F., Coles, H. S., Ishizaki, Y., and Jacobson, M. D. (1993). Programmed cell death and the control of cell survival: lessons from the nervous system. Science 262, 695-700. Rajgopal, A., Edmondnson, A., Goldman, I. D., and Zhao, R. (2001).
43
SLC19A3 encodes a second thiamine transporter ThTr2. Biochim Biophys Acta 1537, 175-178. Rao, V. L., Mousseau, D. D., and Butterworth, R. F. (1996). Nitric oxide synthase activities are selectively decreased in vulnerable brain regions in thiamine deficiency. Neurosci Lett 208, 17-20. Roulston, A., Reinhard, C., Amiri, P., and Williams, L. T. (1998). Early activation of c-Jun N-terminal kinase and p38 kinase regulate cell survival in response to tumor necrosis factor alpha. J Biol Chem 273, 10232-10239. Sanchis, D., Mayorga, M., Ballester, M., and Comella, J. X. (2003). Lack of Apaf-1 expression confers resistance to cytochrome c-driven apoptosis in cardiomyocytes. Cell Death Differ 10, 977-986. Satoh, T., Nakatsuka, D., Watanabe, Y., Nagata, I., Kikuchi, H., and Namura, S. (2000). Neuroprotection by MAPK/ERK kinase inhibition with U0126 against oxidative stress in a mouse neuronal cell line and rat primary cultured cortical neurons. Neurosci Lett 288, 163-166. Savage, L. M., Pitkin, S. R., and Knitowski, K. M. (1999). Rats exposed to acute pyrithiamine-induced thiamine deficiency are more sensitive to the amnestic effects of scopolamine and MK-801: examination of working memory, response selection, and reinforcement contingencies. Behav Brain Res 104, 13-26. Sax, J. K., Fei, P., Murphy, M. E., Bernhard, E., Korsmeyer, S. J., and El-Deiry, W. S. (2002). BID regulation by p53 contributes to chemosensitivity. Nat Cell Biol 4, 842-849. Sheu, K. F., Calingasan, N. Y., Lindsay, J. G., and Gibson, G. E. (1998). Immunochemical characterization of the deficiency of the alpha-ketoglutarate dehydrogenase complex in thiamine-deficient rat brain. J Neurochem 70, 1143-1150.
44
Shieh, S. Y., Ikeda, M., Taya, Y., and Prives, C. (1997). DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell 91, 325-334. Spector, R. (1982). Thiamin homeostasis in the central nervous system. Ann N Y Acad Sci 378, 344-354. Stanciu, M., Wang, Y., Kentor, R., Burke, N., Watkins, S., Kress, G., Reynolds, I., Klann, E., Angiolieri, M. R., Johnson, J. W., and DeFranco, D. B. (2000). Persistent activation of ERK contributes to glutamate-induced oxidative toxicity in a neuronal cell line and primary cortical neuron cultures. J Biol Chem 275, 12200-12206. Susin, S. A., Lorenzo, H. K., Zamzami, N., Marzo, I., Snow, B. E., Brothers, G. M., Mangion, J., Jacotot, E., Costantini, P., Loeffler, M., et al. (1999). Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397, 441-446. Swamy, M. V., Cooma, I., Reddy, B. S., and Rao, C. V. (2002). Lamin B, caspase-3 activity, and apoptosis induction by a combination of HMG-CoA reductase inhibitor and COX-2 inhibitors: a novel approach in developing effective chemopreventive regimens. Int J Oncol 20, 753-759. Tallaksen, C. M., Bohmer, T., Karlsen, J., and Bell, H. (1997). Determination of thiamin and its phosphate esters in human blood, plasma, and urine. Methods Enzymol 279, 67-74. Todd, K., and Butterworth, R. F. (1999). Mechanisms of selective neuronal cell death due to thiamine deficiency. Ann N Y Acad Sci 893, 404-411. Vivo, C., Liu, W., and Broaddus, V. C. (2003). c-Jun N-terminal kinase contributes to apoptotic synergy induced by tumor necrosis factor-related apoptosis-inducing ligand plus DNA damage in chemoresistant, p53 inactive mesothelioma cells. J Biol Chem 278, 25461-25467.
45
Wang, J. J., Hua, Z., Fentress, H. M., and Singleton, C. K. (2000). JNK1 is inactivated during thiamine deficiency-induced apoptosis in human neuroblastoma cells. 11, 208-215. Wu, G. S., Burns, T. F., McDonald, E. R., 3rd, Jiang, W., Meng, R., Krantz, I. D., Kao, G., Gan, D. D., Zhou, J. Y., Muschel, R., et al. (1997). KILLER/DR5 is a DNA damage-inducible p53-regulated death receptor gene. Nat Genet 17, 141-143. Zhu, Y., Mao, X. O., Sun, Y., Xia, Z., and Greenberg, D. A. (2002). p38 Mitogen-activated protein kinase mediates hypoxic regulation of Mdm2 and p53 in neurons. J Biol Chem 277, 22909-22914. 46
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top