跳到主要內容

臺灣博碩士論文加值系統

(3.236.23.193) 您好!臺灣時間:2021/07/24 14:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:游佳瑜
研究生(外文):Chia-Yu Yu
論文名稱:唾液酸轉移□抑制劑soyasaponinI對於B16F10小鼠黑色素瘤細胞轉移能力之影響
論文名稱(外文):Effect of soyasaponin I, asialyltransferase inhibitor, on metastatic potential of B16F10 melanoma cell
指導教授:蔡英傑蔡英傑引用關係
指導教授(外文):Ying-Chieh Tsai
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:生物化學研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:79
中文關鍵詞:唾液酸轉移□
外文關鍵詞:metastasis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:164
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要
唾液酸轉移□參與許多重要生理反應且與癌細胞的發生過程及轉移侵入能力有相當明顯相關程度。因此,唾液酸轉移□被認為是癌症治療的新標的,所以有必要發展唾液酸轉移□抑制劑提供研究與治療的應用。目前本實驗室已由大豆培養基萃取液中分離純化出唾液酸轉移□抑制劑,soyasaponin I並已知soyasaponin I能有效造成MCF-7細胞表面唾液酸共軛物表現量的減少。因此,本論文接續探討soyasaponin I是否會對癌細胞轉移能力產生影響。首先從大豆中大量分離純化soyasaponin I。參考過去文獻並加以修改純化流程可以自100 g脫脂大豆粉中可獲得27.5 mg之soyasaponin I,於整個過程中產率為49.2 % 。並經過質譜儀及二維核磁共振儀確認結構
首先以soyasaponin I處理B16F10小鼠黑色素瘤細胞株並分析細胞表面唾液酸表現量,結果顯示在75 □M soyasaponin I處理24小時後B16F10細胞表面□-2,3唾液酸表現量減少至66 %。證實soyasaponin I能抑制B16F10細胞表面之唾液酸表現量。於細胞移行實驗中,以soyasaponin I處理B16F10細胞並利用transwell分析細胞於通透性濾膜之移行能力,結果發現soyasaponin I對於B16F10細胞的移行能力具有劑量遞增性的抑制效果,顯示soyasaponin I濃度在75 □M時可達73 % 抑制活性。在進一步以transwell分析其對B16F10細胞侵入能力影響,結果發現並無明顯抑制效果。動物實驗中,利用C57BL/6小鼠尾靜脈注射B16F10黑色素瘤細胞的肺臟轉移模式,測試soyasaponin I對細胞於動物體內轉移力影響,結果發現經過soyasaponin I前處理之B16F10細胞在動物體內幾乎喪失其肺轉移能力。證實soyasaponin I能影響癌細胞於動物體內整體轉移能力。
Abstract
Sialyltransferase participates in a lot of important physiological reactions during the oncogenic transformation and metastasis. Therefore, sialyltransferase is considered to be a new target for cancer therapy. It is highly necessary to find the sialyltransferase inhibitors for further research and cancer therapy. Our laboratory extracted sialyltransferase inhibitor, soyasaponin I, from soybean medium extracts. Soyasaponin I could reduce the quantity of cell surface □2,3-sialic acid on MCF-7 cells. In present study, I want to investigate if soyasaponin I could suppress the metastasis in vitro and in vivo.
Firstly, I purified soyasaponin from soybeans on large scale. After modifying the procedure of purification, 27.5 mg soyasaponin was purified with 49.2 yield rate from 100 g degreased soybean powder. The chemical structures of soyasaponin I were confirmed by mass spectroscopy and nuclear magnetic resonance spectroscopy.
For cell culture assay, I pretreated B16F10 melanoma cell with soyasaponin I. After 75 □M soyasaponin I for 24 hours treatment, the quantity of cell surface □2,3-sialic acid on B16F10 was reduced to 66%. In cell migration assay, transwell was using to analyze the ability of migration of B16F10 cell. The result indicates soyasaponin I inhibits the movements of B16 F10 melanoma cell by dose dependent and it shows 73% suppression with 75 □M soyasaponin I.
In B16F10 invasion assay, transwell was used to analyze the influence on cell invasion through Matrigel. However, there is no inhibition on the ability of invasion of B16F10 cell. In animal experiment, soyasaponin I can reduce the numbers of tumor colonies induced by the tail vein injection of B16F10 cells treated soyasaponin I into C57BL/6 mouse. These results showed soyasaponin I can reduce the ability of metastasis of B16F10 melanoma cells in vivo.
柒、參考文獻
Albini, A., Iwamoto, Y., Kleinman, H. K., Martin, G. R., Aaronson, S. A., Kozlowski, J. M., and McEwan, R. N. (1987). A rapid in vitro assay for quantitating the invasive potential of tumor cells. Cancer Res 47, 3239-3245.
Anthony M. P. Montgomerym Yves A. De Clerch, Keith E. Langley, Ralph A. Reisfeld, and Barbara M. Mueller. (1993). Melanoma-mediated dissolution of extracellular matrix : Contribution of urokinase dependent and metalloproteinase-dependent proteolytic pathway. Cancer res, 53: 693-700
Arao T, Udayama M, Kinjo J, Nohara T, Funakoshi T, Kojima S. (1997). Preventive effects of saponins from puerariae radix (the root of Pueraria lobata Ohwi) on in vitro immunological injury of rat primary hepatocyte cultures. Biol Pharm Bull. 20(9), 988-91.
Baker, M. A., Kanani, A., Brockhausen, I., Schachter, H., Hindenburg, A., and Taub, R. N. (1987). Presence of cytidine 5'-monophospho-N-acetylneuraminic acid:Gal beta 1-3GalNAc-R alpha(2-3)-sialyltransferase in normal human leukocytes and increased activity of this enzyme in granulocytes from chronic myelogenous leukemia patients. Cancer Res 47, 2763-2766.
Berhow, M. A., Cantrell, C. L., Duval, S. M., Dobbins, T. A., Maynes, J., and Vaughn, S. F. (2002). Analysis and quantitative determination of group B saponins in processed soybean products. Phytochem Anal 13, 343-348.
Berhow, M. A., Wagner, E. D., Vaughn, S. F., and Plewa, M. J. (2000). Characterization and antimutagenic activity of soybean saponins. Mutat Res 448, 11-22.
Blix, G., Gottschalk, A. and Klenk, E. (1957) Proposed nomenclature in the field of neuraminic and sialic acids. Nature 175, 340-341
Bresalier, R. S., Ho, S. B., Schoeppner, H. L., Kim, Y. S., Sleisenger, M. H., Brodt, P., and Byrd, J. C. (1996). Enhanced sialylation of mucin-associated carbohydrate structures in human colon cancer metastasis. Gastroenterology 110, 1354-1367.
Brockhausen, I., Yang, J. M., Burchell, J., Whitehouse, C., and Taylor-Papadimitriou, J. (1995). Mechanisms underlying aberrant glycosylation of MUC1 mucin in breast cancer cells. Eur J Biochem 233, 607-617.
Buijs, J. T., Cleton, A. M., Smit, V. T., Lowik, C. W., S, E. P., and Pluijm, G. (2004). Prognostic significance of periodic acid-Schiff-positive patterns in primary breast cancer and its lymph node metastases. Breast Cancer Res Treat 84, 117-130.
Burchell, J., Poulsom, R., Hanby, A., Whitehouse, C., Cooper, L., Clausen, H., Miles, D., and Taylor-Papadimitriou, J. (1999). An alpha2,3 sialyltransferase (ST3Gal I) is elevated in primary breast carcinomas. Glycobiology 9, 1307-1311.
C, E. L. N., Grum-Schwensen, B., Mansouri, A., Grigorian, M., Santoni-Rugiu, E., Hansen, T., Kriajevska, M., Schafer, B. W., Heizmann, C. W., Lukanidin, E., and Ambartsumian, N. (2004). Cancer predisposition in mice deficient for the metastasis-associated Mts1(S100A4) gene. Oncogene 23, 3670-3680.
Cameron, M. D., Schmidt, E. E., Kerkvliet, N., Nadkarni, K. V., Morris, V. L., Groom, A. C., Chambers, A. F., and MacDonald, I. C. (2000). Temporal progression of metastasis in lung: cell survival, dormancy, and location dependence of metastatic inefficiency. Cancer Res 60, 2541-2546.
Chambers, A. F., Groom, A. C., and MacDonald, I. C. (2002). Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2, 563-572.
Chauhan SS, Goldstein LJ, Gottesman MM. (1991). Expression of cathepsin L in human tumors. Cancer Res. 51(5), 1478-81.
Collard, J. G., Schijven, J. F., Bikker, A., La Riviere, G., Bolscher, J. G., and Roos, E. (1986). Cell surface sialic acid and the invasive and metastatic potential of T-cell hybridomas. Cancer Res 46, 3521-3527.
Dall'Olio F, Chiricolo M, Lau JT. (1999)Differential expression of the hepatic transcript of beta-galactoside alpha2,6-sialyltransferase in human colon cancer cell lines. Int. J. Cancer 81(2), 243-7
Dall'Olio, F., Chiricolo, M., Ceccarelli, C., Minni, F., Marrano, D., and Santini, D. (2000). Beta-galactoside alpha2,6 sialyltransferase in human colon cancer: contribution of multiple transcripts to regulation of enzyme activity and reactivity with Sambucus nigra agglutinin. Int J Cancer 88, 58-65.
Datta, A. K., and Paulson, J. C. (1995). The sialyltransferase "sialylmotif" participates in binding the donor substrate CMP-NeuAc. J Biol Chem 270, 1497-1500.
Datta, A. K., Sinha, A., and Paulson, J. C. (1998). Mutation of the sialyltransferase S-sialylmotif alters the kinetics of the donor and acceptor substrates. J Biol Chem 273, 9608-9614.
Dennis, J., Waller, C., Timpl, R., and Schirrmacher, V. (1982). Surface sialic acid reduces attachment of metastatic tumour cells to collagen type IV and fibronectin. Nature 300, 274-276.
Dimitroff, C. J., Pera, P., Dall'Olio, F., Matta, K. L., Chandrasekaran, E. V., Lau, J. T., and Bernacki, R. J. (1999). Cell surface n-acetylneuraminic acid alpha2,3-galactoside-dependent intercellular adhesion of human colon cancer cells. Biochem Biophys Res Commun 256, 631-636.
Fogel, M., Altevogt, P., and Schirrmacher, V. (1983). Metastatic potential severely altered by changes in tumor cell adhesiveness and cell-surface sialylation. J Exp Med 157, 371-376.
Fukushima, K., Hara-Kuge, S., Seko, A., Ikehara, Y., and Yamashita, K. (1998). Elevation of alpha2-->6 sialyltransferase and alpha1-->2 fucosyltransferase activities in human choriocarcinoma. Cancer Res 58, 4301-4306.
Fuzii, H. T., and Travassos, L. R. (2002). Transient resistance to B16F10 melanoma growth and metastasis in CD43-/- mice. Melanoma Res 12, 9-16.
Geremia, R. A., Harduin-Lepers, A., and Delannoy, P. (1997). Identification of two novel conserved amino acid residues in eukaryotic sialyltransferases: implications for their mechanism of action. Glycobiology 7, v-vii.
Goda, Y., Akiyama, H., Suyama, E., Takahashi, S., Kinjo, J., Nohara, T., and Toyoda, M. (2002). [Comparison of soyasaponin and isoflavone contents between genetically modified (GM) and non-GM soybeans]. Shokuhin Eiseigaku Zasshi 43, 339-347.
Gurfinkel, D. M., and Rao, A. V. (2002). Determination of saponins in legumes by direct densitometry. J Agric Food Chem 50, 426-430.
Hakomori, S. (1996). Tumor malignancy defined by aberrant glycosylation and sphingo(glyco)lipid metabolism. Cancer Res 56, 5309-5318.
Harduin-Lepers, A., Recchi, M. A., and Delannoy, P. (1995). 1994, the year of sialyltransferases. Glycobiology 5, 741-758.
Harduin-Lepers, A., Vallejo-Ruiz, V., Krzewinski-Recchi, M. A., Samyn-Petit, B., Julien, S., and Delannoy, P. (2001). The human sialyltransferase family. Biochimie 83, 727-737.
Harvey, B. E., and Thomas, P. (1993). Inhibition of CMP-sialic acid transport in human liver and colorectal cancer cell lines by a sialic acid nucleoside conjugate (KI-8110). Biochem Biophys Res Commun 190, 571-575.
Harvey, B. E., Toth, C. A., Wagner, H. E., Steele, G. D., Jr., and Thomas, P. (1992). Sialyltransferase activity and hepatic tumor growth in a nude mouse model of colorectal cancer metastases. Cancer Res 52, 1775-1779.
Hayashi, K., Hayashi, H., Hiraoka, N., and Ikeshiro, Y. (1997). Inhibitory activity of soyasaponin II on virus replication in vitro. Planta Med 63, 102-105.
Hu, J., Lee, S. O., Hendrich, S., and Murphy, P. A. (2002). Quantification of the group B soyasaponins by high-performance liquid chromatography. J Agric Food Chem 50, 2587-2594.
Hu, J., Zheng, Y. L., Hyde, W., Hendrich, S., and Murphy, P. A. (2004). Human fecal metabolism of soyasaponin I. J Agric Food Chem 52, 2689-2696.
Ikeda, T., Udayama, M., Okawa, M., Arao, T., Kinjo, J., and Nohara, T. (1998). Partial hydrolysis of soyasaponin I and the hepatoprotective effects of the hydrolytic products. Study of the structure-hepatoprotective relationship of soyasapogenol B analogs. Chem Pharm Bull (Tokyo) 46, 359-361.
Imam, A., Laurence, D. J., and Neville, A. M. (1981). Isolation and characterization of a major glycoprotein from milk-fat-globule membrane of human breast milk. Biochem J 193, 47-54.
Jun, H. S., Kim, S. E., and Sung, M. K. (2002). Protective effect of soybean saponins and major antioxidants against aflatoxin B1-induced mutagenicity and DNA-adduct formation. J Med Food 5, 235-240.
Kajihara, Y., Kodama, H., Wakabayashi, T., Sato, K., and Hashimoto, H. (1993). Characterization of inhibitory activities and binding mode of synthetic 6'-modified methyl N-acetyl-beta-lactosaminide toward rat liver CMP-D-Neu5Ac: D-galactoside-(2-->6)-alpha-D-sialyltransferase. Carbohydr Res 247, 179-193.
Kaneko, Y., Yamamoto, H., Kersey, D. S., Colley, K. J., Leestma, J. E., and Moskal, J. R. (1996). The expression of Gal beta 1,4GlcNAc alpha 2,6 sialyltransferase and alpha 2,6-linked sialoglycoconjugates in human brain tumors. Acta Neuropathol (Berl) 91, 284-292.
Kijima-Suda, I., Miyamoto, Y., Toyoshima, S., Itoh, M., and Osawa, T. (1986). Inhibition of experimental pulmonary metastasis of mouse colon adenocarcinoma 26 sublines by a sialic acid:nucleoside conjugate having sialyltransferase inhibiting activity. Cancer Res 46, 858-862.
Kijima-Suda, I., Toyoshima, S., Itoh, M., Furuhata, K., Ogura, H., and Osawa, T. (1985). Inhibition of sialyltransferases of murine lymphocytes by disaccharide nucleosides. Chem Pharm Bull (Tokyo) 33, 730-739.
Kim, H. Y., Yu, R., Kim, J. S., Kim, Y. K., and Sung, M. K. (2004). Antiproliferative crude soy saponin extract modulates the expression of IkappaBalpha, protein kinase C, and cyclooxygenase-2 in human colon cancer cells. Cancer Lett 210, 1-6.
Kinjo, J., Hirakawa, T., Tsuchihashi, R., Nagao, T., Okawa, M., Nohara, T., and Okabe, H. (2003). Hepatoprotective constituents in plants. 14. Effects of soyasapogenol B, sophoradiol, and their glucuronides on the cytotoxicity of tert-butyl hydroperoxide to HepG2 cells. Biol Pharm Bull 26, 1357-1360.
Kinjo, J., Imagire, M., Udayama, M., Arao, T., and Nohara, T. (1998). Structure-hepatoprotective relationships study of soyasaponins I-IV having soyasapogenol B as aglycone. Planta Med 64, 233-236.
Kleineidam, R. G., Schmelter, T., Schwarz, R. T., and Schauer, R. (1997). Studies on the inhibition of sialyl- and galactosyltransferases. Glycoconj J 14, 57-66.
Konoshima, T., Kokumai, M., Kozuka, M., Tokuda, H., Nishino, H., and Iwashima, A. (1992). Anti-tumor-promoting activities of afromosin and soyasaponin I isolated from Wistaria brachybotrys. J Nat Prod 55, 1776-1778.
Le Marer, N., and Skacel, P. O. (1999). Up-regulation of alpha2,6 sialylation during myeloid maturation: a potential role in myeloid cell release from the bone marrow. J Cell Physiol 179, 315-324.
Lin, S., Kemmner, W., Grigull, S., and Schlag, P. M. (2002). Cell surface alpha 2,6 sialylation affects adhesion of breast carcinoma cells. Exp Cell Res 276, 101-110.
Mabry, E. W., and Carubelli, R. (1972). Sialic acid in human cancer. Experientia 28, 182-183.
Matsushita, Y., Nakamori, S., Seftor, E. A., Hendrix, M. J., and Irimura, T. (1991). Human colon carcinoma cells with increased invasive capacity obtained by selection for sialyl-dimeric LeX antigen. Exp Cell Res 196, 20-25.
Matsuura, N., Narita, T., Hiraiwa, N., Hiraiwa, M., Murai, H., Iwase, T., Funahashi, H., Imai, T., Takagi, H., and Kannagi, R. (1998). Gene expression of fucosyl- and sialyl-transferases which synthesize sialyl Lewisx, the carbohydrate ligands for E-selectin, in human breast cancer. Int J Oncol 12, 1157-1164.
Menon, L. G., Kuttan, R., and Kuttan, G. (1995). Inhibition of lung metastasis in mice induced by B16F10 melanoma cells by polyphenolic compounds. Cancer Lett 95, 221-225.
McManus, O. B., Harris, G. H., Giangiacomo, K. M., Feigenbaum, P., Reuben, J. P., Addy, M. E., Burka, J. F., Kaczorowski, G. J., and Garcia, M. L. (1993). An activator of calcium-dependent potassium channels isolated from a medicinal herb. Biochemistry 32, 6128-6133.
Miyao, H., Arao, T., Udayama, M., Kinjo, J., and Nohara, T. (1998). Kaikasaponin III and soyasaponin I, major triterpene saponins of Abrus cantoniensis, act on GOT and GPT: influence on transaminase elevation of rat liver cells concomitantly exposed to CCl4 for one hour. Planta Med 64, 5-7.
Muller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME, McClanahan T, Murphy E, Yuan W, Wagner SN, Barrera JL, Mohar A, Verastegui E, Zlotnik A. (2001). Involvement of chemokine receptors in breast cancer metastasis. Nature. 410(6824), 50-6.
Nakayama, J., and Fukuda, M. (1996). A human polysialyltransferase directs in vitro synthesis of polysialic acid. J Biol Chem 271, 1829-1832.
Nieswandt, B., Hafner, M., Echtenacher, B., and Mannel, D. N. (1999). Lysis of tumor cells by natural killer cells in mice is impeded by platelets. Cancer Res 59, 1295-1300.
Odashima, S., Ohta, T., Kohno, H., Matsuda, T., Kitagawa, I., Abe, H., and Arichi, S. (1985). Control of phenotypic expression of cultured B16 melanoma cells by plant glycosides. Cancer Res 45, 2781-2784.
Ogawa, J., Inoue, H., and Koide, S. (1997). Glucose-transporter-type-I-gene amplification correlates with sialyl-Lewis-X synthesis and proliferation in lung cancer. Int J Cancer 74, 189-192.
Ohminami H, Kimura Y, Okuda H, Arichi S, Yoshikawa M, Kitagawa I. (1984). Effects of soyasaponins on liver injury induced by highly peroxidized fat in rats. Planta Med. 1984 Oct;50(5):440-1.
Ohyama, C., Tsuboi, S., and Fukuda, M. (1999). Dual roles of sialyl Lewis X oligosaccharides in tumor metastasis and rejection by natural killer cells. Embo J 18, 1516-1525.
Okazaki, K., Nishigaki, S., Ishizuka, F., Kajihara, Y., and Ogawa, S. (2003). Potent and specific sialyltransferase inhibitors: imino-linked 5a'-carbadisaccharides. Org Biomol Chem 1, 2229-2230.
Ota, T., Fujikawa-yamamoto, K., Zong, Z. P., Yamazaki, M., Odashima, S., Kitagawa, I., Abe, H., and Arichi, S. (1987). Plant-glycoside modulation of cell surface related to control of differentiation in cultured B16 melanoma cells. Cancer Res 47, 3863-3867.
Ota, T., Kohno, H., Maeda, M., Tanino, M., and Odashima, S. (1993). Involvement of peanut agglutinin-binding sugar chains in experimental metastasis of B16 melanoma cells. Oncol Res 5, 235-243.
Passaniti, A., and Hart, G. W. (1988). Cell surface sialylation and tumor metastasis. Metastatic potential of B16 melanoma variants correlates with their relative numbers of specific penultimate oligosaccharide structures. J Biol Chem 263, 7591-7603.
Paulson, J. C., and Colley, K. J. (1989). Glycosyltransferases. Structure, localization, and control of cell type-specific glycosylation. J Biol Chem 264, 17615-17618.
Petretti, T., Schulze, B., Schlag, P. M., and Kemmner, W. (1999). Altered mRNA expression of glycosyltransferases in human gastric carcinomas. Biochim Biophys Acta 1428, 209-218.
Portenoy, R. K., Thaler, H. T., Kornblith, A. B., McCarthy-Lepore, J., Friedlander-Klar, H., Kiyasu, E., Sobel, K., Coyle, N., Kemeny, N., & Norton, L. (1994). The Memorial Symptom Assessment Scale: An instrument for the evaluation of symptom prevalence, characteristics and distress. European Journal of Cancer, 30A, 1326-1336.
Pousset, D., Piller, V., Bureaud, N., Monsigny, M., and Piller, F. (1997). Increased alpha2,6 sialylation of N-glycans in a transgenic mouse model of hepatocellular carcinoma. Cancer Res 57, 4249-4256.
Raymond W. Ruddon: Biology of tumor metastasis, in Cancer Biology, pp.402-427, 3rd edition, Oxford University Press: U.S.A., 1995
Recchi, M. A., Harduin-Lepers, A., Boilly-Marer, Y., Verbert, A., and Delannoy, P. (1998). Multiplex RT-PCR method for the analysis of the expression of human sialyltransferases: application to breast cancer cells. Glycoconj J 15, 19-27.
Reichner, J. S., Whiteheart, S. W., and Hart, G. W. (1988). Intracellular trafficking of cell surface sialoglycoconjugates. J Biol Chem 263, 16316-16326.
Saito, S., Yamashita, S., Endoh, M., Yamato, T., Hoshi, S., Ohyama, C., Watanabe, R., Ito, A., Satoh, M., Wada, T., et al. (2002). Clinical significance of ST3Gal IV expression in human renal cell carcinoma. Oncol Rep 9, 1251-1255.
Satoh, H., Ishikawa, H., Kamma, H., Yamashita, Y. T., Takahashi, H., Ohtsuka, M., and Hasegawa, S. (1998). Elevated serum sialyl Lewis X-i antigen levels in non-small cell lung cancer with lung metastasis. Respiration 65, 295-298.
Schaub, C., Muller, B., and Schmidt, R. R. (1998). New sialyltransferase inhibitors based on CMP-quinic acid: development of a new sialyltransferase assay. Glycoconj J 15, 345-354.
Schauer, R. (1982). Chemistry, metabolism, and biological functions of sialic acids. Adv Carbohydr Chem Biochem 40, 131-234.
Schauer, R., de Freese, A., Gollub, M., Iwersen, M., Kelm, S., Reuter, G., Schlenzka, W., Vandamme-Feldhaus, V., and Shaw, L. (1997). Functional and biosynthetic aspects of sialic acid diversity. Indian J Biochem Biophys 34, 131-141.
Schmid-Schonbein, H., Heidtmann, H., and Grebe, R. (1986). Spectrin, red cell shape and deformability. II. The antagonistic action of spectrin and sialic acid residues in determining membrane curvature in genetic spectrin deficiency in mice. Blut 52, 149-164.
Schneider, F., Kemmner, W., Haensch, W., Franke, G., Gretschel, S., Karsten, U., and Schlag, P. M. (2001). Overexpression of sialyltransferase CMP-sialic acid:Galbeta1,3GalNAc-R alpha6-Sialyltransferase is related to poor patient survival in human colorectal carcinomas. Cancer Res 61, 4605-4611.
Shiraiwa, M., Harada, K., and Okubo, K. (1991). Composition and structure of "group B saponin" in soybean seed. Agric Biol Chem 55, 911-917.
Sillanaukee, P., Ponnio, M., and Jaaskelainen, I. P. (1999). Occurrence of sialic acids in healthy humans and different disorders. Eur J Clin Invest 29, 413-425.
Staller P, Sulitkova J, Lisztwan J, Moch H, Oakeley EJ, Krek W. (2003). Chemokine receptor CXCR4 downregulated by von Hippel-Lindau tumour suppressor pVHL. Nature. 425(6955), 307-11.
Stoykova, L. I., and Glick, M. C. (1995). Purification of an alpha-2,8-sialyltransferase, a potential initiating enzyme for the biosynthesis of polysialic acid in human neuroblastoma cells. Biochem Biophys Res Commun 217, 777-783.
Sung, M. K., Kendall, C. W., Koo, M. M., and Rao, A. V. (1995). Effect of soybean saponins and gypsophilla saponin on growth and viability of colon carcinoma cells in culture. Nutr Cancer 23, 259-270.
Suzuki, K., Doi, S., Yahara, S., and Uyeda, M. (2003). 2070-DTI, a topoisomerase inhibitor produced by Streptomyces sp. strain No. 2070. J Enzyme Inhib Med Chem 18, 497-503.
Takashima, S., and Tsuji, S. (2000). Comparison of genomic structures of four members of beta-galactoside alpha2,3-sialyltransferase genes in the mouse. Cytogenet Cell Genet 89, 101-106.
Tanaka, F., Otake, Y., Nakagawa, T., Kawano, Y., Miyahara, R., Li, M., Yanagihara, K., Nakayama, J., Fujimoto, I., Ikenaka, K., and Wada, H. (2000). Expression of polysialic acid and STX, a human polysialyltransferase, is correlated with tumor progression in non-small cell lung cancer. Cancer Res 60, 3072-3080.
Taniyama, T., Yoshikawa, M., and Kitagawa, I. (1988). [Saponin and sapogenol. XLIV. Soyasaponin composition in soybeans of various origins and soyasaponin content in various organs of soybean. Structure of soyasaponin V from soybean hypocotyl]. Yakugaku Zasshi 108, 562-571.
Tsuji, S. (1996). Molecular cloning and functional analysis of sialyltransferases. J Biochem (Tokyo) 120, 1-13.
Twentyman, P. R., and Luscombe, M. (1987). A study of some variables in a tetrazolium dye (MTT) based assay for cell growth and chemosensitivity. Br J Cancer 56, 279-285.
Varki, A. (1997). Sialic acids as ligands in recognition phenomena. Faseb J 11, 248-255.
Varki, A. (2001). N-glycolylneuraminic acid deficiency in humans. Biochimie. 2001 83(7), 615-22.
Vlietinck, A. J., De Bruyne, T., Apers, S., and Pieters, L. A. (1998). Plant-derived leading compounds for chemotherapy of human immunodeficiency virus (HIV) infection. Planta Med 64, 97-109.
Wang, P. H., Li, Y. F., Juang, C. M., Lee, Y. R., Chao, H. T., Ng, H. T., Tsai, Y. C., and Yuan, C. C. (2002). Expression of sialyltransferase family members in cervix squamous cell carcinoma correlates with lymph node metastasis. Gynecol Oncol 86, 45-52.
Wu, C. Y., Hsu, C. C., Chen, S. T., and Tsai, Y. C. (2001). Soyasaponin I, a potent and specific sialyltransferase inhibitor. Biochem Biophys Res Commun 284, 466-469.
Wyckoff JB, Segall JE, Condeelis JS. (2000). The collection of the motile population of cells from a living tumor. Cancer Res. 60(19), 5401-4
Yamamoto, H., Kaneko, Y., Vandermulen, D., Kersey, D., Mkrdichian, E., Cerullo, L., Leestma, J., and Moskal, J. R. (1995). The expression of CMP-NeuAc: Gal beta 1,4GlcNAc alpha 2,6 sialyltransferase [EC 2.4.99.1] and glycoproteins bearing alpha 2,6-linked sialic acids in human brain tumours. Glycoconj J 12, 848-856.
Yamamoto, H., Saito, T., Kaneko, Y., Kersey, D., Yong, V. W., Bremer, E. G., Mkrdichian, E., Cerullo, L., Leestma, J., and Moskal, J. R. (1997). alpha2,3-sialyltransferase mRNA and alpha2,3-linked glycoprotein sialylation are increased in malignant gliomas. Brain Res 755, 175-179.
Yamashiro, S., Okada, M., Haraguchi, M., Furukawa, K., Lloyd, K. O., and Shiku, H. (1995). Expression of alpha 2,8-sialyltransferase (GD3 synthase) gene in human cancer cell lines: high level expression in melanomas and up-regulation in activated T lymphocytes. Glycoconj J 12, 894-900.
Yanamandra, N., Berhow, M. A., Konduri, S., Dinh, D. H., Olivero, W. C., Nicolson, G. L., and Rao, J. S. (2003). Triterpenoids from Glycine max decrease invasiveness and induce caspase-mediated cell death in human SNB19 glioma cells. Clin Exp Metastasis 20, 375-383.
Yogeeswaran, G. (1983). Cell surface glycolipids and glycoproteins in malignant transformation. Adv Cancer Res 38, 289-350.
Yogeeswaran, G., and Salk, P. L. (1981). Metastatic potential is positively correlated with cell surface sialylation of cultured murine tumor cell lines. Science 212, 1514-1516.
Yoshikoshi, M., Yoshiki, Y., Okubo, K., Seto, J., and Sasaki, Y. (1996). Prevention of hydrogen peroxide damage by soybean saponins to mouse fibroblasts. Planta Med 62, 252-255.
Zeng, G., Gao, L., Birkle, S., and Yu, R. K. (2000a). Suppression of ganglioside GD3 expression in a rat F-11 tumor cell line reduces tumor growth, angiogenesis, and vascular endothelial growth factor production. Cancer Res 60, 6670-6676.
Zeng, G., Gao, L., and Yu, R. K. (2000b). Reduced cell migration, tumor growth and experimental metastasis of rat F-11 cells whose expression of GD3-synthase is suppressed. Int J Cancer 88, 53-57.
Zhu, Y., Srivatana, U., Ullah, A., Gagneja, H., Berenson, C. S., and Lance, P. (2001). Suppression of a sialyltransferase by antisense DNA reduces invasiveness of human colon cancer cells in vitro. Biochim Biophys Acta 1536, 148-160.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文