跳到主要內容

臺灣博碩士論文加值系統

(35.175.191.36) 您好!臺灣時間:2021/07/31 01:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張育維
研究生(外文):Yu-Wei Chang
論文名稱:人工電子眼之視網膜晶片的設計
論文名稱(外文):A design of the retina chip for artificial eye
指導教授:張寅張寅引用關係
指導教授(外文):Yin Chang
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:生醫光電工程研究所
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:61
中文關鍵詞:人工電子眼視網膜晶片微電刺激器
外文關鍵詞:artificial eyeretina chipmicroelectronic stimulator
相關次數:
  • 被引用被引用:5
  • 點閱點閱:539
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
眼睛又被稱為靈魂之窗,是取得外界資訊的重要管道;倘若喪失視覺,將為生活帶來諸多不便。所幸研究發現有些視盲在未來仍可望得到改善,特別是因感光細胞壞死而導致的失明;因此若將電極植入於視網膜,並有效刺激雙極細胞(bipolar cells)或節狀細胞(ganglion cells),則可延續視覺訊號的傳遞功能,從而建立出整體的視覺。目前電刺激的方式主要有二:即下視網膜(sub-retina)與上視網膜(epi-retina);它們難分軒輊,各有其優點與瓶頸。為此我們提出了改良方案:三明治型(sandwich-type)電刺激方式,它可以提高解析度、減少能量消耗、並增進整體效能。人工電子眼主要架構可分為四大部分:影像擷取、無線傳輸、視網膜晶片、微刺激電極。其中的視網膜晶片即為此論文之研究範疇,包含了兩個區塊:一為刺激波形控制器,利用CPLD(Complex Programmable Logic Devices)實現,程式架構包括:振幅控制、時間參數、雙向邏輯、掃瞄控制等;二為雙向電流刺激器,利用ASIC(Application-Specific Integrated Circuit)實現,電路架構包括:數位類比轉換器、疊接電流鏡、解多工器、雙向控制電路等。設計的整體考量為:安全、有效、經濟、實用。量測結果滿足了預計的規格:在1KΩ視網膜負載下,輸出可程控的雙向電流刺激波形,其最大電流值為620uA,每階20uA,且具有相當的線性度(差分非線性誤差小於0.6 LSB、積分非線性誤差小於2.1 LSB),工作頻率高達5MHz,並可輪流切換16個通道來刺激視網膜。與其他相關研究比較的結果顯示,採用我們的三明治型電刺激方式,可得到較高的解析度、較少的能量消耗,所以整體效能獲得很大的改善。
Eyes, known as the window of the soul, are the important medium for getting information from the world. Life becomes extremely inconvenient if one loses his/her eyesight. Fortunately, researchers found that some eye diseases could be cured in the foreseeable future, particularly for the blindness which was caused by the damaged photoreceptors. Hence, by implanting the microelectrodes into the retina and effectively stimulating the bipolar or ganglion cells of the eyes, the sight could be restored. Up to now, there are two main ways of the visual prosthesis: sub-retinal, and epi-retinal approaches. Each of them, however, has its merits and demerits, thus it is difficult to tell which one is better. In order to improve the overall performance, we have brought up a new idea—the sandwich-type approach, which is surpassing for its high resolution and low power consumption. We hereby name the implantable visual prosthesis “retina chip,” and the whole system “artificial eye.” An artificial eye contains imaging sensor, wireless transmitter, retinal chip, and microelectrodes. The retinal chip, as the theme of this thesis, is made up of two parts. Stimulus waveform controller is the first part, which is implemented by CPLD(Complex Programmable Logic Devices), whose code is composed of amplitude controller, timing parameter, biphasic logic, and scanning controller. Biphasic current stimulator, the second part, is implemented by ASIC(Application-Specific Integrated Circuit), whose circuit is composed of digital to analog converter, cascoded current mirror, demultiplexer, and biphasic controller. The considerations of this design are safety, effectiveness, economy, and practicability. The experimental results have met the desired specifications. With 1 KΩ retinal load, the retina chip can generate the programmed stimulus waveform, operating at the frequency up to 5 MHz with good linearity. The differential nonlinearity is less than 0.6 LSB and the integral nonlinearity is less than 2.1 LSB. The maximum output of the biphasic current is 620 uA with 20 uA step. It can also sequentially stimulate 16 channels to make up frames. Compared to the other related reports, we find that the sandwich-type approach has better resolution and lower power consumption, thus the overall performance can be improved.
[1] http://www.lionsclubs.org/EN/content/news_news_release11.shtml
[2] M. S. Humayun, R. H. Propst, E. de Juan, K. McCormick, and D. Hickingbotham, “Bipolar surface electrical stimulation of the vertebrate retina,” Arch. Ophthalmol, vol. 112, pp. 110-116, 1994.
[3] M. Humayun, E. de Juan, G. Dagnelie, R. J. Greenberg, R. H. Propst, and D. Howard, “Visual perception elicited by electrical stimulation of retina in blind humans,” Arch. Ophthalmol, vol. 114, pp. 40-46,1996.
[4] A. Y. Chow, V. Y. Chow, “Subretinal electrical stimulation of the rabbit retina,” Neurosci. Lett., vol. 225, pp. 13-16, 1997.
[5] M. N. Nadig, “Development of a silicon retinal implant: cortical evoked potentials following focal stimulation of the rabbit retina with light and electricity,” Clin. Neurophysiol., vol. 110, pp. 1545-1553, 1999.
[6] J. D. Weiland, M. S. Humayun, E. de Juan, J. D. Weiland, G. Dagnelie, R. J. Greenberg, N. T. Iliff, “Understanding the origin of visual percepts elicited by electrical stimulation of the human retina,” Graef’s Arch. Clin. Exp. Ophthalmol., vol. 237, pp. 1007-1013, 1999.
[7] M. S. Humayun, E. de Juan, J. D. Weiland, G. Dagnelie, S. Katona, R. J. Greenberg, S. Suzuki, “Pattern electrical stimulation of the human retina,” Vision res., vol. 39, pp. 2569-2576, 1999.
[8] P. Walter, K. Heimann, “Evoked cortical potentials after electrical stimulation of the inner retina in rabbits,” Graef’s Arch. Clin. Exp. Ophthalmol., vol. 238, pp. 315-318, 2000.
[9] R. W. Rodieck, the vertebrate retina: principles of structure and function. W. H. Freeman and Company, 1973.
[10] Y. Chang, F. L. Lee, S. J. Chen, S. F. Chen, “Optical measurement of human retinal macular pigment and its spatial distribution with age,” Med. Phys., vol. 29, pp. 2621-2628, 2002.
[11] J. G. Webster, Medical Instrumentation: application and design, 3re ed. John Wiley & Sons, Inc., 1998.
[12] J. E. Dowling, the retina: an approachable part of the brain. The Belknap press of Harvard university press, 1987.
[13] http://www.hksb.org.hk/VH/hksb/special/vision2020/v2020.htm
[14] http://www.retina.org.hk/hkrpsc.htm
[15] http://www.bhkaec.org.hk/bookman/hk3.htm
[16] A. Santos, M. S. Humayun, E. de Juan, R. J. Greenberg, M. J. Marsh, I. B. Klock and A. H. Milam, “Preservation of the inner retina in retinitis pigmentosa,” Arch. Ophthalmol., vol. 115, pp. 511-515, 1997.
[17] J. L. Stone, W. E. Barlow, M. S. Humayun, E. de Juan, and A. H. Milam, “Morphometric analysis of macular photoreceptors and ganglion cells in retinas pigmentosa,” Arch. Ophthalmol., vol. 110, pp. 1634-1639, 1992.
[18] S. Bourret, M. Sawan, R. Plamondon, “Programmable high-amplitude balanced stimulus current-source for implantable microstimulators,” in Proc. of IEEE 19th Annu. Int. Conf., vol. 5, pp. 1938-1941, 1997.
[19] E. Margalit, M. Maia, J. D. Weiland, R. J. Greenberg, G. Y. Fujii, G. Torres, D. V. Piyathaisere, T. M. O’Hearn, W. Liu, G. Lazzi, G. Dagnelie, D. A. Scribner, E. de Juan, and M. S. Humayun, “Major review: retinal prosthesis for the blind,” surv. Ophthalmol., vol. 47, 2002.
[20] G. Peyman, A.Y. Chow, C. Liang, V. Y. Chow, J. I. Perlman, and N. S. Peachy, “Subretinal semiconductor microphotodiode array,” Ophthalmic Surg. Lasers Imaging, vol. 29, pp. 234-241, 1998.
[21] E. Zrenner, K. D. Miliczek, and V. P. Gabel et al., “The development of subretinal microphotodiodes for replacement of degenerated photoreceptors,” Ophthalmic Res., vol. 29, pp. 269-280, 1997.
[22] C.Y. Wu, C. T. Chiang, “A low-photocurrent CMOS retinal focal-plane sensor with pseudo-BJT smoothing network and adaptive current Schmitt trigger for scanner applications,” in Proc. of IEEE Sensors, vol. 2, pp. 1147-1152, 2003.
[23] C. Y. Wu, H. C. Huang, L. J. Lin, and K. H. Huang, “A new pseudo-bipolar-junction-transistor (PBJT) and its application in the design of retinal smoothing network,” IEEE Int. Symp. Circuits and Syst., vol. 2, pp. 125-128, 2002.
[24] H. C. Jiang and C. Y. Wu, “A 2-D velocity- and direction-selective sensor with BJT-based silicon retina and temporal zero-crossing detector,” IEEE J. Solid-State Circuits, vol. 34, pp. 241-247, 1999.
[25] C. F. Chiu; C. Y. Wu, “The design of rotation-invariant pattern recognition using the silicon retina,” IEEE J. Solid-State Circuits, vol. 32, pp. 526–534, 1997.
[26] R. Eckmiller, “Learning retina implants with epiretinal contacts,” Ophthalmic Res., vol. 29, pp. 281-289, 1997.
[27] A. Hung, D. Zhou, R. Greenberg, J. W. Judy, “Micromachined electrodes for retinal prostheses,” 2nd Annu. Int. IEEE-EMB Special Topic Conf. on Microtechnologies in Medicine & Biology, pp. 76-79, 2002.
[28] W. Liu, E. McGucken, M. Clements, S. C. DeMarco, K. Vichienchom, C. Hughes, M. S. Humayun, E. de Juan, J. Weiland, and R. Greenberg, “An implantable neuro-stimulator device for a retinal prosthesis,” IEEE Int. Solid-State Circuits Conf., pp. 216–217, 1999.
[29] W. Liu, E. McGuken, K. Vichienchom, M. Clements, E. de Juan, and M. Humayun, “Dual unit visual intraocular prosthesis,” in Proc. of 19th Annu. Int. Conf. of IEEE Eng. Med. Biol. Mag., pp. 2303–2306, 1997.
[30] J. F. Rizzo, M. Socha, D. Edell, B. Antkowiak, and D. Brock, “Development of a silicone retinal implant: Surgical methods and mechanical design,” Invest. Ophthal. Vis. Sci., vol. 34, p. 1535, 1994.
[31] H. Kanda, T. Yagi, Y. Ito, S. Tanaka, M. Watanabe, Y. Uchikawa, “Efficient stimulation inducing neural activity in retinal implant,” IEEE Int. Conf. on Systems, Man, and Cybernetics, vol. 4, pp. 409-413, 1999.
[32] W. Liu, K. Vichienchom, M. Clements, S. C. DeMarco, C. Hughes, E. McGucken, M. S. Humayun, E. De Juan, J. D. Weiland, R. Greenberg, “A neuro-stimulus chip with telemetry unit for retinal prosthetic device,” IEEE J. Solid-State Circuits, vol. 35, pp. 1487-1497, 2000.
[33] M. Schwarz, R. Hauschild, B. J. Hosticka, J. Huppertz, T. Kneip, S. Kolnsberg, W. Mokwa, H. K. Trieu, “Single-chip CMOS image sensors for a retina implant system,” IEEE trans. circuits syst.: analog and digital processing, vol. 46, pp. 870-877, 1999.
[34] J. F. Rizzo, J. Wyatt, “prospects for a visual prosthesis,” Neuroscientist, vol. 3, no. 4, 1997.
[35] J. M. Rabaey, A. Chandrakasan, and B. Nikolic, Digital integrated circuits: a design perspective, 2nd ed. Pearson Education Inc., 2003.
[36] G. J. Suaning, N. H. Lovell, “CMOS neurostimulation ASIC with 100 channels, scaleable output, and bidirectional radio-frequency telemetry,” IEEE Trans. Biomed. Eng., vol. 48, pp. 248-260, 2001.
[37] B. Razavi, Design of Analog CMOS Integrated Circuits. McGraw-Hill companies, Inc., 2001
[38] R. J. Greenberg, T. J. Velte, M. S. Humayun, G. N. Scarlatis, E. de Juan, “A computational model of electrical stimulation of the retinal ganglion cell,” IEEE Trans. on Biomedical Engineering, vol. 46, pp. 505-514, 1999.
[39] R. Hornig, R. Eckmiller, “Optimizing stimulus parameters by modeling multi-electrode electrical stimulation for retina implants,” in Proc. of Int. Joint Conf. on Neural Netw., vol. 2, pp. 860-865, 2001.
[40] W. Liu, “Intraocular retinal prosthesis: microelectronics meets medicine,” IEEE Int. Microprocesses and Nanotechnology Conf., pp. 2-3, 2001.
[41] H. K. Trieu, L. Ewe, W. Mokwa, M. Schwarz, B. J. Hosticka, “Flexible silicon structures for a retina implant,” in Proc. of 11th Annu. Int. Workshop on Microelectromechanical Systems, pp. 515-519, 1998.
[42] M. Masson, “Retinal implants: literature work in experimental material physics,” Royal Institute of Technology, 1999.
[43] G. Lazzi, S. C. DeMarco, W. Liu, and M. S. Humayun, “Simulated temperature increase in a head/eye model containing an intraocular retinal prosthesis,” Antennas and Propag. Int. Symp., vol. 2, pp. 72-75, 2001.
[44] J. Schierholz, B. Jansen, L. Jaenicke, and G. Pulverer, “In-vitro efficacy of an antibiotic releasing silicone ventricle catheter to prevent shunt infection,” Biomaterials, vol. 15, pp. 996-1000, 1994.
[45] M. Schwarz, L. Ewe, N. Hijazi, B. J. Hosticka, J. Huppertz, S. Kolnsberg, W. Mokwa, H. K. Trieu, “Micro implantable visual prostheses,” 1st Annu. Int. Conf. on Microtechnologies in Medicine and Biology, pp. 461–465, 2000.
[46] J. A. Brabyn, “New developments in mobility and orientation aids for the blind,” IEEE trans. Biomed. Eng., vol. 29, pp. 285-289, 1982.
[47] T.Yagi, N. Ito, M.Watanabe, T. Matsushima, and Y. Uchikawa, “A study on hybrid artificial retina with cultured neural cells and semi-conductor micro-device,” in Proc. of IEEE Int. Joint Conf. on Neural Netw., pp. 780–783, 1998.
[48] http://www.bnblasik.idv.tw/Info/info.asp?R=16
[49] http://www.eyesight.org/
[50] K. Arabi, M. A. Sawan, “Electronic design of a multichannel programmable implant for neuromuscular electrical stimulation,” IEEE trans. Neural Syst. Rehabil. Eng., vol. 7, pp. 204-214, 1999.
[51] R. Eckmiller, M. Becker, R. Hunermann, “Towards a learning retina implant with epiretinal contacts,” IEEE Int. Conf. on Systems, Man, and Cybernetics, vol. 4, pp. 396-399, 1999.
[52] http://safeemf.iroe.fi.cnr.it/tissprop/#appl
[53] P. Bernardi, M. Cavagnaro, S. Pisa, E. Piuzzi, “SAR distribution and temperature increase in an anatomical model of the human eye exposed to the field radiated by the user antenna in a wireless LAN,” IEEE trans. on Microwave Theor. Tech., vol. 46, pp. 2074-2082, 1998.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top