跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/06 12:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林以文
研究生(外文):Yi-Wen Lin
論文名稱:在大白鼠海馬體中突觸可塑性的機制探討
論文名稱(外文):Mechanisms of synaptic plasticity in the rat hippocampus
指導教授:邱蔡賢邱蔡賢引用關係閔明源楊琇雯楊琇雯引用關係
指導教授(外文):Tsai-Hsien ChiuMing-Yuan MinHsiu-Wen Yang
學位類別:博士
校院名稱:國立陽明大學
系所名稱:生理學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
中文關鍵詞:海馬體突觸可塑性長期增益長期抑制正腎上腺素熱休克蛋白
外文關鍵詞:hippocampussynaptic plasticityLTPLTDnorepinephrineheat shock protein
相關次數:
  • 被引用被引用:0
  • 點閱點閱:221
  • 評分評分:
  • 下載下載:33
  • 收藏至我的研究室書目清單書目收藏:0
在哺乳類中樞神經系統之中,突觸可塑性為突觸之間的傳導效能持續長期性的改變,而長期被認定為學習記憶的細胞級機制。在興奮性傳導路徑當中,長期增益與長期抑制即是突觸可以依據被使用的歷史而適當的改變突觸傳導效能,並為突觸可塑性中兩個最重要的模式,更提供了中樞神經系統中記憶儲存的細胞級機制。長期增益與長期抑制可以依不同的實驗方法而被引發,單突觸型長期增益可以被一個短暫而高頻率的刺激所引發;相反地,以低頻率的刺激一段時間之後可以引發出單突觸型長期抑制。另一方面,相關性長期增益與長期抑制可以因同時配合突觸前刺激與突觸後細胞的活性,包括:突觸後細胞膜的去極化、突觸後神經元回溯性的動作電位、和其他突觸的刺激活性配合而被引發出來。動作電位與興奮性突觸後電位的同時存在已被發現可以引發突觸傳導效能的改變,配合動作電位與興奮性突觸後電位可以增加或減少對突觸傳導效能的調節。突觸前、後細胞的活性配合時間對於神經迴路之中訊息的儲存是相當重要的。在大白鼠海馬體之中引發單突觸型長期增益需要NMDA接受器的活化而增加突觸後細胞膜的鈣離子的濃度進而活化一連串的引發長期增益需要的次級傳導訊息物質。
在此研究之中,我們首先檢視在大白鼠海馬體CA1突觸中熱前處理對於單突觸型長期增益的影響。免疫組織化學染色法結果中指出,在海馬體CA1區域中熱休克蛋白70在熱前處理後的第2小時開始被引發出來,在第16小時達到最高值,最後在第48小時又降低。由此可知熱休克蛋白70的表現是與時間具相關性的,在此時間點我們發現在對照組別的腦組織切片當中以高頻率的刺激(100Hz)可以引發單突觸型長期增益的表現(興奮性突觸後電位為原來的191±8%;n=7),但加入scopolamine會抑制長期增益的表現(115±3%;n=7),值得注意的是熱前處理可以成功地避免這種抑制的現象(217%±33%;n=7)。同時,在熱前處理後的第2或48小時熱休克蛋白的表現與長期增益的反應都相對的較小,這些結果顯示熱休克蛋白的引發是與時間具相關性的而且可以避免scopolamine所引起抑制長期增益的現象。
接下來我們進一步研究在大白鼠海馬體CA1突觸中正腎上腺素b型接受器對於調節相關性長期增益與長期抑制所扮演的角色。首先在海馬體腦組織切片之中刺激兩個獨立的Schaffer collateral 路徑,其中弱的路徑中興奮性突觸後電位的反應較小,通常為最大反應的20-30%;另外一個為強的路徑通常引發至最大反應的80-90%。在記錄以0.033Hz所引發基礎的興奮性突觸後電位之後,在弱的路徑上可以因配合弱與強的刺激路徑而引發出相關性長期增益(每六秒一次共100次,弱的刺激路徑在強的刺激路徑之前 3-10 ms),然而當在兩個路徑之間的配合時間差大於10 ms時即無法形成相關性長期增益,此類型長期增益的引發是需要依賴活化NMDA接受器的,因為給予50 mM的D,L-AP5可以阻斷相關性長期增益的引發(興奮性突觸後電位為原來的105±6﹪;n=6)。經由外界給予1 mM的正腎上腺素b型接受器的致效劑isoproterenol(Iso)可以延長引發長期增益的配合時間差至15 msec但是並不會影響以10 ms配合時間差所引發出來的長期增益的振幅大小,以全細胞嵌定技術也可以得到相似的結果,這些結果證實活化正腎上腺素b型接受器可以強化相關性長期增益是增加引發長期增益的時間差而不是長期增益的大小。活化正腎上腺素b型接受器強化相關性長期增益可以被 protein kinase A(PKA)或是mitogen-activated protein kinase(MAPK)事先處理過的腦組織切片中所抑制,推論這些次級訊息傳導路徑是參與在相關性長期增益引發的過程的。相反地,相關性長期抑制可以在弱與強的刺激之間以0.167Hz的頻率刺激配合100次時引發出來(強的刺激在弱的刺激之前100ms之內),此相關性長期抑制需要活化NMDA接受器與PP2B去磷酸酵素,因為其抑制劑如50 mM D, L-AP5或10 mM cypermethrin可以抑制此長期抑制的引發。經由外界給予1 mM Iso可以抑制相關性長期抑制的表現,而此抑制現象可以被正腎上腺素β型接受器的抑制劑timolol所阻斷,推測正腎上腺素β型接受器確實參與在抑制相關性長期抑制的表現,而此抑制現象是需要活化PKA與MAPK蛋白激素的。
最後我們將在海馬體Dentate Gyrus(DG)的lateral perforant pathway(LPP)突觸之中研究spike-timing dependent plasticity (STDP) 的機制,其中一支刺激電極擺置在LPP用以刺激記錄興奮性突觸後電位,同時另一支刺激電極則擺置於mossy fiber用以刺激回溯性動作電位。在一段0.033 Hz頻率10分鐘的基礎刺激之後,相關性長期增益可以被引發出來(興奮性突觸後電位在回溯性動作電位之前30 ms之內,並以0.167Hz的頻率共配合100次),當配合時間差大於30 ms時長期增益就無法被引發了。以目前的配合方法所引發出來的長期增益是需要依賴NMDA接受器的,因為加入50 mM的D, L-AP5 可以抑制其引發。有趣的是當以小於-40 ms的配合時間差將回溯性動作電位與興奮性突觸後電位做配合實驗的話結果會導致形成相關性長期抑制(回溯性動作電位在興奮性突觸後電位之前),此長期抑制的引發也是需要NMDA接受器的活化的。相關性長期增益不能在經由CaMKⅡ(calcium/ calmodulin-dependent protein kinase II)、 protein kinase C(PKC)and MAPK等激素的阻斷劑處理過後的腦組織切片中被引發,證實這些訊息傳導路徑是含括在LPP突觸之中相關性長期增益的引發的。此配合實驗所引發的相關性長期增益以及長期抑制都可以至少維持超過4個小時以上,證實現有的配合實驗可以引發出晚期性的長期增益和長期抑制,這些晚期性的長期增益和長期抑制是需要新的蛋白質形成的,因為蛋白質合成抑制劑anisomycin可以阻斷晚期性的長期增益和長期抑制的表現。
Synaptic plasticity is a persistent change in the strength of synaptic efficacy that is long been considered as cellular mechanism of learning and memory in the mammalian CNS. Long-term potentiation (LTP) and long term depression (LTD) of excitatory synaptic transmission are two important forms of synaptic plasticity which is use-dependent change in synaptic efficacy, providing the best models of this cellular mechanism underlying memory storage in the CNS. Different experimental protocols typically used to induce LTP and LTD. Homosynaptic LTP can be induced by a brief high frequency stimulation; In contrast, one Hz stimulation for 15 min can reliably induce homosynaptic LTD. Associative LTP and LTD on the other hand can be induced by simultaneously pairing presynaptic stimulation with postsynaptic activity, including depolarization of postsynaptic membrane, back-propagating action potential of postsynaptic neurons, and activity produced by other synaptic inputs. The coincidence of action potentials(APs)and field excitatory postsynaptic potential(fEPSP)was found to induce changes in synaptic efficacy that was up- or down-regulated by pairing of APs and fEPSP. It is important that precise timing between pre- and postsynaptic activities may be used to encode information in neural networks. The induction of homosynaptic LTP in the rat hippocampus require N-methyl-D aspartate (NMDA) receptor activation and elevation of the postsynaptic calcium concentration, which in turn activate many second messengers required for LTP induction.
In this study, we first examined the effect of heat-shock pretreatment on homosynaptic LTP at rat hippocampal CA1 synapses. Immunohistochemical results indicated that the expression of heat shock protein 70(HSP70)in the CA1 area was elevated at 2 h, reached a maximum at 16 h, and then decayed at 48 h after heat-shock pretreatment. Thus, it is obvious that the expression of HSP70 was time-dependent. Focusing on that time point we found that high frequency stimulation (at 100 Hz) induced LTP of 191 ± 8% in control slices (n=7), which was suppressed by scopolamine to 115 ± 3 %. Heat-shock pretreatment successfully prevented such suppression (217% ± 38%, n=7). Both HSP expression and LTP responses were relatively small taken either 2 or 48 h after heat-shock treatment. These results suggest that the induction of HSPs is time-dependent and can prevent scopolamine-mediated LTP suppression.
Furthermore, we studied the role of b-adrenergic receptors in modulating associative LTP and LTD induced at rat hippocampal CA1 synapses. Two independent Schaffer collateral pathways were stimulated in hippocampal slices. The fEPSP response evoked in one pathway (the weak pathway) was small, usually 20–30% of the maximu, whereas a large response, usually 80–90% of the maximum, was evoked in the strong pathway. After recording of the baseline fEPSP evoked at 0.033 Hz, LTP of the weak pathway could be associatively induced by paired stimulation of the weak and strong pathways 100 times at 6 sec intervals, with stimulation of the weak pathway preceded 3–10 msec. However, pairing protocols with an interval between stimulation of the two pathways>10 msec resulted in no LTP. The induced LTP was NMDA receptor dependent, because 50 mM D,L-AP5 blocked its induction. Bath application of 1 mM Iso enhanced LTP by increasing the window of the stimulation interval up to 15 msec but did not affect the magnitude of the LTP induced by pairing protocols with intervals<10 msec. Similar results were obtained when the experiments were repeated using whole-cell recording. These results suggest that activation of b-adrenergic receptors can enhance associative LTP by increasing the width of the time window rather than the magnitude of the LTP. Enhancement of LTP by b-adrenergic receptors was blocked in slices by pretreatment with inhibitors of PKA or MAPK, suggesting that these signaling cascades are involved in this process. Associative LTD could be induced by paired stimulation of it and the strong pathway repeated 100 times at 0.167 Hz, with stimulation of the strong pathway preceding it within 100 ms. The associative LTD was NMDA receptor- and phophatase 2B-dependent because bath application of 50 mM D, L-AP5 or 10 mM cypermethrin blocked its induction. Bath application of 1 mM isoproterenol inhibited associative LTD, and this effect was blocked by timolol, suggesting the involvement ofβ-adrenergic receptors. The inhibitory effect of β-adrenergic receptors on LTD induction was blocked in slices pretreated with inhibitors of protein kinase A and mitogen-activated protein kinase, suggesting that these signal cascades are downstream effectors following activation of β-adrenergic receptors.
Finally, we investigated the expression of STDP at LPP synapses. One stimulating electrode was placed at LPP to evoke fEPSP. At the same time, another stimulating electrode was placed at mossy fiber to evoke antidromic APs. After 10 mins basal recording of fEPSP evoked at 0.033 Hz, associative LTP can be induced by pairing fEPSP with APs (fEPSP lead APs) with the delay interval within 30 ms for 100 times at 0.167 Hz. When the delay interval>30 ms, no LTP was induced. LTP induced by the present protocol was NMDA receptor dependent, as 50 mM D, L-AP5 blocked its induction. Interestingly, pairing APs with fEPSP (APs lead fEPSP) result in LTD with the delay interval<40ms. LTD induced here was also NMDA receptor dependent. LTP can not be induced when slices were pretreated with blockers of CaMKⅡ, PKC and MAPK, suggesting that these signal cascades were involved in the induction of associative LTP at LPP synapses. LTP and LTD induced by the present pairing protocol can be maintained for at least 4 hours suggesting present protocol can induce late phase LTP (L-LTP) and LTD (L-LTD). The L-LTP and L-LTD require protein synthesis because anisomycin blocked its expression.
Abe K, Kawagoe J, Aoki M, Kogure K (1993) Dissociation of HSP70 and HSC70 heat shock mRNA inductions as an early biochemical marker of ischemic neuronal death. Neurosci Lett 149:165-168.
Abraham WC, Mason-Parker SE, Bear MF, Webb S, Tate WT (2001) Heterosynaptic metaplasticity in the hippocampus: a BMC-like modifiable threshold for LTP. Proc Natl Acad Sci USA 98:10924–10929.
Alagarsamy S, Rouse ST, Junge C, Hubert GW, Gutman D, Smith Y, Conn PJ (2002) NMDA-induced phosphorylation and regulation of mGluR5. Pharmacol Biochem Behav. 73 (2):299-306
Alkadhi KA, AlHijailan RS, Malik K, Hogan YH (2001) Retrograde carbon monoxide is required for induction of long-term potentiation in rat superior cervical ganglion. J Neurosci 21(10):3515-3520.
Angulo MC, Lambolez B, Audinat E, Hestrin S, Rossier J (1997) Subunit composition, kinetic, and permeation properties of AMPA receptors in single neocortical nonpyramidal cells. J Neurosci 17:6685-6696.
Aston-Jones G, Shipley MT, Grzanna P (1993) The locus coeruleus, A5 and A7 noradrenergic cell groups. In: The rat nervous system (Paxinos G, ed), pp 183–213. San Diego:Academic.
Awad H, Hubert GW, Smith Y, Levey AI, Conn PJ (2000) Activation of metabotropic glutamate receptor 5 has direct excitatory effects and potentiates NMDA receptor currents in neurons of the subthalamic nucleus. J Neurosci 20(21):7871-7879.
Barr DS, Lambert NA, Hoyt KL, Moore SD, Wilson WA (1995) Induction and reversal of long-term potentiation by low- and high- intensity theta pattern stimulation. J. Neurosci 15:5402-5410.
Bartesaghi R and Ravasi L (1999) Pyramidal neuron types in field CA2 of the guinea pig. Brain Res Bull 50(4):263-273.
Bashir ZI, Collingridge GL (1992) NMDA receptor-dependent transient homo- and heterosynaptic depression in picrotoxin-treated hippocampal slices. Eur J Neurosci 4:485-490.
Basile AS, Fedorova I, Zapata A, Liu X, Shippenberg T, Duttaroy A, Yamada M, Wess J (2002) Deletion of the M5 muscarinic acetylcholine receptor attenuates morphine reinforcement and withdrawal but not morphine analgesia. Proc Natl Acad Sci USA 99:11452-11457.
Bear MF (1996) A synaptic basis for memory storage in the cerebral cortex. Proc Natl Acad Sci USA 93:13453-13459.
Bear MF (1996) Progress in understanding NMDA-receptordependent
synaptic plasticity in the visual cortex. J Physiol Paris 90:223-227.
Bear MF, Connors BW, Paradiso MA (2001) Synaptic transmission
in ”Neuroscience”. (Bear et al.,Ed). Chapter 5.
Bear MF, Kirkwood A (1996) Bidirectional plasticity of cortical synapses. In: Cortical plasticity: LTP and LTD (Fazeli MS, Collingridge GL, eds), pp 191–205. Oxford:BIOS Scientific.
Bear MF, Malenka RC (1994) Synaptic plasticity: LTP and LTD.
Current Opinion in Neurobiology 4:389-399
Bergado JA, Almaguer W (2002) Aging and synaptic plasticity: a review. Neural Plast. 9 (4):217-232.
Berman DE, Dudai Y(2001) Memory extinction, learning anew, and learning the new: dissociation in the molecular machinery of learning in cortex. Science 291:2417-2419.
Bi G, Poo MM (1998) Synaptic modification in cultured hippocampal neuron: dependence on spike timing, synaptic strength, and postsynaptic cell type. J Neurosci 18:10464-10472.
Birnbaum G (1995) Stress proteins: their role in the normal central nervous system and in disease states, especially multiple sclerosis. Springer sem. Immunopathol 17:107-118
Bliss TVP, Collingridge GL (1993) Synaptic model of memory: long term potantiation in the hippocampus. Nature 361:31-39.
Bliss TVP, Lomo T (1973) Long lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of perforant path. J Physiol (Lond) 232:331-356.
Blitzer RD, Gil O, Landau EM (1990) Cholinergic stimulation enhances long-term potentiation in the CA1 region of rat hippocampus. Neurosci Lett 118: 207-210.
Bon CLM and Garthwaite J (2003) On the Role of Nitric Oxide in Hippocampal Long-Term Potentiation 23:1941-1948.
Bouton ME, Bolles RC (1979) Role of contextual stimuli in reinstatement of extinguished fear. J Exp Psychol [Anim Behav] 5:368-378.
Bouton ME, King DA (1983) Contextual control of conditioned fear: tests for the associative value of the context. J Exp Psychol [Anim Behav] 9:248-256.
Buonomano DV (1999) Distinct functional types of associative long-term potentiation in neocortical and hippocampal pyramidal neurons. J Neurosci 19 (16): 6748-6754.
Bushell TJ, Jane DE, Tse H-W, Watkins JC, Garthwaite J, Collingridge GL (1996) Pharmacological antagonism of the actions of group II and III mGluR agonists in the lateral perforant path of rat hippocampal slices. Br J Pharmacol 117:1457-1462
Calabresi P, Centonze D, Gubellini P, Bernardi G (1999) Activation of M1-like muscarinic receptors is required for the induction of corticostriatal LTP. Neurophar 38:323-326.
Cardile V, Scifo C, Russo A, Falsaperla M, Morgia G, Motta M, Renis M, Imbriani E, Silvestre G (2003) Involvement of HSP70 in resveratrol -induced apoptosis of human prostate cancer. Anticancer Res 23:4921-4926.
Chen YL, Huang CC, Hsu KS (2001) Time-dependent reversal of long-term potentiation by low-frequency stimulation at the hippocampal mossy fiber-CA3 synapses. J Neurosci 21:3705-3714.
Chetaovich DM, Sweatt JD (1993) NMDA receptor activation increases cyclic AMP in area CA1 of the hippocampus via calcium/calmodulin stimulation of adenylyl cyclase. J Neurochem 61: 1933-1942.
Collingridge GL and SingerW (1990) Excitatory amino acid receptors and synaptic plasticity. Trends in Pharmacol Sci 11:290-296.
Colino A and malenka RC (1993) Mechanisms underlying induction of long-term potentiation in rat medial and lateral perforant paths in vitro. J Neurophysiol 69 (4):1150-1159.
Cooper DMF, Mons N, Karpen JW (1995) Adenylyl cyclase and the interaction between calcium and cAMP signaling. Nature 374:421-424.
Crépel V, Aniksztejn L, Ben-Ari Y, Hammond C (1994) Glutamate metabotropic receptors increase a Ca2+-activated nonspecific cationic current in CA1 hippocampal neurons. J Neurophysiol 72:1561-1569.

Davies CH, Clarke VRJ, Jane DE, Collingridge GL (1995) Pharmacology of postsynaptic metabotropic glutamate receptors in rat hippocampal CA1 pyramidal neurones. Br J Pharmacol 116:1859-1869.
Debanne D, Gahwiler BH and Thomson SM (1996) Cooperative interactions in the induction of long-term potentiation and depression of synaptic excitation between hippocampal CA3-CA1 cell pairs in vitro. Proc Natl Acad Sci USA 93:11225–11230.
Debanne D, Gahwiler BH, Thomson SM (1997) Bidirectional associative plasticity of unitary CA3-CA1 EPSPs in the rat hippocampus in vitro. J Neurophysiol 77:2851-2855.
Debanne D, Gahwiler BH, Thomson SM (1998) Long-term synaptic plasticity between pairs of individual CA3 pyramidal cells in rat hippocampal slice cultures. J Physiol (Lond) 507: 237-247.
Devic E, Xiang Y, Gould D, Kobilka B (2001) b-adrenergic receptor
subtype-specific signaling in cardiac myocytes from b1 and b2
adrenoceptor knockout mice. Mol Pharmacol 60:577-583.
Drouin C, Darracq L, Trovero F, Blanc G, Glowinski J, Cotecchia S,
Tassin JP (2002) α1B-Adrenergic receptors control locomotor and
rewarding effects of psychostimulants and opiates. J Neurosci 22,
2873-2884.
Dubocovich ML, Langer SZ (1974) Negative feed-back regulation
of noradrenaline release by nerve stimulation in the perfused cat’s
spleen: differences in potency of phenoxybenzamine in blocking the
pre- and post-synaptic adrenergic receptors. J Physiol 237:505-519.
Dudek SM, Bear MF (1992) Homosynaptic long-term depression in area CA1 of hippocampus and effects of N-methyl-D-aspartate receptor blockade. Proc Natl Acad Sci USA. 15 ; 89 (10):4363-4367.
Erisir A, Levey AI, Aoki C (2001) Muscarinic receptor M2 in cat visual cortex: Laminar distribution, relationship to gammaaminobutyric acidergic neurons, and effect of cingulate lesions. J Comp Neurol 441:168-185.
Feldman DE (2000) Timing-based LTP and LTD at vertical inputs to layer II/III pyramidal cells in rat barrel cortex. Neuron 27:45–56.
Feder ME, Hofmann GE (1999) Heat-shock proteins, molecular chaperones, and the stress responses: Evolutionary and Ecological physiology. Annu Rev Physiol 61:243-282.
Franowicz JS, Kessler LE, Borja CM, Kobilka BK, Limbird LE, Arnsten AF (2002) Mutation of the α2A-adrenoceptor impairs working memory performance and annuls cognitive enhancement by guanfacine. J Neurosci 22:8771-8777.
Frick A, Magee J, Johnson D (2004) LTP is accompanied by an enhanced local excitability of pyramidal neuron dendrites. Nat Neurosci 7(2) 126-135.
Froemke RC, Dan Y (2002) Spike-timing dependent synaptic modification induced by natural spike trains. Nature 416:433–438.
Fujii S, Saito K, Miyakawa H, Ito K, Kato H (1991) Reversal of long-term potentiation (depotentiation) induced by tetanus stimulation of the input to CA1 neurons of guinea pig hippocampal slices. Brain Res 555:112-122.
Gibbs ME, Summers RJ (2002) Role of adrenoceptor subtypes in memory consolidation. Progress in Neurobiology 67(5):345-391.
Gee CE, Benquet P, Gerber U (2003) Group I metabotropic glutamate receptors activate a calcium-sensitive transient receptor potential-like conductance in rat hippocampus. J Physiol 546 (Pt 3):655-664
Geiger JR, Melcher T, Koh DS, Sakmann B, Seeburg PH, Jonas P, Monyer H (1995) Relative abundance of subunit mRNAs determines gating and Ca2+ permeability of AMPA receptors in principal neurons and interneurons in rat CNS neuron. Neuron 15: 193-204.
Gereau RW, Conn PJ (1995) Roles of specific metabotropic glutamate receptor subtypes in regulation of hippocampal CA1 pyramidal cell excitability. J Neurophysiol 74:122-129
Giovannini MG, Blitzer RD, Wong T, Asoma K, Tsokas P, Morrison JH, Iyengar R, Landau EM (2001) Mitogen-activated protein kinase regulates early phosphorylation and delayed expression of Ca2+/calmodulin dependent protein kinase II in long-term potentiation. J Neurosci 21:7053–7062.
Gomeza J, Shannon H, Kostenis E, Felder C, Zhang L, Brodkin J, Grinberg A, Sheng H, Wess J (1999a) Pronounced pharmacologic deficits in M2 muscarinic acetylcholine receptor knockout mice. Proc Natl Acad Sci USA 96:1692-1697.
Gomeza J, Zhang L, Kostenis E, Felder C, Bymaster F, Brodkin J, Shannon H, Xia B, Deng C-X, Wess J (1999b) Enhancement of D1 dopamine receptor-mediated locomotor stimulation in M4 muscarinic acetylcholine receptor knockout mice. Proc Natl Acad Sci USA 96:10483-10488
Grassi S and Pettorossi VE (2001) Synaptic plasticity in the medial vestibular nuclei: role of glutamate receptors and retrograde messengers in rat brainstem slices Prog Neurobiol 64 (6): 527-553
Guérineau NC, Gähwiler BH, Gerber U (1994) Reduction of resting K+ current by metabotropic glutamate and muscarinic receptors in rat CA3 cells: mediation by G-proteins. J Physiol (Lond) 474:27-33.
Guérineau NC, Bossu J-L, Gähwiler BH, Gerber U (1995) Activation of a nonselective cationic conductance by metabotropic glutamatergic and muscarinic agonists in CA3 pyramidal neurons of the rat hippocampus. J Neurosci 15:4395-4407.
Gustafsson B, Wigstrom H, Abraham WC, Huang Y-Y (1987) Long-term potentiation in the hippocampus using depolarizing current pulses as the conditioning stimulus to single volley synaptic potentials. J Neurosci 7: 774–780.
Hamos JE, Oblas B, Pulaski-Salo D, Welch WJ, Bole DG, Drachman DA (1991) Expression of heat shock proteins in Alzheimer’s disease. Neurol 41:345-350.
Hanson PI, Heuser JE, Jahn R (1997) Neurotransmitter release-four years
of SNARE complexes. Current Opinion in Neurobiology 7: 310-315.
Hayashi Y, Momiyama A, Takahashi T, Ohishi H, Ogawa-Meguro R, Shigemoto R, Mizuno N, Nakanishi S (1993) Role of a metabotropic glutamate receptor in synaptic modulation in the accessory olfactory bulb. Nature 366:687-690.
Head MW and Goldman JE (2000) Small heat shock proteins, the cytoskeleton and inclusion body formation. Neuropath Appl Neurobiol. 26:304-312.
Hebb DO (1949) The organization of behavior. New York: Wiley.
Hein L, Altman JD, Kobilka BK (1999) Two functionally distinct
α2-adrenergic receptors regulate sympathetic neurotransmission. Nature
402:181-184.
Holland LL and Wagner JJ (1998) Primed Facilitation of homosynaptic long-term depression and depotentiation in rat hippocampus. J Neurosci 18: 887-894.
Hollmann M and Heinemann S (1994) Cloned glutamate receptors. Annl Rev Neurosci 17: 31-108.
Hormuzdi SG, Filippov MA, Mitropoulou G, Monyer H, Bruzzone R. (2004) Electrical synapses: a dynamic signaling system that shapes the activity of neuronal networks. Biochim Biophys Acta 23 ; 1662 (1-2) : 113-137.
Huang CC, Liang YC, Hsu KS (1999) A role for extracellular adenosine in time-dependent reversal of long-term potentiation by low-frequency stimulation at hippocampal CA1 synapses. J Neurosci 19: 9728-9738.
Huang YY, Kandel ER (1994) Recruitment of long-lasting and protein kinase A-dependent long-term potentiation in the CA1 region of hippocampus requires repeated tetanization. Learn Mem 1: 74-82.
HuangYY, Kandel ER (1996) Modulation of both the early and the late phase of mossy fiber LTP by activation of β-adrenergic receptors. Neuron 16: 611-617.
Huang Y-Y, Martin KC, Kandel ER (2000) Both protein kinase A and mitogen-activated protein kinase are required in the amygdala for the macromolecular synthesis-dependent late phase of long-term potentiation. J Neurosci 20: 6317-6325.
Huang YY, Pittenger C, Kandel ER (2004) A form of long-lasting, learning- related synaptic plasticity in the hippocampus induced by heterosynaptic low-frequency pairing. PNAS 101(3): 859- 864.
Huber KM, Roder JC, Bear MF (2001) Chemical induction of mGluR5- and protein synthesis--dependent long-term depression in hippocampal area CA1. J Neurophysiol 86(1):321-325.
Huerta PT, Lisman JE (1993) Heightened synaptic plasticity of hippocampal CA1 neurons during a cholinergically induced rhythmic state. Nature 364:723–725.
Hunter JC, Fontana DJ, Hedley LR, Jasper JR, Lewis R, Link RE, Secchi R, Sutton J, Eglen RM (1997) Assessment of the role of α2-adrenoceptor subtypes in the antinociceptive, sedative and hypothermic action of dexmedetomidine in transgenic mice. Br J Pharmacol 122:1339-1344.
Impey S, Obrietan K, Storm DR (1999) Making new connections: role of ERK/MAP kinase signaling in neuronal plasticity. Neuron 23:11–14.
Isomura y, Kato N (1999) Action potential- induced dendritic calcium dynamics correlated with synaptic plasticity in developing hippocampal pyramidal cells. J neurophysiol 82:1993-1999.
Itoh H, Kobayashi R, waui H (1995) Mammalian 60 kDa stress protein (chaperonin homolog). Identification, biochemical properties, and localization. J Biol Chem 270:13429-13435.
Kerr JND and Plenz D (2004) Action Potential Timing Determines Dendritic Calcium during Striatal Up-States. J Neurosci 24(4):877– 885.
Johnston D and Amaral DG (1998) Hippocampus in “The synaptic organization of the brain”(GM Shepherd, Ed) chapter 11.
Jonas P, Bischofberger J, Sandkuhler J (1998) Corelease of two fast neurotransmitters at a central synaoses. Science 281: 419-424.
Jonas P, Racca C, Sakmann B, Seeburg PH, Monyer H, (1994) Differences in Ca2+ permeability of AMPA-type glutamate receptor channels in neocortical neurons caused by differential GluR-B subunit expression. Neuron 12:1281-1289.
Karmarkar UR, Buonomano DV (2002a) A model of spike-timing dependent plasticity: One or two coincidence detectors?J Neurophysiol 88:507-513.
Karmarkar UR, Najarian MT, Buonomano DV (2002b) Mechanisms and significance of spike-timing dependent plasticity. Biol Cybern 87:373-382.
Kato N, Isomura Y, Tanaka T (2000) Intracellular calcium releases facilitate induction of long-term depression. Neuropharmacol 39:1107-1110.
Katsuki H, Izumi Y, Zorumski CF (1997) Noradrenergic regulation of synaptic plasticity in the hippocampal CA1 region. J Neurophysiol 77: 3013–3020.
Katsuki H, Kaneko S, Tajima A, Satoh M (1991) Separate mechanisms of long-term potentiation in two input systems to CA3 pyramidal neurons of rat hippocampal slices as revealed by the whole-cell patch-clamp technique. Neurosci Res 12:393-402.
Kanter D, Haberly LB (1993) Associative long-term potentiation in piriform cortex slices requires GABAA blockade. J Neurosci 13:2477-2482.
Kelso SR, Ganong AH, Brown TH (1986) Hebbian synapses in hippocampus. Proc Natl Acad Sci USA 83:5326-5330.
Kirkwood A, Bear MF. (1994) Hebbian synapses in visual cortex. J Neurosci. 14 (3 Pt 2) : 1634-1645.
Kirkwood A, Rozas C, Kirkwood J, Perez F, Bear MF (1999) Modulation of long term synaptic depression in visual cortex by acetylcholine and norepinephrine. J Neurosci 19:1599-1609.
Kirkwood A, Silva A, Bear MF (1997) Age-dependent decrease of synaptic plasticity in the neocortex of alphaCaMKII mutant mice. Proc Natl Acad Sci U S A. 94 (7):3380-3383.
Kobayashi K, Noda Y, Matsushita N, Nishii K, Sawada H, Nagatsu T, Nakahara D, Fukabori R, Yasoshima Y, Yamamoto T, Miura M, Kano M, Mamiya T, Miyamoto Y, and Nabeshima T (2000) Modest neuropsychological deficits caused by reduced noradrenaline metabolism in mice heterozygous for a mutated tyrosine hydroxylase gene J Neurosci 20: 2418-2426.
Kulla A, Reymann KG, Manahan-Vaughan D (1999) Time-dependent induction of depotentiation in the dentate gyrus of freely moving rats: involvement of group 2 metabotropic glutamate receptors. Eur J Neurosci 11:3864-3872.
Kregel KC (2002) Molecular biology of thermoregulation invated review: Heat shock proteins: modifying factors in physiological stress responses and acquired thermotolerance. J Appl Physiol 92:2177-2186.
La¨hdesma¨ki J, Sallinen J, MacDonald E, Kobilka BK, Fagerholm V, Scheinin M (2002) Behavioral and neurochemical characterization of α2A-adrenergic receptor knockout mice. Neuroscience 113:289- 299.
La¨hdesma¨ki J, Sallinen J, MacDonald E, Sirvio J, Scheinin M (2003a). α2-Adrenergic drug effects on brain monoamines, locomotion, and body temperature are largely abolished in mice lacking the α2A-adrenoceptor
subtype. Neuropharmacology 44:882-892.
La¨hdesma¨ki J, Scheinin M, Pertovaara A, Mansikka H (2003b) The α2A-adrenoceptor subtype is not involved in inflammatory hyperalgesia
or morphine-induced antinociception. Eur J Pharmacol 468:183-189.
Lakhlani PP, MacMillan LB, Guo TZ, McCool BA, Lovinger DM, Maze M, Limbird LE (1997) Substitution of a mutant α2A-adrenergic receptor via ‘‘hit and run’’ gene targeting reveals the role of this subtype in sedative, analgesic, and anesthetic-sparing responses in vivo. Proc Natl Acad Sci USA 94:9950-9955.
Larson J, Wong D, Lynch G (1986) Pattern stimulation at the theta frequency is optimal for the induction of hippocampal long-term potentiation. Brain Res 368:347-350.
Law CC, Bear MF, Cooper LN. (1994) Role of the visual environment in the formation of receptive fields according to the BCM theory. Prog Brain Res. 102:287-301.
Levy WB and Steward O (1983) Temporal contiguity requirements for long term associative potentiation/depression in the hippocampus. Neurosci 8: 791-797.
Lin CH, Yeh SH, Lu HY and Gean PW (2003) The Similarities and Diversities of Signal Pathways Leading to Consolidation of Conditioning and Consolidation of Extinction of Fear Memory. J Neurosci 23 (23): 8292-8299.
Lin Y-W, Min M-Y, Chiu T-H, Yang H-W (2003) Enhancement of Associative Long-Term Potentiation by Activation of b-Adrenergic Receptors at CA1 Synapses in Rat Hippocampal Slices. J Neurosci 23:4173-4181.
Link RE, Desai K, Hein L, Stevens ME, Chruscinski A, Bernstein D, Barsh GS, Kobilka BK (1996) Cardiovascular regulation in mice lacking α2-adrenergic receptor subtypes b and c. Science 273:803-805.
Liu J, Fukunaga K, Yamamoto H, Nishi K, Miyamoto E (1999) Differential roles of Ca2+/calmodulin-dependent protein kinase II and mitogenactivated protein kinase activation in hippocampal long-term potentiation. J Neurosci 19:8292-8299.
Luján R, Nusser Z, Roberts JDB, Shigemoto R, Somogyi P (1996) Perisynaptic location of metabotropic glutamate receptors mGluR1 and mGluR5 on dendrites and dendritic spines in the rat hippocampus. Eur J Neurosci 8:1488-1500.
Macek TA, Winder DG, Gereau RW, Ladd CO, Conn PJ (1996) Differential involvement of group II and group III mGluRs as autoreceptors at lateral and medial perforant path synapses. J Neurophysiol 76:3798-3806.
MacMillan LB, Hein L, Smith MS, Piascik MT, Limbird LE (1996) Central hypotensive effects of the a2A-adrenergic receptor subtype. Science 273:801-803.
Magee JC and Johnston D (1997) A synaptically controlled, associative signal for Hebbian plasticity in hippocampal neuron. Science 275:209-213.
Malenka RC, Nicoll RA (1999) Long term potentiation—a decade of progress? Science 285:1870-1875.
Malinow R, Miller JP (1986) Postsynaptic hyperpolarization during conditioning reversibly blocks induction of long-term potentiation. Nature 320:529-530.
Makhinson M, Chotiner JK, Watson JB, O’Dell TJ (1999) Adenylyl cyclase activation modulates activity-dependent changes in synaptic strength and Ca2+/calmodulin-dependent kinase II autophosphorylation. J Neurosci 19:2500-2510.
Markram H, Lubke J, Frotscher M, Sakmann B (1997) Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275:213-215.
Mathew A, Morimoto RI (1998) Role of heat shock response in the life and death of proteins. Ann N Y Acad Sci 851:99-111.
Matsui M, Motomura D, Karasawa H, Fujikawa T, Jiang J, Komiya Y, Takahashi S, Taketo MM (2000) Multiple functional defects in peripheral autonomic organs in mice lacking muscarinic acetylcholine receptor gene for the M3 subtype. Proc Natl Acad Sci USA 97:9579-9584.
Meldrum KK, Meldrum DR, Sezen SF, Crone JK, Burnett AL (2001) Heat shock prevents simulated ischemia-induced apoptosis in renal tubular cells via a PKC -dependent mechanism. Am J Physiol Regul Integr Comp Physiol 281(1):359-364.
Mello CV, Pinaud R, Ribeiro S (1998) Noradrenergic system of the zebra finch brain: immunocytochemical study of dopamine-beta-hydroxylase. J Comp Neurol 400(2):207-228.
Milner B, Squire LR, Kandel ER (1998) Congnitive neuroscience and the study of memory. Neuron 20:445-468.
Moore RY, Card JP (1984) Noradrenaline-containing neuron systems.
Handbook of chemical neuroanatomy 2:123-156.
Morris RGM, Anderson E, Lynch GS, Baudry M (1986) Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist AP5. Nature 319:774-776.
Mrzljak L, Levey AI, Goldman-Rakic PS (1993). Association of m1 and m2 muscarinic receptor proteins with asymmetric synapses in the primate cerebral cortex: Morphological evidence for cholinergic modulation of excitatory neurotransmission. Proc Natl Acad Sci USA 90:5194-5198.
Mrzljak L, Levey AI, Rakic P(1996) Selective expression of m2 muscarinic receptor in the parvocellular channel of the primate visual cortex. Proc Natl Acad Sci USA 93:7337-7340.
Muglia LJ, Storm DR (1999) Calcium-stimulated adenylyl cyclase activity is critical for hippocampus-dependent long term memory and late phase LTP. Neuron 23:787-798.
Mulkey RM, Endo S, Shenollkar S, Malenka RC (1994) Involvement of a calcineurin/inhibitor-1 phosphatase cascade in hippocampal long-term depression. Nature 369:486-488.
Nakamura T, Nakamura K, Lasser-Ross N, Barbara J, Sandler VM (2000)
Inositol 1,4,5-Trisphosphate (IP3)-Mediated Ca21 Release Evoked by
Metabotropic Agonists and Backpropagating Action Potentials in
Hippocampal CA1 Pyramidal Neurons. J neurosci 20(22):8365-8376.
Nakamura T, Lasser-Ross N, Nakamura K , Ross WN (2002) Spatial segregation and interaction of calcium signaling mechanisms in rat hippocampal CA1 pyramidal neurons. J physiol 543.2:465-480.
Nakanishi S, Masu M (1994) Molecular diversity and functions of glutamate receptors. Annu Rev Biophys Biomol Struct 23:319-348.
Neher E (1998) Vesicle pools and Ca2+ microdomains: new tools for
understanding their roles in neurotransmitter release. Neuron 20:389-399.
Newton H. Woo and Peter V. Nguyen (2003) Protein synthesis is required for synaptic immunity to depotentiation. J. Neurosci 23:1125-1132.
Nicoll RA, Malenka RC, Kauer JA (1990) Functional comparison of
neurotransmitter receptor subtypes in mammalian central nervous
system. Physiol Rev 70:513-565.
Nicholls JG, Martin AR, Wallace BG (1992) Principles of synaptic
Transmission. in “FROM NEURON TO BRAIN”(J.G.Nicholls, Ed).
Chapter 7.
O''Dell T, Kandel E (1994) Low-frequency stimulation erases LTP through an NMDA receptor-mediated activation of protein phosphatases. Learn Mem 1:129-139.
Otmakhova NA and Lisman JE (1996) D1/D5 dopamine receptors activation increases the magnitude of early long-term potentiation at CA1 hippocampal synapses. J Neurosci 23:7478-7486.
Otmakhova NA, Otmakhov N, Mortenson LH, Lisman JE (2000) Inhibition of cAMP pathway decreases early long-term potentiation at CA1 hippocampal synapses. J Neurosci 20:4446-4451.
Palmer MJ, Irving AJ, Seabrook GR, Jane DE, Collingridge GL (1997) The group I mGlu receptor agonist DHPG induces a novel form of LTD in the CA1 region of the hippocampus. Neuropharmacology 36(11-12):1517-1532.
Philipp M, Brede M, Hadamek K, Gessler M, Lohse MJ, Hein L (2002a) Placental α2-adrenoceptors control vascular development at the
interface between mother and embryo. Nat Genet 31:311-315.
Philipp M, Brede M, Hein L (2002b) Physiological significance of
a2-adrenergic receptor subtype diversity: one receptor is not enough.
Am J Physiol 283:287-295.
Philipp and Hein L(2004)Adrenergic receptor knockout mice: distinct functions of 9 receptor subtypes. Pharmacol & Ther. 101:65-74

Pin JP and Acher F (2002) The metabotropic glutamate receptors: structure, activation mechanism and pharmacology. Current Drug Targets - CNS & Neurological Disorders 1(3):297-317.
Pin JP, Duvoisin R (1995) Neurotransmitter receptors. I. The metabotropic glutamate receptors: structure and functions. Neuropharmacology 34:1-26
Planas AM, Soriano MA, Ferrer I, Rodriguez EF (1995) Kainic acid- induced
heat shock protein-70, mRNA and protein expression is inhibited by MK-801
in certain rat brain regions. Eur J Neurosci 7:293-304.
Pockett S, Slack JR, Peacock S (1993) Cyclic AMP and long-term potentiation in the CA1 region of rat hippocampus. Neuroscience 52(2):229-236.
Rafiee P, Shi Y, Pritchard KA Jr, Ogawa H, Eis AL, Komorowski RA, Fitzpatrick CM, Tweddell JS, Litwin SB, Mussatto K, Jaquiss RD, Baker JE. (2003) Cellular redistribution of inducible Hsp70 protein in the human and rabbit heart in response to the stress of chronic hypoxia: role of protein kinases. J Biol Chem. 278 (44):43636-43644.
Richter-Landsberg C and GoldbaumO (2003) Stress proteins in neural cells: functional roles in health and disease. Cell Mol Life Sci 60:337-349.
Roberson ED, English JD, Sweatt JD (1996) Second messengers in LTP and LTD. In: Cortical plasticity: LTP and LTD (Fazeli MS, Collingridge GL, eds), pp 35–60. Oxford:BIOS Scientific.
Roberson ED, English JD, Adams JP, Selcher JC, Kondratick C and Sweatt JD (1999) The Mitogen-Activated Protein Kinase Cascade Couples PKA and PKC to cAMP Response Element Binding Protein phosphorylation in Area CA1 of Hippocampus. J Neurosci 19:4337-4348.
Roberson MR and Harrell LE (1997) Cholinergic activity and amyloid precursor protein metabolism. Brain Res Revs 25:50-69.
Rouse ST, Marino MJ, Potter LT, Conn PJ, Levey AI (1999) Muscarinic receptor subtypes involved in hippocampal circuits. Life science 64:505-509.
Rozsa B, Zelles T, Vizi ES, Lendvai B. (2004) Distance-dependent scaling of calcium transients evoked by backpropagating spikes and synaptic activity in dendrites of hippocampal interneurons. J Neurosci 24 (3):661-670.
Rush AM, Wu J, Rowan MJ, Anwyl R (2002) Group I metabotropic glutamate receptor (mGluR)-dependent long-term depression mediated via p38 mitogen-activated protein kinase is inhibited by previous high-frequency stimulation and activation of mGluRs and protein kinase C in the rat dentate gyrus in vitro. J Neurosci 22 (14):6121-6128
Rush DK (1988) Scopolamine amnesia of passive avoidance: a deficit of information acquisition. Behav Neural Biol 50 (3):255-274.
Saar D, Grossman Y, Barkai E (2001) Long-lasting cholinergic modulation underlies rule learning in rats. J Neurosci 21: 1385-1392.
Samali A and Orrenius S, (1998) Heat shock proteins: regulators of stress response and apoptosis. Cell stress chaperones. 3:228-236.
Sastry BR, Goh JW, Auyeung A (1986) Association induction of posttetanic and long-term potentiation in CA1 neurons of rat hippocampus. Science 232:989-990.
Sato K, Matsuki N (2002) A 72 kDa heat shock protein is protective against the selective vulnerability of CA1 neurons and is essential for the tolerance exhibited by CA3 neurons in the hippocampus. Neurosci 109(4):745-756.
Scanziani M, Gahwiler BH, Thompson SM (1995) Presynaptic inhibition of excitatory synaptic transmission by muscarinic and metabotropic glutamate receptor activation in the hippocampus: are Ca2+ channels involved? Neuropharmacology 34:1549-1557.
Scheibel T and Buchner J (1998) The HSP90 complex- a suppe- chaperone mechanism as a novel drug target. Biochem Pharmacol 56:675-682.
Scheiderer CL, Dobrunz LE, McMahon LL (2004) Novel form of long-term synaptic depression in rat hippocampus induced by activation of {alpha}1 adrenergic receptors. J Neurophysiol 91(2):1071-1077.
Scheinin M, Sallinen J, Haapalinna A (2001) Evaluation of the α2 -adrenoceptor as a neuropsychiatric drug target studies in transgenic
mouse models. Life Sci 68:2277-2285.
Schoepp DD, Goldsworthy J, Johnson BG, Salhoff CR, Baker SR (1994) 3,5-Dihydroxyphenylglycine is a highly selective agonist for phosphoinositide-linked metabotropic glutamate receptors in the rat hippocampus. J Neurochem 63:769-772.
Schwinn DA (1993) Adrenoceptors as models for G protein-coupled receptors: structure, function and regulation. Br J Anaesth 71 (1) : 77-85.
Segal M, Auerbach JM (1997) Muscarinic receptors involved in
hippocampal plasticity. Life Sci 60: 1085-1091.
Shepherd GM and Koch C (1998) Introduction to synaptic
circuits.in”The synaptic organization of the brain”(G.M.Shepherd,Ed.),
chapter1.
Sherrington C (1906) Integrative action of the nervous system. New
Haven: Yale University Press.
Shigemoto R, Kinoshita A, Wada E, Nomura S, Ohishi H, Takada M, Flor PJ, Neki A, Abe T, Nakanishi S, Mizuno N (1997) Differential presynaptic localization of metabotropic glutamate receptor subtypes in the rat hippocampus. J Neurosci 17(19):7503-7522.
Smith BJ, Yaffe MP (1991) Uncoupling thermotolerance from the induction of heat shock proteins. Proc Natl Acad Sci USA 88:11091-11094.
Song S, Miller KD, Abbott LF (2000) Competitive Hebbian learning through spike-timing-dependent plasticity. Nat Neurosci 3:919-926.
Spreng M, Cotecchia S, Schenk F (2001) A behavioral study of
α1B-adrenergic receptor knockout mice: increased reaction to novelty
and selectively reduced learning capacities. Neurobiol Learn Mem 75:
214-229.
Stanton PK, Sarvey JM (1985) Depletion of norepinephrine, but not serotonin, reduces long term potentiation in the dentate gyrus of rat hippocampal slices. J Neurosci 5:2169-2176.
Stäubli U and Scafidi J (1999) Time-dependent reversal of long-term potentiation in area CA1 of the freely moving rat induced by theta pulse stimulation. J Neurosci 19:8712-8719
Strosberg AD (1993) Structure, function, and regulation of adrenergic receptors. Protein Sci 2 (8) : 1198-209
Swartz KJ, Bean BP (1992) Inhibition of calcium channels in rat CA3 pyramidal neurons by a metabotropic glutamate receptor. J Neurosci 12:4358-4371.
Takahashi T, Forsythe ID, Tsujimoto T, Barnes-Davies M, Onodera K (1996) Presynaptic calcium current modulation by a metabotropic glutamate receptor. Science 274:594-597.
Thomas MJ, Moody T, Makhinson M, O’Dell TJ (1996) Activity-dependent β-adrenergic modulation of low-frequency stimulation-induced LTP in the hippocampal CA1 region. Neuron 17:475-482.
Tigges M, Tigges J, Rees H, Rye D, Levey AI (1997) Distribution of muscarinic cholinergic receptor proteins m1 to m4 in area 17 of normal and monocularly deprived rhesus monkeys. J Comp Neurol 388:130-145.
Trendelenburg AU, Sutej I, Wahl CA, Molderings GJ, Rump LC, Starke K (1997) A re-investigation of questionable subclassifications of presynaptic α2-autoreceptors: rat vena cava, rat atria, human kidney and guinea-pig urethra. Naunyn-Schmiedeberg’s Arch Pharmacol 356:721-737.
Trendelenburg AU, Klebroff W, Hein L, Starke K (2001) A study of presynaptic α2-autoreceptors inα2A/D-,α2B- andα2C-adrenoceptordeficient
mice. Naunyn-Schmiedeberg’s Arch Pharmacol 364:117-130.
Trimarchi JR and Murphey RK (1997) The shaking-B2 mutation disrupts
electrical synapses in a flight circuit in adult drosophila. J Neurosci 17(12):4700-4710.
Tsubokawa H, Offermanns S, Simon M, Kano M (2000) Calcium- dependent persistent facilitation of spike backpropagation in the CA1 pyramidal neurons. J Neurosci 20(13):4878–4884.
Tsuji M, Inanami O, Kuwabara M (2000) Neuroprotective effect of
α-phenyl-N-tert-butylnitrone in gerbil hippocampus is mediated by the mitogen-activated protein kinase pathway and heat shock proteins. Neurosci Lett 282:41-44.
Watabe AM, Zaki PA, O’Dell TJ (2000) Coactivation of β-adrenergic and cholinergic receptors enhances the induction of long-term potentiation and synergistically activates mitogen-activated protein kinase in the hippocampal CA1 region. J Neurosci 20:5924-5931.
Winder DG, Martin KC, Muzzio IA, Rohrer D, Chruscinski A, Kobilka B, Kandel ER (1999) ERK plays a regulatory role in induction of LTP by theta frequency stimulation and its modulation by beta-adrenergic receptors. Neuron 24:715-726.
Wong ST, Athos J, Figueroa XA, Pineda VV, Schaefer ML, Chavkin CC,
Xiao MY, Zhou Q, Nicoll RA (2001) Metabotropic glutamate receptor activation causes a rapid redistribution of AMPA receptors. Neuropharmacology. 41(6):664-671.
Xiong W, Wei H, Xiang X, Cao J, Dong Z, Wang Y, Xu T, Xu L. (2004) The effect of acute stress on LTP and LTD induction in the hippocampal CA1 region of anesthetized rats at three different ages. Brain Res. 1005 (1-2) :187-192.
Yamada M, Miyakawa T, Duttaroy A, Yamanaka A, Moriguchi T, Makita R, Ogawa M, Chou CJ, Xia B, Crawley JN, Felder CC, Deng C-X, Wess J (2001) Mice lacking the M3 muscarinic acetylcholine receptor are hypophagic and lean. Nature 410:207-212.
Yang HW, Lin YW, Yen CD, Min MY (2002) Change in bi-directional plasticity at CA1 synapses in hippocampal slices taken from 6-hydroxydopamine treated rats: the role of endogenous norepinephrine. Eur J Neurosci 16:1117-1128.
Ye L, Qi JS, Qiao (2001) JT Long-term potentiation in hippocampus of rats is enhanced by endogenous acetylcholine in a way that is independent of N-methyl-D-aspartate receptors. Neurosci Lett 300:145-148.
Yenari MA. (2002) Heat shock proteins and neuroprotection. Adv Exp Med Biol. 513:281-299.
Yokoi M, Kobayashi K, Manabe T, Takahashi T, Sakaguchi I, Katsuura G, Shigemoto R, Ohishi H, Nomura S, Nakamura K, Nakao K, Katsuki M, Nakanishi S (1996) Impairment of hippocampal mossy fiber LTD in mice lacking mGluR2. Science 273:645-647
Yuan LL, Adams JP, Swank M, Sweatt JD, Johnston D (2002) Protein kinase
modulation of dendritic K+ channels in hippocampus involves a
mitogen-activated protein kinase pathway. J Neurosci 22 (12):4860-4868.
Zalutsky RA, Nicoll RA (1990) Comparison of two forms of long-term potentiation in single hippocampal neurons. Science 248:1619-1624.
Zhang L, Pelech S, Uitto VJ (2004) Bacterial GroEL-like heat shock protein 60 protects epithelial cells from stress-induced death through activation of ERK and inhibition of caspase 3. Exp Cell Res 292 (1): 231-240.
Zho WM, You JL, Huang CC, Hsu KS (2002) The group I metabotropic glutamate receptor agonist (S)-3,5-Dihydroxyphenylglycine induces a novel form of depotentiation in the CA1 region of the hippocampus. J. Neurosci 22:8838-8849.
Zhu WZ, Wang SQ, Chakir K, Yang D, Zhang T, Brown JH, Devic E, Kobilka BK, Cheng H, Xiao RP (2003) Linkage of β1-adrenergic stimulation to apoptotic heart cell death through protein kinase A-independent activation of Ca2 + /calmodulin kinase. J Clin Invest 111:617-625.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊