跳到主要內容

臺灣博碩士論文加值系統

(3.236.68.118) 您好!臺灣時間:2021/08/04 20:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:歐陽秀宜
研究生(外文):Hsiu-Yi Oyang
論文名稱:人類逆轉學習作業之電生理研究
論文名稱(外文):An electrophysiological study on human reversal learning task
指導教授:曾志朗曾志朗引用關係洪蘭洪蘭引用關係
指導教授(外文):Ovid J.-L. TzengDaisy-L. Hung
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:神經科學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:53
中文關鍵詞:逆轉學習事件相關電位技術機率學習決策回饋
外文關鍵詞:reversal learningERPprobabilistic learningdecision makingfeedback
相關次數:
  • 被引用被引用:0
  • 點閱點閱:591
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
「逆轉學習」(Reversal Learning) 關涉個體適應外在環境中刺激-酬償之關聯性改變的行為調整歷程,而此種能力與社會化情緒性行為相關(Rolls, 1999)。雖然已經有許多研究關注逆轉學習的歷程,但是對於此種學習的動態歷程研究仍付之闕如。以往的腦造影研究分別從回饋訊息給予以及行為調整等不同歷程切入探討逆轉學習,雖然識別出與逆轉學習相關神經機制,但是卻缺乏對於此項學習整體動態歷程之瞭解。
本實驗採用對於時間敏感度高的事件相關電位技術(event-related potential ,ERP) 紀錄13位正常受試者執行逆轉學習作業時之電位表現。逆轉學習作業之執行程序如下:實驗呈現兩種圖形,一開始受試者需以試誤法(try and error method)判斷應該對哪個圖形做按鍵反應,實驗設計情境中給予負向回饋作為行為型態需逆轉之訊號,受試者在接收到負向回饋訊息時,應逆轉行為反應形態,對另一個圖形做按鍵反應。實驗結果顯示,當受試者接受到負向回饋後約220-300毫秒間,腦部額葉區會產生一個負波,而此負波似與「開始改變行為策略」之歷程相關(Miltner et al ., 1997; Papo et al., 2003) ;而當受試者看到逆轉為無關物體刺激後約200-300毫秒時,則觀察到與抑制機制運作相關的N2波,此N2波相較於簡單的物體區辨作業而言振幅較大,顯示逆轉學習作業似乎需要花費較大的認知資源進行抑制活動。再則,我們得到符合抑制假說之逆轉學習作業動態歷程變化腦波,顯示當受試者接受到負向回饋後的第一個嘗試相較於第二、三嘗試而言,N2波呈現遞減的現象。
綜上所述,藉由使用事件相關電位技術(event-related potential ,ERP),我們在一個作業中便觀測到受試者腦部區域接受到負向回饋及伴隨其後的行為調整歷程,同時也精細地描述出逆轉學習之動態歷程變化。本研究對逆轉學習機制的可能認知歷程進行探討與分析,同時也提供額葉與腦部後區如何根據回饋訊息行塑行為反應提供神經科學證據。
Reversal learning involves the adaptation of behavior according to changes in stimulus–reinforcement contingency, a capacity relevant to socio-emotional behavior (Rolls, 1999). Although a large number of studies have been carried out on reversal learning, little is known about the temporal dynamics of this process. Previous neuroimaging studies have investigated reversal learning from two different perspectives and identified the specific neural mechanisms associated with the feedback evaluation and behavioral alteration processes. However, the linkage of these two processes was not clear.
In the present study, we used the event-related potential (ERP) to characterize electrophysiological activities of 13 normal subjects during reversal learning. Reversal learning task is exemplified by an object discrimination task (OD task) where subjects must learn to respond according to the opposite, previously irrelevant, stimulus–feedback pairing. When subjects receive feedback indicating to reverse their behavior pattern, a negative deflection is observed in the ERP. The negative peaks between 220 and 300 msec following negative feedback is larger at central frontal area and is greater in the reversal learning task than in the probabilistic object discrimination task (POD task).
We also assessed executive control process in the reversal learning task and the OD task. The peak latency of NoGo-N2 at Fz is delayed in the reversal learning task compared to that in the OD task and the N2 component of reversal shift trials was greater than that of OD trials. The foregoing analyses of the early-late shift in the reversal learning task show greater amplitude in the 1st shift trials than in the pre-shift trials and the N2 effect is much larger in 1st shift than in 2nd and 3rd shift trials. These results may reflect the dynamic process of frontal inhibition mechanism in reversal learning.
It follows from what has been said that, by using ERP, we observed and differentiated two components of the reversal learning in one specific task, and further depict the dynamic profile of reversal learning. This study provides new evidence on how frontal region is associated with the driving force in shaping behavior based on feedback information, and how this area together with posterior region is an important part of a general mechanism for reversal learning (Morten et al., 2003).
4. REFERENCES
Anderson, S.W., Bechara, A., Damasio, H., Tranel, D., & Damasio, A. (1999).
Impairment of social and moral behavior related to early damage in human
prefrontal cortex. Nature Neuroscience, 2, 1032-1037.
Bechara, A., Damasio, A.R., Damasio, H., & Anderson, S.W. (1994).
Insensitivity to future consequences following damage to human prefrontal
cortex. Cognition, 50, 7-15.
Bechara, A., Damasio, H., Tranel, D., & Anderson, S.W. (1998). Dissociation
of working memory from decision making within the human prefrontal cortex.
The Journal of Neuroscience, 18, 428-437.
Bechara, A., Damasio, H., Tranel, D., & Damasio, A. (1997). Deciding
advantageously before knowing the advantageous strategy. Science, 275,
1293-1295.
Bechara, A., Tranel, D., & Damasio, H. (2000). Characterization of the
decision-making deficit of patients with ventromedial prefrontal cortex lesions.
Brain, 123, 2189-2202.
Bechara, A., Tranel, D., Damasio, H., & Damasio, A.R. (1996). Failure to
respond autonomically to anticipated future outcomes following damage to
prefrontal cortex. Cerebral Cortex, 6, 215-225.
Critchley HD, & Rolls ET. (1996). Hunger and satiety modify the responses of olfactory and visual neurons in the primate orbitofrontal cortex. J. Neurophysiol., 75, 1673–1686
Damasio, A.R. (1999). The feeling of what happens: Body and emotion in the
making of consciousness. New York: Harvest.
Damasio, A.R. (1994). Descarte’s error: Emotion, reason and the human
brain. New York: Groset/Putnam.
David Papo, Pierre-Marie Baudonniere, Laurent Hugueville, & Jean-Paul Caverni (2003). Feedback in Hypothesis Testing: An ERP Study. Journal of Cognitive Neuroscience, 15, 4, 508-522.
Delgado M.R., Nystrom L.E., Fissell C., Noll D.C., & Fiez J.A . (2000). Tracking
the hemodynamic responses to reward and punishment in the striatum. J Neurophysiol, 84, 3072–3077.
Dias, R., Robbins, T., & Roberts, A. (1996). Dissociation in prefrontal cortex of affective and attentional shifts. Nature, 380, 69–72.
Divac I, Rosvold H.E., & Szwarcbart M.K. (1967). Behavioral effects of selective
ablation of the caudate nucleus. J Comp Physiol Psychol, 63, 184–190.
Eimer M. (1993). Effects of attention and stimulus probability on ERPs in a Go/ Nogo task. Biol Psychol 35, 123–138.
Elliott, R., Frith, C.D., & Dolan, R.J. (1997). Differential neural response to
positive and negative feedback in planning and guessing tasks.
Neuropsychologia, 35, 1395-1404.
Falkenstein M., Hoormann J., & Hohnsbein J. (1999). ERP components in Go/Nogo tasks and their relation to inhibition. Acta Psychol, 101, 267–291.
Fallgatter A.J., & Strik W.K. (1997). Right frontal activation during the continuous performance test assessed with near-infrared spectroscopy in healthy subjects. Neurosci Lett, 223, 89–92.
Garavan H., Ross T., & Stein E. (1999). Right hemispheric dominance of inhibitory control: an event-related functional MRI study. Proc Natl Acad Sci USA, 96, 8301–8306.
Geczy I., Czigler I., & Balazs L. (1999.) Effects of cue information on response production and inhibition measured by event-related potentials. Acta Physiol Hung, 86, 37–44.
Gray, J. A. (1982). The neuropsychology of anxiety: An enquiry into the functions of the septo-hippocampal system. Oxford: Oxford University Press.
Hirokazu Bokura, Shuhei Yamaguchi, & Shotai Kobayashi (2001). Electrophysiological correlates for response inhibition in a Go/NoGo task
Clinical Neurophysiology, 112, 2224–2232
Iversen S., & Mishkin M. (1970). Perseverative interference in monkeys following
selective lesions of the inferior prefrontal convexity. Exp Brain Res, 11, 376–386.
Jackson, M. E., & Moghaddam, B. (2001). Amygdala regulation of nucleus accumbens dopamine output is governed by prefrontal cortex. Journal of Neuroscience, 21, 676–681.
Jodo E., & Kayama Y. (1992). Relation of a negative ERP component to response that NoGo-N2 and NoGo–P3 are linked to different levels of inhibition in a Go/No-go task. Electroenceph clin Neurophysiol, 82, 477–482.
Karlin, L., Martz, M. J., & Mordko□, A. M. (1969). Motor performance and sensory-evoked potentials. Electroencephalography and Clinical Neurophysiology, 28, 307-313.
Knutson B., Adams C., Fong G., & Hommer D. (2001). Anticipation of increasing
monetary reward selectively recruits nucleus accumbens. J Neurosci, 21,1–5.
Konishi S., Nakajima K., Uchida I., Kikyo H., Kameyama M., & Miyashita Y.
(1999). Common inhibitory mechanisms in human inferior prefrontal cortex revealed by event-related functional MRI. Brain, 122, 981–991.
Lawrence A.D., Sahakian B.J., Rogers R.D., Hodges J.R., & Robbins T.W. (1999). Discrimination, reversal, and shift learning in Huntington’s disease: mechanisms of impaired response selection. Neuropsychologia, 37, 1359–1374.
Lesley K. F., & Martha J. F. (2003). Ventromedial frontal cortex mediates affective shifting in humans: evidence from a reversal learning paradigm. Brain, 126, 1830-1837
Milner, B. (1963). Effects of different brain lesions on card sorting. Arch Neurol, 9, 90-100.
Milner, B. (1982). Some cognitive effects of frontal-lobe lesions in man. Phil. Trans. R. Soc. Lond. B, 298, 211-26.
Morten L. Kringelbach, & Edmund T. Rolls (2003).Neural correlates of rapid reversal learning in a simple model of human social interaction NeuroImage, 20, 1371–1383
M. Falkenstein, J. Hoormann, & J. Hohnsbein (1999). ERP components in Go/Nogo tasks and their relation to inhibition. Acta Psychologica, 101, 267-291.
O’Doherty, J., Rolls, E.T., Francis, S., Bowtell, R., & McGlone, F. (2001).
Representation of pleasant and aversive taste in the human brain.
Neurophysiology, 85, 1315-1321.
Pliszka S.R., Liotti M., & Woldorff M.G.. (2000). Inhibitory control in children with attention-deficit/hyperactivity disorder: event-related potentials identify the processing component and timing of an impaired right-frontal response-inhibition mechanism. Biol Psychiatry, 48, 238–246.
Rahman S., Sahakian B.J., Hodges J.R., Rogers R.D., & Robbins T.W. (1999). Specific cognitive deficits in mild frontal variant frontotemporal dementia. Brain, 122, 1469-93.
Roberts, L. E., Rau, H., Lutzenberger, W., & Birbaumer, N. (1994). Mapping P300 waves onto inhibition: Go/Nogo discrimination. Electroencephalography and clinical Neurophysiology, 92, 44-55.
Rogers R.D., Andrews T.C., Grasby P.M., Brooks D.J., & Robbins T.W. (2000). Contrasting cortical and subcortical activations produced by attentional-set shifting and reversal learning in humans. J Cogn Neurosci , 12, 142–162.
Rolls, E.T. (1990). A theory of emotion, and its application to understanding
the neural basis of emotion. Cognition and Emotion, 4, 161-190.
Rolls, E.T. (1996). The orbitofrontal cortex. Philosophical Transactions of the
Royal Society B, 351, 1433-1444.
Rolls ET. (1999). The Brain and Emotion. Oxford, UK: Oxford Univ. Press. 367 pp.
Rolls, E.T. (2000). Prècis of the brain and emotion. Behavioral Brain Science, 23, 177-233.
Rolls E.T., & Baylis LL. (1994). Gustatory, olfactory and visual convergence within the primate orbitofrontal cortex. J. Neurosci., 14, 5437–52
Rolls, E.T., Hornak, J., Wade, D., & McGrath, J. (1994). Emotion-related
learning in patients with social and emotional changes associated with frontal
lobe damage. The Journal of Neurology, Neurosurgery and Psychiatry, 57,
1518-1524.
Rolls, E. T., & Treves, A. (1998). Neural networks and brain function. Oxford: Oxford University Press.
Roshan Cools, Luke Clark, Adrian M. Owen, & Trevor W. Robbins (2002). Defining the Neural Mechanisms of Probabilistic Reversal Learning Using Event-Related Functional Magnetic Resonance Imaging. The Journal of Neuroscience, 22, 11, 4563–4567
Swainson R., Rogers R.D., Sahakian B.J., Summers B.A., Polkey C.E., & Robbins T.W. (2000). Probabilistic learning and reversal deficits in patients with Parkinson’s disease or frontal or temporal lobe lesions: possible adverse effects of dopaminergic medication. Neuropsychologia, 38, 596–612.
Tranel, D., Bechara, A., & Damasio, A. (2000). Decision making and the somatic marker hypothesis. In The New Cognitive Neurosciences, Second Edition, Bizzi, E., Black, I.B., Blakemore, C., Cosmides, L., DiGirolamo, G.J., Kosslyn, S.M., LeDoux, J.E., Levelt, W.J.M., Movshon, J.A., Posner, M.I., Schacter, D.L., Smith, E.E., Tooby, J., & Tulving, E, eds. Cambridge, Massachussets: The MIT Press, 1047-1061.
Thorpe, S.J., Rolls, E.T., & Maddison, S. (1983). Neuronal activity in the
orbitofrontal cortex of the behaving monkey. Experimental Brain Research,
49, 93-115.
Wolfgang H. R. Miltner, Christoph H. Braun, & Michael G. H. Coles (1997). Event-Related Brain Potential Following Incorrect Feedback in a Time-Estimation Task: Evidence for a “Generic” Neural System for Error Detection. Journal of Cognitive Neuroscience, 9, 6 , 788-798
Zald D., & Pardo J. (1997). Emotion, olfaction, and the human amygdala:
amygdala activation during aversive olfactory stimulation. Proc Natl
Acad Sci USA, 94, 4119–4124.
Zalla, T., Koechlin, E., Pietrini, P., Baso, G., Aquino, P., Sirigu, A., &
Grafman, J. (2000). Differential amygdala responses to winning and losing: A
functional magnetic resonance imaging study in humans. European Journal
of Neuroscience, 12, 1764-1770.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top