( 您好!臺灣時間:2021/07/27 18:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::


研究生(外文):Jen-Guo Chen
論文名稱(外文):The role of zebrafish sodium channel Nav1.6 on locomotion and axonal projection
指導教授(外文):Huey-Jen TsayYen-Jen Sung
外文關鍵詞:Nav1.6locomotionaxonal projectionprogrammed cell death
  • 被引用被引用:0
  • 點閱點閱:128
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
電位感應式鈉離子通道負責引發軸突與樹突的動作電位,在神經系統信息傳遞中扮演重要的角色。鈉離子通道亞型1.6集中在有髓鞘包覆軸突上的蘭氏節中,是出生後小鼠脊椎內動作神經元的主要鈉離子流貢獻者。帶著鈉離子通道亞型1.6基因變異的med小鼠會產生漸進式神經與肌肉系統衰竭的運動末稍板症,而神經鈉離子流減少的斑馬魚mao變異種表現觸覺反應缺失與較少的Rohon-Beard (RB) 神經元死亡。這顯示電流活動在神經存活與軸突投射上扮演關鍵的角色。
Voltage-gated sodium channels play critical roles for the electrical signaling in the nervous system by transmitting action potentials in axons and dendrites. Nav1.6, which located at the nod of Ranvier of myelinated neurons, is the major sodium influx contributor in postnatal spinal motoneurons. Previous studies indicated that med mutant mice harboring loss-function of Nav1.6 had progressive neuromuscular failure (motor end plate disease). The phenotypes of zebrafish mao mutant with reduced sodium current include defect on tactile response and less cell death of Rohon-Beard neurons (RB neurons). It is suggested that electrical activity plays critical roles in neuronal survival and axonal projection. The specific role of zebrafish Nav1.6 on locomotion, neuronal survival, and axonal projection will be investigated in this study. Antisense morpholino oligonucleotides (AMO) against zebrafish Nav1.6 was used to knockdown the expression of Nav1.6 during the development. Three type of locomotion including chorion contraction, touch-evoked contraction, and the ability of swimming against swirl were examined. Embryos with Nav1.6 knockdown displayed defects on three types of locomotion. There was no significant difference in number of somite or muscle structure between scramble MO-injected embryos (SMO, as negative control) and AMO-injected embryos (no-movement AMO), suggesting that the lack of locomotion in no-movement AMO might not due to general effect of developmental delay. There are two possible reasons for locomotion phenotype in AMO group. (1) All the neural networks, neuromuscular junction, and muscle
involved in locomotion are structurally intact but lack of action potential transmission due to a reduced level of Nav1.6 sodium channel. (2) Part of the neuromuscular circuit is structurally altered and leads to functional defect. To distinguish these two possibilities, axonal projection of neural network involved in locomotion, neuromuscular junction, and muscle were examined. Our results were concluded as followed. 1. Nav1.6 played critical roles in locomotion of embryo and larvae. 2. No significant difference in motoneuron projection and muscle organization was found in no-movement AMO. 3. Electrical activity may regulate RB neuron apoptosis and RB peripheral process.
Akopian,A.N., Sivilotti,L., and Wood,J.N. (1996). A tetrodotoxin-resistant voltage-gated sodium channel expressed by sensory neurons. Nature 379, 257-262. Aronica,E., Yankaya,B., Troost,D., van Vliet,E.A., Lopes da Silva,F.H., and Gorter,J.A. (2001). Induction of neonatal sodium channel II and III alpha-isoform mRNAs in neurons and microglia after status epilepticus in the rat hippocampus. Eur. J. Neurosci. 13, 1261-1266. Barresi,M.J., D''Angelo,J.A., Hernandez,L.P., and Devoto,S.H. (2001). Distinct mechanisms regulate slow-muscle development. Curr. Biol. 11, 1432-1438. Barth,K.A., Kishimoto,Y., Rohr,K.B., Seydler,C., Schulte-Merker,S., and Wilson,S.W. (1999). Bmp activity establishes a gradient of positional information throughout the entire neural plate. Development 126, 4977-4987. Bartolomei,F., Gastaldi,M., Massacrier,A., Planells,R., Nicolas,S., and Cau,P. (1997). Changes in the mRNAs encoding subtypes I, II and III sodium channel alpha subunits following kainate-induced seizures in rat brain. J. Neurocytol. 26, 667-678. Bate,M. (1999). Development of motor behaviour. Curr. Opin. Neurobiol. 9, 670-675.
Beattie,C.E. (2000). Control of motor axon guidance in the zebrafish embryo. Brain Res. Bull. 53, 489-500. Beattie,C.E., Hatta,K., Halpern,M.E., Liu,H., Eisen,J.S., and Kimmel,C.B. (1997). Temporal separation in the specification of primary and secondary motoneurons in zebrafish. Dev. Biol. 187, 171-182. Beattie,C.E., Melancon,E., and Eisen,J.S. (2000). Mutations in the stumpy gene reveal intermediate targets for zebrafish motor axons. Development 127, 2653-2662. Behra,M., Cousin,X., Bertrand,C., Vonesch,J.L., Biellmann,D., Chatonnet,A., and Strahle,U. (2002). Acetylcholinesterase is required for neuronal and muscular development in the zebrafish embryo. Nat. Neurosci. 5, 111-118. Black,J.A., Renganathan,M., and Waxman,S.G. (2002). Sodium channel Na(v)1.6 is expressed along nonmyelinated axons and it contributes to conduction. Brain Res. Mol. Brain Res. 105, 19-28. Blagden,C.S., Currie,P.D., Ingham,P.W., and Hughes,S.M. (1997). Notochord induction of zebrafish slow muscle mediated by Sonic hedgehog. Genes Dev. 11, 2163-2175. Blight,A.R. (1978). Golgi-staining of "primary" and "secondary" motoneurons in the developing spinal cord of an amphibian. J. Comp Neurol. 180, 679-689. Boiko,T., Rasband,M.N., Levinson,S.R., Caldwell,J.H., Mandel,G.,
Trimmer,J.S., and Matthews,G. (2001). Compact myelin dictates the differential targeting of two sodium channel isoforms in the same axon. Neuron 30, 91-104. Brent,L.J. and Drapeau,P. (2002). Targeted "knockdown" of channel expression in vivo with an antisense morpholino oligonucleotide. Neuroscience 114, 275-278. Brosamle,C. and Halpern,M.E. (2002). Characterization of myelination in the developing zebrafish. Glia 39, 47-57. Budick,S.A. and O''Malley,D.M. (2000). Locomotor repertoire of the larval zebrafish: swimming, turning and prey capture. J. Exp. Biol. 203 Pt 17, 2565-2579. Buss,R.R. and Drapeau,P. (2001). Synaptic drive to motoneurons during fictive swimming in the developing zebrafish. J. Neurophysiol. 86, 197-210. Caldwell,J.H., Schaller,K.L., Lasher,R.S., Peles,E., and Levinson,S.R. (2000). Sodium channel Na(v)1.6 is localized at nodes of ranvier, dendrites, and synapses. Proc. Natl. Acad. Sci. U. S. A 97, 5616-5620. Catalano,S.M. and Shatz,C.J. (1998). Activity-dependent cortical target selection by thalamic axons. Science 281, 559-562. Clarke,J.D., Hayes,B.P., Hunt,S.P., and Roberts,A. (1984). Sensory physiology, anatomy and immunohistochemistry of Rohon-Beard neurones in embryos of Xenopus laevis. J. Physiol 348, 511-525.
Currie,P.D. and Ingham,P.W. (1996). Induction of a specific muscle cell type by a hedgehog-like protein in zebrafish. Nature 382, 452-455. Devoto,S.H., Melancon,E., Eisen,J.S., and Westerfield,M. (1996). Identification of separate slow and fast muscle precursor cells in vivo, prior to somite formation. Development 122, 3371-3380. Dick,D.J., Boakes,R.J., Candy,J.M., Harris,J.B., and Cullen,M.J. (1986). Cerebellar structure and function in the murine mutant "jolting". J. Neurol. Sci. 76, 255-267. Downes,G.B. and Granato,M. (2004). Acetylcholinesterase function is dispensable for sensory neurite growth but is critical for neuromuscular synapse stability. Dev. Biol. 270, 232-245. Drapeau,P., Saint-Amant,L., Buss,R.R., Chong,M., McDearmid,J.R., and Brustein,E. (2002). Development of the locomotor network in zebrafish. Prog. Neurobiol. 68, 85-111. Driever,W., Solnica-Krezel,L., Schier,A.F., Neuhauss,S.C., Malicki,J., Stemple,D.L., Stainier,D.Y., Zwartkruis,F., Abdelilah,S., Rangini,Z., Belak,J., and Boggs,C. (1996). A genetic screen for mutations affecting embryogenesis in zebrafish. Development 123, 37-46. Eaton,R.C., Lee,R.K., and Foreman,M.B. (2001). The Mauthner cell and other identified neurons of the brainstem escape network of fish. Prog. Neurobiol. 63, 467-485. Eisen,J.S. (1998). Genetic and molecular analyses of motoneuron
development. Curr. Opin. Neurobiol. 8, 697-704. Eisen,J.S. (1999). Patterning motoneurons in the vertebrate nervous system. Trends Neurosci. 22, 321-326. Eisen,J.S., Myers,P.Z., and Westerfield,M. (1986). Pathway selection by growth cones of identified motoneurones in live zebra fish embryos. Nature 320, 269-271. Eisen,J.S., Pike,S.H., and Romancier,B. (1990). An identified motoneuron with variable fates in embryonic zebrafish. J. Neurosci. 10, 34-43. Felsenfeld,A.L., Curry,M., and Kimmel,C.B. (1991). The fub-1 mutation blocks initial myofibril formation in zebrafish muscle pioneer cells. Dev. Biol. 148, 23-30. Fetcho,J.R. and Faber,D.S. (1988). Identification of motoneurons and interneurons in the spinal network for escapes initiated by the mauthner cell in goldfish. J. Neurosci. 8, 4192-4213. Fetcho,J.R. and O''Malley,D.M. (1997). Imaging neuronal networks in behaving animals. Curr. Opin. Neurobiol. 7, 832-838. Foreman,M.B. and Eaton,R.C. (1993). The direction change concept for reticulospinal control of goldfish escape. J. Neurosci. 13, 4101-4113. Gastaldi,M., Robaglia-Schlupp,A., Massacrier,A., Planells,R., and Cau,P. (1998). mRNA coding for voltage-gated sodium channel beta2 subunit in rat central nervous system: cellular distribution and changes following kainate-induced seizures. Neurosci. Lett. 249, 53-56.
Gnuegge,L., Schmid,S., and Neuhauss,S.C. (2001a). Analysis of the activity-deprived zebrafish mutant macho reveals an essential requirement of neuronal activity for the development of a fine-grained visuotopic map. J. Neurosci. 21, 3542-3548. Gnuegge,L., Schmid,S., and Neuhauss,S.C. (2001b). Analysis of the activity-deprived zebrafish mutant macho reveals an essential requirement of neuronal activity for the development of a fine-grained visuotopic map. J. Neurosci. 21, 3542-3548. Golling,G., Amsterdam,A., Sun,Z., Antonelli,M., Maldonado,E., Chen,W., Burgess,S., Haldi,M., Artzt,K., Farrington,S., Lin,S.Y., Nissen,R.M., and Hopkins,N. (2002). Insertional mutagenesis in zebrafish rapidly identifies genes essential for early vertebrate development. Nat. Genet. 31, 135-140. Granato,M., van Eeden,F.J., Schach,U., Trowe,T., Brand,M., Furutani-Seiki,M., Haffter,P., Hammerschmidt,M., Heisenberg,C.P., Jiang,Y.J., Kane,D.A., Kelsh,R.N., Mullins,M.C., Odenthal,J., and Nusslein-Volhard,C. (1996). Genes controlling and mediating locomotion behavior of the zebrafish embryo and larva. Development 123, 399-413. Green,E.L., Schlager,G., and Dickie,M.M. (1965). Natural mutation rates in the house mouse: plan of study and preliminary estimates. Mutat. Res. 2, 457-465. Haffter,P., Granato,M., Brand,M., Mullins,M.C., Hammerschmidt,M., Kane,D.A., Odenthal,J., van Eeden,F.J., Jiang,Y.J., Heisenberg,C.P.,
Kelsh,R.N., Furutani-Seiki,M., Vogelsang,E., Beuchle,D., Schach,U., Fabian,C., and Nusslein-Volhard,C. (1996). The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development 123, 1-36. Hanneman,E. and Westerfield,M. (1989). Early expression of acetylcholinesterase activity in functionally distinct neurons of the zebrafish. J. Comp Neurol. 284, 350-361. Harris,J.B. and Pollard,S.L. (1986). Neuromuscular transmission in the murine mutants "motor end-plate disease" and "jolting". J. Neurol. Sci. 76, 239-253. Heitzler,P. and Simpson,P. (1991). The choice of cell fate in the epidermis of Drosophila. Cell 64, 1083-1092. Herzog,R.I., Cummins,T.R., Ghassemi,F., Dib-Hajj,S.D., and Waxman,S.G. (2003). Distinct repriming and closed-state inactivation kinetics of Nav1.6 and Nav1.7 sodium channels in mouse spinal sensory neurons. J. Physiol 551, 741-750. Hollway,G.E. and Currie,P.D. (2003). Myotome meanderings. Cellular morphogenesis and the making of muscle. EMBO Rep. 4, 855-860. Ikonomidou,C., Bosch,F., Miksa,M., Bittigau,P., Vockler,J., Dikranian,K., Tenkova,T.I., Stefovska,V., Turski,L., and Olney,J.W. (1999). Blockade of NMDA receptors and apoptotic neurodegeneration in the developing brain. Science 283, 70-74.
Kimmel,C.B., Ballard,W.W., Kimmel,S.R., Ullmann,B., and Schilling,T.F. (1995). Stages of embryonic development of the zebrafish. Dev. Dyn. 203, 253-310. Kimmel,C.B., Patterson,J., and Kimmel,R.O. (1974). The development and behavioral characteristics of the startle response in the zebra fish. Dev. Psychobiol. 7, 47-60. Kimmel,C.B., Sessions,S.K., and Kimmel,R.J. (1981). Morphogenesis and synaptogenesis of the zebrafish Mauthner neuron. J. Comp Neurol. 198, 101-120. Kimmel,C.B., Warga,R.M., and Kane,D.A. (1994). Cell cycles and clonal strings during formation of the zebrafish central nervous system. Development 120, 265-276. Kuwada,J.Y., Bernhardt,R.R., and Nguyen,N. (1990). Development of spinal neurons and tracts in the zebrafish embryo. J. Comp Neurol. 302, 617-628. Lai,J., Gold,M.S., Kim,C.S., Bian,D., Ossipov,M.H., Hunter,J.C., and Porreca,F. (2002). Inhibition of neuropathic pain by decreased expression of the tetrodotoxin-resistant sodium channel, NaV1.8. Pain 95, 143-152. Leresche,N., Parri,H.R., Erdemli,G., Guyon,A., Turner,J.P., Williams,S.R., Asprodini,E., and Crunelli,V. (1998). On the action of the anti-absence drug ethosuximide in the rat and cat thalamus. J. Neurosci. 18, 4842-4853.
Lewis,K.E. and Eisen,J.S. (2001). Hedgehog signaling is required for primary motoneuron induction in zebrafish. Development 128, 3485-3495. Li,W., Ono,F., and Brehm,P. (2003). Optical measurements of presynaptic release in mutant zebrafish lacking postsynaptic receptors. J. Neurosci. 23, 10467-10474. Liu,D.W. and Westerfield,M. (1992). Clustering of muscle acetylcholine receptors requires motoneurons in live embryos, but not in cell culture. J. Neurosci. 12, 1859-1866. Liu,K.S. and Fetcho,J.R. (1999). Laser ablations reveal functional relationships of segmental hindbrain neurons in zebrafish. Neuron 23, 325-335. Llinas,R. and Sugimori,M. (1980a). Electrophysiological properties of in vitro Purkinje cell dendrites in mammalian cerebellar slices. J. Physiol 305, 197-213. Llinas,R. and Sugimori,M. (1980b). Electrophysiological properties of in vitro Purkinje cell somata in mammalian cerebellar slices. J. Physiol 305, 171-195. Martinez-Barbera,J.P., Toresson,H., Da Rocha,S., and Krauss,S. (1997). Cloning and expression of three members of the zebrafish Bmp family: Bmp2a, Bmp2b and Bmp4. Gene 198, 53-59. Matzner,O. and Devor,M. (1994). Hyperexcitability at sites of nerve
injury depends on voltage-sensitive Na+ channels. J. Neurophysiol. 72, 349-359. Melancon,E., Liu,D.W., Westerfield,M., and Eisen,J.S. (1997). Pathfinding by identified zebrafish motoneurons in the absence of muscle pioneers. J. Neurosci. 17, 7796-7804. Mendelson,B. (1986). Development of reticulospinal neurons of the zebrafish. I. Time of origin. J. Comp Neurol. 251, 160-171. Myers,P.Z. (1985). Spinal motoneurons of the larval zebrafish. J. Comp Neurol. 236, 555-561. Myers,P.Z., Eisen,J.S., and Westerfield,M. (1986). Development and axonal outgrowth of identified motoneurons in the zebrafish. J. Neurosci. 6, 2278-2289. Neuhauss,S.C., Biehlmaier,O., Seeliger,M.W., Das,T., Kohler,K., Harris,W.A., and Baier,H. (1999). Genetic disorders of vision revealed by a behavioral screen of 400 essential loci in zebrafish. J. Neurosci. 19, 8603-8615. Nguyen,V.H., Trout,J., Connors,S.A., Andermann,P., Weinberg,E., and Mullins,M.C. (2000). Dorsal and intermediate neuronal cell types of the spinal cord are established by a BMP signaling pathway. Development 127, 1209-1220. Ono,F., Shcherbatko,A., Higashijima,S., Mandel,G., and Brehm,P. (2002). The Zebrafish motility mutant twitch once reveals new roles for rapsyn in
synaptic function. J. Neurosci. 22, 6491-6498. Ordahl,C.P., Berdougo,E., Venters,S.J., and Denetclaw,W.F., Jr. (2001). The dermomyotome dorsomedial lip drives growth and morphogenesis of both the primary myotome and dermomyotome epithelium. Development 128, 1731-1744. Ott,H., Diekmann,H., Stuermer,C.A., and Bastmeyer,M. (2001). Function of Neurolin (DM-GRASP/SC-1) in guidance of motor axons during zebrafish development. Dev. Biol. 235, 86-97. Parri,H.R. and Crunelli,V. (1998). Sodium current in rat and cat thalamocortical neurons: role of a non-inactivating component in tonic and burst firing. J. Neurosci. 18, 854-867. Pike,S.H., Melancon,E.F., and Eisen,J.S. (1992). Pathfinding by zebrafish motoneurons in the absence of normal pioneer axons. Development 114, 825-831. Planells-Cases,R., Caprini,M., Zhang,J., Rockenstein,E.M., Rivera,R.R., Murre,C., Masliah,E., and Montal,M. (2000). Neuronal death and perinatal lethality in voltage-gated sodium channel alpha(II)-deficient mice. Biophys. J. 78, 2878-2891. Porter,J.D., Goldstein,L.A., Kasarskis,E.J., Brueckner,J.K., and Spear,B.T. (1996). The neuronal voltage-gated sodium channel, Scn8a, is essential for postnatal maturation of spinal, but not oculomotor, motor units. Exp. Neurol. 139, 328-334.
Raman,I.M., Sprunger,L.K., Meisler,M.H., and Bean,B.P. (1997). Altered subthreshold sodium currents and disrupted firing patterns in Purkinje neurons of Scn8a mutant mice. Neuron 19, 881-891. Rasband,M.N., Kagawa,T., Park,E.W., Ikenaka,K., and Trimmer,J.S. (2003). Dysregulation of axonal sodium channel isoforms after adult-onset chronic demyelination. J. Neurosci. Res. 73, 465-470. Saint-Amant,L. and Drapeau,P. (1998). Time course of the development of motor behaviors in the zebrafish embryo. J. Neurobiol. 37, 622-632. Sangameswaran,L., Delgado,S.G., Fish,L.M., Koch,B.D., Jakeman,L.B., Stewart,G.R., Sze,P., Hunter,J.C., Eglen,R.M., and Herman,R.C. (1996). Structure and function of a novel voltage-gated, tetrodotoxin-resistant sodium channel specific to sensory neurons. J. Biol. Chem. 271, 5953-5956. Scharfman,H.E. (2002). Epilepsy as an example of neural plasticity. Neuroscientist. 8, 154-173. Sidman,R.L., Cowen,J.S., and Eicher,E.M. (1979). Inherited muscle and nerve diseases in mice: a tabulation with commentary. Ann. N. Y. Acad. Sci. 317, 497-505. Spadoni,F., Hainsworth,A.H., Mercuri,N.B., Caputi,L., Martella,G., Lavaroni,F., Bernardi,G., and Stefani,A. (2002). Lamotrigine derivatives and riluzole inhibit INa,P in cortical neurons. Neuroreport 13, 1167-1170. Svoboda,K.R., Linares,A.E., and Ribera,A.B. (2001). Activity regulates
programmed cell death of zebrafish Rohon-Beard neurons. Development 128, 3511-3520. Taverna,S., Mantegazza,M., Franceschetti,S., and Avanzini,G. (1998). Valproate selectively reduces the persistent fraction of Na+ current in neocortical neurons. Epilepsy Res. 32, 304-308. Thisse,C., Thisse,B., Schilling,T.F., and Postlethwait,J.H. (1993). Structure of the zebrafish snail1 gene and its expression in wild-type, spadetail and no tail mutant embryos. Development 119, 1203-1215. Tsai,C.W., Tseng,J.J., Lin,S.C., Chang,C.Y., Wu,J.L., Horng,J.F., and Tsay,H.J. (2001). Primary structure and developmental expression of zebrafish sodium channel Na(v)1.6 during neurogenesis. DNA Cell Biol. 20, 249-255. Varga,Z.M., Amores,A., Lewis,K.E., Yan,Y.L., Postlethwait,J.H., Eisen,J.S., and Westerfield,M. (2001). Zebrafish smoothened functions in ventral neural tube specification and axon tract formation. Development 128, 3497-3509. Waterman,R.E. (1969). Development of the lateral musculature in the teleost, Brachydanio rerio: a fine structural study. Am. J. Anat. 125, 457-493. Waxman,S.G., Dib-Hajj,S., Cummins,T.R., and Black,J.A. (2000). Sodium channels and their genes: dynamic expression in the normal nervous system, dysregulation in disease states(1). Brain Res. 886, 5-14.
Westerfield,M., McMurray,J.V., and Eisen,J.S. (1986). Identified motoneurons and their innervation of axial muscles in the zebrafish. J. Neurosci. 6, 2267-2277. Williams,J.A., Barrios,A., Gatchalian,C., Rubin,L., Wilson,S.W., and Holder,N. (2000). Programmed cell death in zebrafish rohon beard neurons is influenced by TrkC1/NT-3 signaling. Dev. Biol. 226, 220-230. Wood,J.N. and Baker,M. (2001). Voltage-gated sodium channels. Curr. Opin. Pharmacol. 1, 17-21. Zeller,J. and Granato,M. (1999). The zebrafish diwanka gene controls an early step of motor growth cone migration. Development 126, 3461-3472. Zeller,J., Schneider,V., Malayaman,S., Higashijima,S., Okamoto,H., Gui,J., Lin,S., and Granato,M. (2002). Migration of zebrafish spinal motor nerves into the periphery requires multiple myotome-derived cues. Dev. Biol. 252, 241-256. Zhang,J. and Granato,M. (2000). The zebrafish unplugged gene controls motor axon pathway selection. Development 127, 2099-2111. Zhang,J., Malayaman,S., Davis,C., and Granato,M. (2001). A dual role for the zebrafish unplugged gene in motor axon pathfinding and pharyngeal development. Dev. Biol. 240, 560-573. 66
第一頁 上一頁 下一頁 最後一頁 top