跳到主要內容

臺灣博碩士論文加值系統

(3.235.56.11) 您好!臺灣時間:2021/07/29 04:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王文瑜
研究生(外文):Wen-Yu Wang
論文名稱:不同連續被動式復健裝置對膝關節運動學分析及皮膚長度之探討
論文名稱(外文):The analysis of skin lengthening and kinematics using the different CPM devices
指導教授:陳振昇陳振昇引用關係
指導教授(外文):Chen-Sheng Chen
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:復健科技輔具研究所
學門:醫藥衛生學門
學類:復健醫學學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
中文關鍵詞:連續被動式復健裝置全人工膝關節置換皮膚伸長量
外文關鍵詞:continuous passive motiontotal knee replacementthe elongation of skin length
相關次數:
  • 被引用被引用:4
  • 點閱點閱:487
  • 評分評分:
  • 下載下載:55
  • 收藏至我的研究室書目清單書目收藏:4
近年來我國將全人工膝關節置換手術術後使用膝部連續被動式復健裝置進行復健納入健保給付項目之中,因此膝部連續被動式復健裝置於臨床上已廣泛應用在全人工膝關節置換術術後的復健;使得市面上有許多不同的復健裝置在臨床上被使用,但是目前發現同一位病患的同一患肢使用不同膝部連續被動式復健裝置時會對其產生不同的疼痛感與舒適性;而其可能發生的原因在(1)傷口處皮膚長度的變化(2)膝關節與復健裝置角度間的相對運動(3)膝關節使用復健裝置時的關節受力;因此本研究之目的在探討使用不同膝部連續被動式復健裝置時對下肢皮膚長度之影響以及下肢膝關節的運動學狀態;故實驗上使用不同的膝部連續被動式復健裝置進行人體下肢的運動學量測和皮膚伸長量之分析,並應用機構軟體模擬不同膝部連續被動式復健裝置對下肢膝關節產生的受力情形。
本研究是以德林、OptiFlex、KineTec及ARTROMOT四台不同膝部連續被動式復健裝置進行人體量測,測試對象為4位下肢無明顯手術傷口與疤痕的健康男性,其平均年齡為26歲;量測的項目為使用不同復健裝置時下肢皮膚長度之變化值、膝關節角度、髖關節角度以及復健裝置本身角度;其中下肢皮膚量測上以膝關節髕骨中心為起點分別往兩側延伸,以每兩公分間距做為一標註區段,共將下肢膝關節周圍劃分為25區段,其中以髕骨中心的上下5區段共20公分的區域訂為B區域,此區域即為全人工膝關節手術的區域;其餘兩端的區段在小腿部分訂為A區域,大腿部分訂為C區域;膝關節角度量測則是將下肢劃分出兩條基準線,一條為大轉子至膝外髁連線,另一條為踝外髁至膝外髁連線,量測其基準線夾角部分作為膝關節角度;在髖關節量測上則以大轉子至膝外髁的連線做為一基準線,量測此基準線與水平面的夾角做為髖關節角度;在復健裝置角度上則由裝置本身的介面顯示其運動角度;當復健裝置在0、30、60及90度時進行量測。在機構模擬上以Working Model 2D 5.0版軟體建立擬真的人體膝關節模型,其參數是參考人體測量學資料,給予大腿重7.4公斤、小腿重3.4公斤與足部1公斤;接著以1:1比例建立四台不同膝部連續被動式關節復健裝置的機構模型;並給予復健裝置75度/分鐘的運行速度,來分析膝關節受力情形。
研究結果顯示隨著膝關節角度越大,下肢皮膚伸長量則越長;而且以B區域的伸長量及應變量最大;此區域的伸長量佔了下肢總伸長量80%以上,而伸長應變量則為A區域的6倍與C區域的10倍。而膝關節角度與復健裝置角度間會有相對運動的產生,表現最佳的為德林及OptiFlex在復健裝置達90度時,其契合度都維持90%以上;最為KineTec其表現約為70%。使用不同復健裝置在起始時,各自都有不同的起始髖關節角度;但當膝關節角度達45度後,膝關節與髖關節呈現出線性關係,此線性關係為膝關節每增加2度,髖關節就增加1度的情形。在機構模擬結果方面,四台裝置以OptiFlex對膝關節產生之受力值最小,而KineTec的受力值最大。
本研究結論指出四台不同的膝部連續被動式復健裝置,在下肢皮膚長度變化、膝關節與復健裝置的相對運動以及膝關節受力情況三方面進行歸納分析,發現OptiFlex為表現較好的膝部連續被動式復健裝置。
關鍵字:連續被動式復健裝置、全人工膝關節置換術、皮膚伸長量
Using a continuous passive motion (CPM) machine following total knee replacement (TKR) was brought into the health insurance in Taiwan in recent years. Therefore, the CPM was applied extensively in rehabilitation after TKR surgery. The various knee CPMs in market were used in clinic, but some situations were found out that the same leg in same patient has different feelings in pain and comfort when applied the different CPMs. The possible factors were (1) the variation of skin lengthening on wound area, (2) the relative motion between knee joint and CPM machine, (3) the different knee joint forces. This study was aimed to investigate the consequence of skin length and kinematics of the lower limb in different CPM devices.
The four different CPM devices used in human body measurement were the The-lin, OptiFlex, KineTec, and ARTROMOT. The subjects were four males who have non-surgical experience and scar in right side leg, and the average age was 26 year-old. The parameters included the skin elongation, the range of motion (ROM) of the knee joint, the hip joint and the CPM devices were considered in this study.
Regarding the skin lengthening, the starting-point was from the center of patella to both sides. The skin in every 2 cm distance was made a landmark. A total 25 regions were marked on the skin. The 10 areas closed to the center of patella were named area-B, the rest of regions in calf were named area-A, and the rest of regions in thigh were named area-C. The ROM in knee joint was defined on the angle intersected by two lines which the one was from the greater trochanter to the femur epicondyle, and another was from the malleolus to the femur epicondyle, and then ROM of hip joint was measured between horizontal line and the line from the greater trochanter to the femur epicondyle. Then, observed these parameters in 0, 30, 60, and 90 degrees of the CPM.
In mechanical simulation, this study conducted a software Working Model 2D (MSC.Software, USA) to establish the knee joint model with the four CPM machines. The body weight was adopted from anthropometrics included the thigh weight 7.4 kg, the calf weight 3.4 kg, and the foot weight 1 kg. The forms of CPM models were measured from the shapes of the real CPM machines, and subjected to 75degree/min.
The results estimated that the greatest elongation was occurred to the area-B which had the 80% of the total elongation. The strain in the area-B was respectively the 6 times and the 10 times greater than the area-A and the area-C. As to the relative motion between knee joint angle and CPM, the result showed good performance in the OptiFlex and Teh-lin, reached 90% consistance. When the knee joint angle reached 45 degrees, the ROM of the hip and knee joint exhibited a linear relationship, e.g., the knee joint angle increased 2 degrees following with the hip joint angle increased 1 degree.
In the computation of the CPM machines, this study found that the OptiFlex had the minimum knee joint force, and the KineTec had the maximum knee joint force. However, the pattern of the knee joint force among the four CPM devices showed similar trend.
The conclusion of this study indicated in the best performance among the four CPM devices was the OptiFlex under the consideration of skin lengthening, kinematics, and knee joint force.
Keywords: continuous passive motion, total knee replacement, the elongation of skin length.
1.Alexander C, Caughey D, Withy S, Van Puymbroeck E, Munoz D. Relation between flexion angle and intraarticular pressure during active and passive movement of the normal knee. Journal of Rheumatology. 1996; 23(5):889-895
2.Chen B, Zimmerman JR, Soulen L, DeLisa JA. Continuous passive motion after total knee arthroplasty: a prospective study. American Journal of Physical Medicine & Rehabilitation. 2000; 79(5):421-426
3.Chiarello CM, Gundersen L, O''Halloran T. The effect of continuous passive motion duration and increment on range of motion in total knee arthroplasty patients. Journal of Orthopaedic & Sports Physical Therapy. 1997;25(2):119-127
4.Colwell CW, Morris BA. The influence of continuous passive motion after total knee arthroplasty. Clinical Orthopaedics & Related Research. 1992;276:225-228
5.Dandy DJ, Edwards DJ. Essential Orthopaedics and Trauma, 3rd edition 1997
6.Chaffin DB, Gunnar B.J. Andersson. Occupational Biomechanics second edition. 1990
7.Fisher RL, Kloter K, Bzdyra B, Cooper JA. Continuous passive motion (C.P.M.) following total knee replacement. Connecticut Medicine. 1985;49(8):498-501
8.Goletz TH, Henry JH. Continuous passive motion after total knee arthroplasty. Southern Medical Journal. 1986;79(9):1116-1120
9.Gose JC. Continuous passive motion in the postoperative treatment of patients with total knee replacement. Physical Therapy. 1987;67(1):39-42
10.Halbertsma JP, Mulder I, Goeken LN, Eisma WH. Repeated passive stretching: acute effect on the passive muscle moment and extensibility of short hamstrings. Archives of Physical Medicine & Rehabilitation. 1999; 80(4):407-414
11.Johnson DP. The effect of continuous passive motion on wound-healing and joint mobility after knee arthroplasty. Journal of Bone & Joint Surgery - American Volume. 1990;72(3):421-426
12.Jordan LR, Siegel JL, Olivo JL. Early flexion routine. An alternative method of continuous passive motion. Clinical Orthopaedics & Related Research. 1995;315:231-233
13.Ketterl R, Kostler W, Wittwer W, Stubinger B. 5-year results of dia-/supracondylar femoral fractures, managed with the dynamic condylar screw. Zentralblatt fur Chirurgie. 1997;122(11):1033-1039
14.Lynch JA, Baker PL, Polly RE, Lepse PS, Wallace BE, Roudybush D. Sund K, Lynch NM. Mechanical measures in the prophylaxis of postoperative thromboembolism in total knee arthroplasty. Clinical Orthopaedics & Related Research. 1990; 260:24-29
15.Mandelbaum BR, Browne JE, Fu F, Micheli L, Mosely JB Jr, Erggelet C, Minas T, Peterson L. Articular cartilage lesions of the knee. American Journal of Sports Medicine. 1998;26(6):853-861
16.Mandelbaum BR, Sepel PR, Teurlings. Articular cartilage lesions: current concepts and results. OKU Sports medicine2. Journal of the American Academy of Orthopaedic Surgeons 1999:19-28
17.Montgomery F, Eliasson M. Continuous passive motion compared to active physical therapy after knee arthroplasty: similar hospitalization times in a randomized study of 68 patients. Acta Orthopaedica Scandinavica. 1996; 67(1):7-9
18.Moore TJ, Campbell J, Wheeler K, Massa J. Knee function after complex femoral fractures treated with interlocking nails. Clinical Orthopaedics & Related Research. 1990;261:238-241
19.O''Driscoll SW, Giori NJ. Continuous passive motion (CPM): theory and principles of clinical application. Journal of Rehabilitation Research & Development. 2000;37(2):179-88
20.Pope RO, Corcoran S, McCaul K, Howie DW. Continuous passive motion after primary total knee arthroplasty. Does it offer any benefits? Journal of Bone & Joint Surgery - British Volume. 1997;79(6):914-917
21.Salter RB, Field P. The effects of continuous compression on living articular cartilage. The journal of bone and joint surgery. 1960; 42-A(1):31
22.Salter RB. The biologic concept of continuous passive motion of synovial joints. The first 18 years of basic research and its clinical application. Clinical Orthopaedics & Related Research. 1989; 242:12-25
23.Vince KG, Kelly MA, Beck J, Insall JN. Continuous passive motion after total knee arthroplasty. Journal of Arthroplasty. 1987; 2(4):281-284
24.Yashar AA, Venn-Watson E, Welsh T, Colwell CW Jr, Lotke P. Continuous passive motion with accelerated flexion after total knee arthroplasty. Clinical Orthopaedics & Related Research. 1997;345:38-43
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top