跳到主要內容

臺灣博碩士論文加值系統

(18.205.192.201) 您好!臺灣時間:2021/08/05 09:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:廖振宏
研究生(外文):Chan-Wang Lio
論文名稱:出血性大腸桿菌LEE致病島嶼中L0044及L0050之功能探討
論文名稱(外文):Characterization of L0044 and L0050 in LEE (The Locus of Enterocyte Effacement) Pathogenicity Island of Enterohemorrhagic Escherichia coli O157:H7
指導教授:許萬枝許萬枝引用關係
指導教授(外文):Wan-Jr Syu
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:微生物及免疫學研究所
學門:生命科學學門
學類:微生物學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:104
中文關鍵詞:出血性大腸桿菌LEE致病島嶼細菌致病基因調控第三型分泌系統
外文關鍵詞:EHECLEE islandBacterial pathogenesisGene regulationtype III secretion system
相關次數:
  • 被引用被引用:0
  • 點閱點閱:139
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
摘要
屬於致病大腸桿菌之一的出血性大腸桿菌 (Enterohemorrhagic Escherichia coli, EHEC) 會在人類中引起出血性結腸炎 (hemorrhagic colitis) 以及急性腎衰竭,平均致死率高達5%。在細胞層次上,EHEC 會引起腸細胞著名的病變,此病變稱為粘著/塗抹病變 (attaching and effacing lesion, or A/E lesion)。在EHEC中,主要負責此致病能力的是一個稱為腸細胞塗抹基因座 (the locus of enterocyte effacement, LEE) 致病島嶼。LEE致病島嶼帶有四十一個開放閱讀框架 (open reading frames, ORFs),大部份是存在於五個操縱子(operon)上。這五個操縱子分別是LEE1、LEE2、LEE3、LEE4及LEE5 (tir)。LEE致病島嶼的表現主要是受到ler (LEE-encoded regulator)所調控,它可以活化LEE2至LEE5等四個操縱子。在本論文當中我們發現了L0044是一個位在於LEE中的一個負調控子。L0044的大小為372鹼基對,而它是獨立存在於五個主要操縱子之外。LEE的表現是會受到環境因子所影響的。當細菌被培養在抑制性環境時,LEE不會表現。但是當EHEC中的L0044被刪除了以後,LEE會因為失去了抑制而表現。另外當L0044被大量表現於EHEC中時可以抑制LEE的表現。在分析L0044被刪除的菌株中基因的轉錄情況後,發現了ler的mRNA有明顯的增加。假如將L0044被刪除的菌株中的ler也刪除掉,LEE就不會表現。所以實驗結果說明了L0044對EHEC的致病基因的調控是扮演著相當重要的角色。
LEE上的基因主要包括有第三型分泌系統(type III secretion system, TTSS)以及經由它所分泌的作用蛋白(effectors)。本論文也發現了L0050很可能是第三型分泌系統中的成員,另外它也跟一個稱為EspA的分泌性作用蛋白的後轉錄調控(post-transcriptional regulation)有關。L0050的大小為696-bp。我們發現L0050刪除突變株中的第三型分泌系統受到影響,另外它也無法在細胞感染試驗中正常附著在細胞上。有趣的是我們發現了在此突變株中的EspA有減少,但是與它在同一條轉錄單位上的EspB卻沒有受到影響。為了更進一步探討EspA受到調控的層次,我們以轉錄接合(transcriptional fusion)以及轉譯融合(translational fusion)的方式做出此兩種espA-lacZ的構築。將構築轉型至野生型以及L0050突變株EHEC中,我們發現只有以轉譯融合方式結合的LacZ構築在L0050突變株中活性明顯比野生型低;反之轉錄接合的espA-lacZ在兩株之中的活性則是一致。因此綜合以上的結果,我們推測L0050很有可能是分泌系統中的成員之一,另外它也參與在EspA 轉錄後調控的過程之中。
Abstract
Enterohemorrhagic Escherichia coli (EHEC) is one of the pathogenic E. coli strains. It causes hemorrhagic colitis and acute kidney failure in human, with a mortality of about 5%. EHEC forms typical histological lesions termed attaching and effacing lesions (A/E lesions) on infected large intestine tissue. In the course of pathogenesis, EHEC utilizes the type III secretion system (TTSS) to inject several virulent effectors into the host cell. The major virulent factors involved in the A/E lesion reside on a locus of enterocyte effacement (LEE), a pathogenicity island. The LEE comprises 41 specific open reading frames, of which most are organized in five major operons, LEE1, LEE2, LEE3, LEE4, and LEE5 (tir). The expression of LEE is controlled by ler (LEE-encoded regulator), which activates LEE2 to LEE5 operons. Here, we identified that L0044 is a negative regulation protein located within the LEE. L0044 is 372-bp in length and is located outside of the five major operons. An isogenic L0044 deletion mutant displayed a loss of repression phenotype and increased the synthesis of several LEE proteins when the bacteria were cultured under repressive conditions that disfavor the expression of the LEE proteins. Reciprocally, trans expression of L0044 suppressed the expression of the LEE. Furthermore, mRNA of ler increased as a result of deleting L0044, and disrupting ler in a L0044-deleted background reversed the loss of the repression phenotype. Thus, L0044 plays a role in the regulation of the expression of virulent genes in EHEC.
LEE encodes a type III secretion system (TTSS) and the secreted effectors. L0050 (696-bp) is probably one of the components of TTSS and may be involved in the post-transcriptional regulation of EspA, a secreted TTSS component. The L0050 deletion mutant showed impaired proteins secretion and no adherence on the HeLa cells in monolayer infection assay. Interestingly, the synthesis of EspA protein diminished in the mutant, whereas EspB, which are transcribed as a poloycistronic transcript, remained unaffected. Additionally, the espA translational and transcriptional lacZ fusions were constructed and the beta-galactosidase activities under wild-type or mutant background were assayed. The translational-fused espA-lacZ displayed a significant lower activity in mutant strain than in wild-type; though the transcriptional fusion activities were comparable in these two strains. Taken together, our results indicate that L0050 is probably a component of the secretion apparatus and may implicate in the post-transcriptional regulation of espA.
1 Abe A, de Grado M, Pfuetzner RA, Sanchez-SanMartin C, DeVinney R, Puente JL, Strynadka NCJ, Finlay BB. Enteropathogenic Escherichia coli translocated intimin receptor, Tir, requires a specific chaperone for stable secretion. Mol Microbiol 33:1162-1175;1999.
2 Abe H, Tatsuno I, Tobe T, Okutani A, Sasakawa C. Bicarbonate ion stimulates the expression of locus of enterocyte effacement-encoded genes in enterohemorrhagic Escherichia coli O157:H7. Infect. Immun. 70:3500-3509;2002.
3 Aizawa SI. Bacterial flagella and type III secretion systems. FEMS Microbiol Lett 202:157-164;2001.
4 Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 215:403-410;1990.
5 Appel RD, Bairoch A, Hochstrasser DF. A new generation of information retrieval tools for biologists: the example of the ExPASy WWW server. Trends Biochem Sci 19:258-260;1994.
6 Badea L, Doughty S, Nicholls L, Sloan J, Robins-Browne RM, Hartland EL. Contribution of Efa1/LifA to the adherence of enteropathogenic Escherichia coli to epithelial cells. Microb Pathog 34:205-215;2003.
7 Beltrametti F, Kresse AU, Guzman CA. Transcriptional regulation of the esp genes of enterohemorrhagic Escherichia coli. J. Bacteriol. 181:3409-3418;1999.
8 Blum G, Ott M, Lischewski A, Ritter A, Imrich H, Tschape H, Hacker J. Excision of large DNA regions termed pathogenicity islands from tRNA-specific loci in the chromosome of an Escherichia coli wild-type pathogen. Infect Immun 62:606-614;1994.
9 Brendel V, Bucher P, Nourbakhsh IR, Blaisdell BE, Karlin S. Methods and algorithms for statistical analysis of protein sequences. Proc Natl Acad Sci U S A 89:2002-2006;1992.
10 Buchet A, Nasser W, Eichler K, Mandrand-Berthelot MA. Positive co-regulation of the Escherichia coli carnitine pathway cai and fix operons by CRP and the CaiF activator. Mol Microbiol 34:562-575;1999.
11 Bustamante VcH, Santana FJ, Calva E, Puente JL. Transcriptional regulation of type III secretion genes in enteropathogenic Escherichia coli: Ler antagonizes H-NS-dependent repression. Mol Microbiol 39:664-678;2001.
12 Chilcott GS, Hughes KT. Coupling of flagellar gene expression to flagellar assembly in Salmonella enterica serovar typhimurium and Escherichia coli. Microbiol Mol Biol Rev 64:694-708;2000.
13 Chiu HJ, Lin WS, Syu WJ. Type III secretion of EspB in enterohemorrhagic Escherichia coli O157:H7. Arch Microbiol 180:218-226;2003.
14 Chuang C-H. Deducing Tir Properties that are Different between Escherichia coli of Enterohemorrhagic and Enteropathogenic Virotypes, ed, Taipei, National Yang-ming University, 2003.
15 Clarke SC, Haigh RD, Freestone PP, Williams PH. Virulence of enteropathogenic Escherichia coli, a global pathogen. Clin Microbiol Rev 16:365-378;2003.
16 Cleary J, Lai LC, Shaw RK, Straatman-Iwanowska A, Donnenberg MS, Frankel G, Knutton S. Enteropathogenic Escherichia coli (EPEC) adhesion to intestinal epithelial cells: role of bundle-forming pili (BFP), EspA filaments and intimin. Microbiology 150:527-538;2004.
17 Cornelis GR. The Yersinia Ysc-Yop ''type III'' weaponry. Nat Rev Mol Cell Biol 3:742-752;2002.
18 Creasey EA, Delahay RM, Daniell SJ, Frankel G. Yeast two-hybrid system survey of interactions between LEE-encoded proteins of enteropathogenic Escherichia coli. Microbiology 149:2093-2106;2003.
19 Creasey EA, Friedberg D, Shaw RK, Umanski T, Knutton S, Rosenshine I, Frankel G. CesAB is an enteropathogenic Escherichia coli chaperone for the type-III translocator proteins EspA and EspB. Microbiology 149:3639-3647;2003.
20 Cserzo M, Wallin E, Simon I, von Heijne G, Elofsson A. Prediction of transmembrane alpha-helices in prokaryotic membrane proteins: the dense alignment surface method. Protein Eng 10:673-676;1997.
21 Deng W, Puente JL, Gruenheid S, Li Y, Vallance BA, Vazquez A, Barba J, Ibarra JA, O''Donnell P, Metalnikov P, Ashman K, Lee S, Goode D, Pawson T, Finlay BB. Dissecting virulence: Systematic and functional analyses of a pathogenicity island. PNAS 101:3597-3602;2004.
22 DeVinney R, Stein M, Reinscheid D, Abe A, Ruschkowski S, Finlay BB. Enterohemorrhagic Escherichia coli O157:H7 produces Tir, which is translocated to the host cell membrane but is not tyrosine phosphorylated. Infect Immun 67:2389-2398;1999.
23 Donnenberg M, Yu J, Kaper J. A second chromosomal gene necessary for intimate attachment of enteropathogenic Escherichia coli to epithelial cells. J. Bacteriol. 175:4670-4680;1993.
24 Dorman CJ. H-NS: A UNIVERSAL REGULATOR FOR A DYNAMIC GENOME. Nature Reviews Microbiology
Nat Rev Micro 2:391-400;2004.
25 Elliott SJ, Krejany EO, Mellies JL, Robins-Browne RM, Sasakawa C, Kaper JB. EspG, a novel type III system-secreted protein from enteropathogenic Escherichia coli with similarities to VirA of Shigella flexneri. Infect. Immun. 69:4027-4033;2001.
26 Elliott SJ, O''Connell CB, Koutsouris A, Brinkley C, Donnenberg MS, Hecht G, Kaper JB. A gene from the locus of enterocyte effacement that is required for enteropathogenic Escherichia coli to increase tight-junction permeability encodes a chaperone for EspF. Infect. Immun. 70:2271-2277;2002.
27 Elliott SJ, Sperandio V, Giron JA, Shin S, Mellies JL, Wainwright L, Hutcheson SW, McDaniel TK, Kaper JB. The locus of enterocyte effacement (LEE)-encoded regulator controls expression of both LEE- and Non-LEE-encoded virulence factors in enteropathogenic and enterohemorrhagic Escherichia coli. Infect. Immun. 68:6115-6126;2000.
28 Elliott SJ, Wainwright LA, McDaniel TK, Jarvis KG, Deng Y, Lai L-C, McNamara BP, Donnenberg MS, Kaper JB. The complete sequence of the locus of enterocyte effacement (LEE) from enteropathogenic Escherichia coli E2348/69. Mol Microbiol 28:1-4;1998.
29 Friedberg D, Umanski T, Fang Y, Rosenshine I. Hierarchy in the expression of the locus of enterocyte effacement genes of enteropathogenic Escherichia coli. Mol Microbiol 34:941-952;1999.
30 Gardy JL, Spencer C, Wang K, Ester M, Tusnady GE, Simon I, Hua S, deFays K, Lambert C, Nakai K, Brinkman FSL. PSORT-B: improving protein subcellular localization prediction for Gram-negative bacteria. Nucl. Acids. Res. 31:3613-3617;2003.
31 Gauthier A, Puente JL, Finlay BB. Secretin of the enteropathogenic Escherichia coli type III secretion system requires components of the type III apparatus for assembly and localization. Infect Immun 71:3310-3319;2003.
32 Goldberg MD, Johnson M, Hinton JCD, Williams PH. Role of the nucleoid-associated protein Fis in the regulation of virulence properties of enteropathogenic Escherichia coli. Mol Microbiol 41:549-559;2001.
33 Gomez-Duarte OG, Kaper JB. A plasmid-encoded regulatory region activates chromosomal eaeA expression in enteropathogenic Escherichia coli. Infect Immun 63:1767-1776;1995.
34 Grant AJ, Farris M, Alefounder P, Williams PH, Woodward MJ, O''Connor CD. Co-ordination of pathogenicity island expression by the BipA GTPase in enteropathogenic Escherichia coli (EPEC). Mol Microbiol 48:507-521;2003.
35 Gruenheid S, Sekirov I, Thomas NA, Deng W, O''Donnell P, Goode D, Li Y, Frey EA, Brown NF, Metalnikov P, Pawson T, Ashman K, Finlay BB. Identification and characterization of NleA, a non-LEE-encoded type III translocated virulence factor of enterohaemorrhagic Escherichia coli O157:H7. Mol Microbiol 51:1233-1249;2004.
36 Haack KR, Robinson CL, Miller KJ, Fowlkes JW, Mellies JL. Interaction of Ler at the LEE5 (tir) operon of enteropathogenic Escherichia coli. Infect. Immun. 71:384-392;2003.
37 Heinzerling HF, Olivares M, Burne RA. Genetic and transcriptional analysis of flgB flagellar operon constituents in the oral spirochete Treponema denticola and their heterologous expression in enteric bacteria. Infect Immun 65:2041-2051;1997.
38 Hensel M, Shea JE, Raupach B, Monack D, Falkow S, Gleeson C, Kubo T, Holden DW. Functional analysis of ssaJ and the ssaK/U operon, 13 genes encoding components of the type III secretion apparatus of Salmonella Pathogenicity Island 2. Mol Microbiol 24:155-167;1997.
39 Hueck CJ. Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol. Mol. Biol. Rev. 62:379-433;1998.
40 Hung WL. Construction of enterohemorrhagic Escherichia coli O157:H7 LEE (Locus of Enterocyte Effacement) gene library and expression of SepL and SepQ protein., ed, Taipei, National Yang-ming University, 2002.
41 Ide T, Laarmann S, Greune L, Schillers H, Oberleithner H, Schmidt MA. Characterization of translocation pores inserted into plasma membranes by type III-secreted Esp proteins of enteropathogenic Escherichia coli. Cell Microbiol 3:669-679;2001.
42 Jackson MW, Plano GV. Interactions between type III secretion apparatus components from Yersinia pestis detected using the yeast two-hybrid system. FEMS Microbiol Lett 186:85-90;2000.
43 Kaper JB, Nataro JP, Mobley HL. Pathogenic Escherichia coli. Nat Rev Microbiol 2:123-140;2004.
44 Karlinsey JE, Lonner J, Brown KL, Hughes KT. Translation/secretion coupling by type III secretion systems. Cell 102:487-497;2000.
45 Kenny B, DeVinney R, Stein M, Reinscheid D, Frey E, Finlay B. Enteropathogenic E. coli (EPEC) transfers its receptor for intimate adherence into mammalian cells. Cell 91:511-520;1997.
46 Kenny B, Jepson M. Targeting of an enteropathogenic Escherichia coli (EPEC) effector protein to host mitochondria. Cell Microbiol 2:579-590;2000.
47 Kenny B, Lai L, Finlay B, Donnenberg M. EspA, a protein secreted by enteropathogenic Escherichia coli, is required to induce signals in epithelial cells. Mol Microbiol 20:313?23;1996.
48 Knutton S, Adu-Bobie J, Bain C, Phillips AD, Dougan G, Frankel G. Down regulation of intimin expression during attaching and effacing enteropathogenic Escherichia coli adhesion. Infect Immun 65:1644-1652;1997.
49 Knutton S, Rosenshine I, Pallen MJ, Nisan I, Neves BC, Bain C, Wolff C, Dougan G, Frankel G. A novel EspA-associated surface organelle of enteropathogenic Escherichia coli involved in protein translocation into epithelial cells. Embo J 17:2166-2176;1998.
50 Kodama T, Akeda Y, Kono G, Takahashi A, Imura K, Iida T, Honda T. The EspB protein of enterohaemorrhagic Escherichia coli interacts directly with alpha-catenin. Cell Microbiol 4:213-222;2002.
51 Kresse AU, Beltrametti F, Muller A, Ebel F, Guzman CA. Characterization of SepL of enterohemorrhagic Escherichia coli. J Bacteriol 182:6490-6498;2000.
52 Lai L, Wainwright L, Stone K, Donnenberg M. A third secreted protein that is encoded by the enteropathogenic Escherichia coli pathogenicity island is required for transduction of signals and for attaching and effacing activities in host cells. Infect. Immun. 65:2211-2217;1997.
53 Link A, Phillips D, Church G. Methods for generating precise deletions and insertions in the genome of wild-type Escherichia coli: application to open reading frame characterization. J. Bacteriol. 179:6228-6237;1997.
54 Lio JC-W. Characterization of Undefined Open Reading Frame (ORF) in LEE (The Locus of Enterocyte Effacement) Pathogenicity Island of Enterohemorrhagic E. coli O157:H7, ed, Taipei, National Yang-ming University, 2003.
55 Louie M, de Azavedo JC, Handelsman MY, Clark CG, Ally B, Dytoc M, Sherman P, Brunton J. Expression and characterization of the eaeA gene product of Escherichia coli serotype O157:H7. Infect Immun 61:4085-4092;1993.
56 Mashi Y, Kimura H, Inouye M. Unpublished, ed,
57 McGraw EA, Li J, Selander RK, Whittam TS. Molecular evolution and mosaic structure of alpha, beta, and gamma intimins of pathogenic Escherichia coli. Mol Biol Evol 16:12-22;1999.
58 McNamara BP, Donnenberg MS. A novel proline-rich protein, EspF, is secreted from enteropathogenic Escherichia coli via the type III export pathway. FEMS Microbiology Letters 166:71-78;1998.
59 Mellies JL, Elliott SJ, Sperandio V, Donnenberg MS, Kaper JB. The Per regulon of enteropathogenic Escherichia coli: identification of a regulatory cascade and a novel transcriptional activator, the locus of enterocyte effacement (LEE)-encoded regulator (Ler). Mol Microbiol 33:296-306;1999.
60 Michiels T, Vanooteghem JC, Lambert de Rouvroit C, China B, Gustin A, Boudry P, Cornelis GR. Analysis of virC, an operon involved in the secretion of Yop proteins by Yersinia enterocolitica. J Bacteriol 173:4994-5009;1991.
61 Miller J. Experiments in Molecular Genetics. In: eds. Cold Spring Harbor, NY, Cold Spring Harbor Press, 1972
62 Moat AG, Foster JW, Spector MP. Microbial Physiology. In: eds. New York, Wiley-Liss, Inc., 2002
63 Mundy R, Petrovska L, Smollett K, Simpson N, Wilson RK, Yu J, Tu X, Rosenshine I, Clare S, Dougan G, Frankel G. Identification of a novel Citrobacter rodentium type III secreted protein, EspI, and roles of this and other secreted proteins in infection. Infect Immun 72:2288-2302;2004.
64 Nataro JP, Kaper JB. Diarrheagenic Escherichia coli. Clin. Microbiol. Rev. 11:142-201;1998.
65 Neidhardt FC, Curtiss R, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, Umbarger HE. Escherichia coli and Salmonella: cellular and molecular biology. In: eds. Washington, DC., American Society for Microbiology Press, 1996
66 Nelson KE, Clayton RA, Gill SR, Gwinn ML, Dodson RJ, Haft DH, Hickey EK, Peterson JD, Nelson WC, Ketchum KA, McDonald L, Utterback TR, Malek JA, Linher KD, Garrett MM, Stewart AM, Cotton MD, Pratt MS, Phillips CA, Richardson D, Heidelberg J, Sutton GG, Fleischmann RD, Eisen JA, Fraser CM, et al. Evidence for lateral gene transfer between Archaea and bacteria from genome sequence of Thermotoga maritima. Nature 399:323-329;1999.
67 Neves BC, Mundy R, Petrovska L, Dougan G, Knutton S, Frankel G. CesD2 of enteropathogenic Escherichia coli is a second chaperone for the type III secretion translocator protein EspD. Infect. Immun. 71:2130-2141;2003.
68 Nudler E, Gottesman ME. Transcription termination and anti-termination in E. coli. Genes Cells 7:755-768;2002.
69 Oswald E, Schmidt H, Morabito S, Karch H, Marches O, Caprioli A. Typing of intimin genes in human and animal enterohemorrhagic and enteropathogenic Escherichia coli: characterization of a new intimin variant. Infect Immun 68:64-71;2000.
70 Perna NT, Mayhew GF, Posfai G, Elliott S, Donnenberg MS, Kaper JB, Blattner FR. Molecular evolution of a pathogenicity island from enterohemorrhagic Escherichia coli O157:H7. Infect. Immun. 66:3810-3817;1998.
71 Perna NT, Plunkett G, 3rd, Burland V, Mau B, Glasner JD, Rose DJ, Mayhew GF, Evans PS, Gregor J, Kirkpatrick HA, Posfai G, Hackett J, Klink S, Boutin A, Shao Y, Miller L, Grotbeck EJ, Davis NW, Lim A, Dimalanta ET, Potamousis KD, Apodaca J, Anantharaman TS, Lin J, Yen G, Schwartz DC, Welch RA, Blattner FR. Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature 409:529-533;2001.
72 Ren CP, Chaudhuri RR, Fivian A, Bailey CM, Antonio M, Barnes WM, Pallen MJ. The ETT2 gene cluster, encoding a second type III secretion system from Escherichia coli, is present in the majority of strains but has undergone widespread mutational attrition. J Bacteriol 186:3547-3560;2004.
73 Roe AJ, Yull H, Naylor SW, Woodward MJ, Smith DG, Gally DL. Heterogeneous surface expression of EspA translocon filaments by Escherichia coli O157:H7 is controlled at the posttranscriptional level. Infect Immun 71:5900-5909;2003.
74 Rost B. PHD: predicting one-dimensional protein structure by profile-based neural networks. Methods Enzymol 266:525-539;1996.
75 Rost B, Sander C. Prediction of protein secondary structure at better than 70% accuracy. J Mol Biol 232:584-599;1993.
76 Salyers AA, Whitt DD. Bacterial pathogenesis: a molecular approach. In: eds. Washington, DC., American Society for Microbiology Press, 2002
77 Sambrook J, Russell D. Molecular Cloning: a laboratory manual, ed 3, Cold Spring Harbor, New York, Cold Spring Harbor Laboratory Press, 2001.
78 Sekiya K, Ohishi M, Ogino T, Tamano K, Sasakawa C, Abe A. Supermolecular structure of the enteropathogenic Escherichia coli type III secretion system and its direct interaction with the EspA-sheath-like structure. Proc Natl Acad Sci U S A 98:11638-11643;2001.
79 Shaw RK, Daniell S, Ebel F, Frankel G, Knutton S. EspA filament-mediated protein translocation into red blood cells. Cell Microbiol 3:213-222;2001.
80 Sperandio V, Li CC, Kaper JB. Quorum-sensing Escherichia coli regulator A: a regulator of the LysR Family Involved in the regulation of the locus of enterocyte effacement pathogenicity island in enterohemorrhagic E. coli. Infect. Immun. 70:3085-3093;2002.
81 Sperandio V, Mellies JL, Nguyen W, Shin S, Kaper JB. Quorum sensing controls expression of the type III secretion gene transcription and protein secretion in enterohemorrhagic and enteropathogenic Escherichia coli. Proc Natl Acad Sci U S A 96:15196-15201;1999.
82 Sperandio V, Torres AG, Giron JA, Kaper JB. Quorum sensing is a global regulatory mechanism in enterohemorrhagic Escherichia coli O157:H7. J Bacteriol 183:5187-5197;2001.
83 Sperandio V, Torres AG, Jarvis B, Nataro JP, Kaper JB. Bacteria-host communication: the language of hormones. Proc Natl Acad Sci U S A 100:8951-8956;2003.
84 Taylor KA, O''Connell CB, Luther PW, Donnenberg MS. The EspB protein of enteropathogenic Escherichia coli is targeted to the cytoplasm of infected HeLa cells. Infect Immun 66:5501-5507;1998.
85 Tomoyasu T, Ohkishi T, Ukyo Y, Tokumitsu A, Takaya A, Suzuki M, Sekiya K, Matsui H, Kutsukake K, Yamamoto T. The ClpXP ATP-dependent protease regulates flagellum synthesis in Salmonella enterica serovar typhimurium. J Bacteriol 184:645-653;2002.
86 Tsai N-P, Wu Y-C, Wu C-F, Chen J-W, Tzeng C, Syu W-J. Multiple Functions of L0036 in Regulation of the Pathogenicity Island of Enterohemorrhagic Escherichia coli O157:H7. Submitted 2004.
87 Tu X, Nisan I, Yona C, Hanski E, Rosenshine I. EspH, a new cytoskeleton-modulating effector of enterohaemorrhagic and enteropathogenic Escherichia coli. Mol Microbiol 47:595-606;2003.
88 Tzipori S, Gunzer F, Donnenberg MS, de Montigny L, Kaper JB, Donohue-Rolfe A. The role of the eaeA gene in diarrhea and neurological complications in a gnotobiotic piglet model of enterohemorrhagic Escherichia coli infection. Infect Immun 63:3621-3627;1995.
89 Umanski T, Rosenshine I, Friedberg D. Thermoregulated expression of virulence genes in enteropathogenic Escherichia coli. Microbiology 148:2735-2744;2002.
90 Wachter C, Beinke C, Mattes M, Schmidt MA. Insertion of EspD into epithelial target cell membranes by infecting enteropathogenic Escherichia coli. Mol Microbiol 31:1695-1707;1999.
91 Wainwright LA, Kaper JB. EspB and EspD require a specific chaperone for proper secretion from enteropathogenic Escherichia coli. Mol Microbiol 27:1247-1260;1998.
92 Warawa J, Finlay BB, Kenny B. Type III secretion-dependent hemolytic activity of enteropathogenic Escherichia coli. Infect Immun 67:5538-5540;1999.
93 Wilson RK, Shaw RK, Daniell S, Knutton S, Frankel G. Role of EscF, a putative needle complex protein, in the type III protein translocation system of enteropathogenic Escherichia coli. Cell Microbiol 3:753-762;2001.
94 Wolff C, Nisan I, Hanski E, Frankel G, Rosenshine I. Protein translocation into host epithelial cells by infecting enteropathogenic Escherichia coli. Mol Microbiol 28:143-155;1998.
95 Yu J, Kaper JB. Cloning and characterization of the eae gene of enterohaemorrhagic Escherichia coli O157:H7. Mol Microbiol 6:411;1992.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊